3-24-2012

Management of a Patient with an Encapsulated Parapneumonic Empyema Complicated by the Intraoperative Development of an Acute Bronchopleural Fistula and ARDS

Nancy Lee
University of Massachusetts Medical School, Nancy.Lee@umassmed.edu

Stephen O. Heard
University of Massachusetts Medical School, Stephen.heard@umassmed.edu

Follow this and additional works at: http://escholarship.umassmed.edu/anesthesiology_pubs

Part of the Anesthesiology Commons, and the Respiratory Tract Diseases Commons

Repository Citation
http://escholarship.umassmed.edu/anesthesiology_pubs/114
Introduction
Parapneumonic abscess is associated with a mortality of about 5-20% in the general patient population and increases to over 50% for patients who are elderly or have comorbid conditions. When parapneumonic abscesses become organized, thoracotomy and decortications are indicated for adequate drainage and to allow for maximal lung re-expansion. Bronchopleural fistula (BPF), a communication between the bronchial tree and the pleural space, is associated with high morbidity and mortality. Although rare, BPF remains a serious complication of thoracic surgery and poses significant challenges to intraoperative respiratory management. While multiple surgical and medical management strategies for BPF have been described through various case reports and retrospective studies, no controlled studies exist comparing the various treatment modalities and there are no established guidelines for the management of patients with BPF. BPF that develops secondarily to surgical parapneumonic abscess drainage represents a challenging and complex management problem.

Case Report
A 62-year-old male patient with a right encapsulated parapneumonic empyema presented for a right thoracotomy and decortication. Past medical history was significant for severe aortic stenosis, COPD, gastric cancer in remission, and chronic anemia and cachexia and increased dyspnea. In preparation for surgery, an arterial catheter and two large bore peripheral IVs were inserted. Following induction of general anesthesia, the patient was intubated with an 8.5 endotracheal tube (ETT) under general anesthesia. Mechanical ventilation was supported with positive end expiratory pressure (PEEP) and oxygenation was improved initially with ILV, the patient eventually died. 

Discussion
We report the use of ILV in a patient with severe underlying parenchymal disease who developed BPF after thoracotomy and decortication of an empyema with subsequent development of acute respiratory distress syndrome (ARDS). While a great majority of patients with either ARDS or BPF can be successfully managed with conventional ventilation strategies, the additional management challenges presented by BPF in the setting of ARDS and sepsis often necessitate the utilization of alternative ventilation strategies such as ILV, high frequency ventilation (HFV), and extracorporeal support. Adjuncts to these strategies such as flexible bronchoscopy, tracheobronchial stents, PEEP to the chest tube, and timed occlusion of chest tubes have been described in case reports with variable success.

Recommendations from several case reports and studies suggest that BPF management should focus on decreasing air leak across the fistula and promoting healing by employing ventilation strategies that emphasize decreasing airway pressure and alveolar distension, minimizing pleural suction while maintaining lung expansion, weaning from positive pressure ventilation, and avoidance of alveolar hyperventilation. In the management of ARDS, the recruitment of abnormally areas of noncompliant atelectatic lung is necessary to improve oxygenation and minimize intrapulmonary shunting. Traditionally, this is achieved through conventional positive pressure ventilation with a single lumen endotracheal tube and increased tidal volume and PEEP. Because the strategies for management of BPF and ARDS are often contradictory, it is necessary to tailor ventilation to each patient.

Independent lung ventilation with differential PEEP has been reported by numerous case reports and studies as a method to restore alveolar volume and oxygenation while promoting healing and closure of bronchopleural fistulas. ILV employs a DLT and two mechanical ventilators to anatomically and physiologically isolate each lung for individual ventilation, allowing for differential PEEP, tidal volume, inspiratory flow, and FiO₂. While ILV is usually a second line strategy in ventilation management in patients in which conventional ventilation has failed, ILV was anticipated in this patient due to his severe parenchymal lung disease, the parenchymal injuries anticipated in thoracotomy and decortications, and his recent pneumonia for which anatomical lung isolation would be beneficial in preventing contamination of the non-operated lung. Challenges in using ILV include the imperative of maintaining correct DLT position (which is often difficult) and pulmonary toilet (secretion clearance may be difficult due to the small size of the endobronchial tube).

High frequency ventilation, another alternative strategy for management of BPF, has been advocated in patients with BPF as a conduit for providing adequate air exchange at lower mean airway pressures. Various HFV approaches including high frequency jet ventilation (HFJV) and high frequency oscillatory ventilation (HFOV) have been proposed and utilized. HFJV employs high gas pressures provided through a small-bore cannula through the endotracheal tube. The small tidal volumes averaging 2 to 5 mL/kg provided at high frequencies ranging from 100 to 200 breaths per minute allows these benefits but also presents difficulties in gas warming and humidification. HFOV has been evaluated in case reports or case series of BPF in general. HFOV may only be of benefit if the peak airway pressure is reduced by its use (Figure 1). HFOV provides small gas volumes under constant mean airway pressures. Benefits of HFOV include active expiration, decreasing air trapping risks, HFOV, however, requires relatively high mean airway pressures (through auto-PEEP) and its successes have mainly been described in neonates. The successful use of a combination of ILV and HFOV has also been described.

Intermittent inspiratory chest tube occlusion is another means by which a BPF can be managed. During inspiration, the chest tube is pressurized from the ventilator thereby creating a brief pneumothorax and allowing other areas of the lung to be inflated (Figure 2). The success of this technique has been described in case reports or small case series. However, special equipment is needed to be able to pressure the chest tube(s). Consequently, this method has not achieved widespread popularity.

References