MANN TYPE HYBRID EXTRAGRADIENT METHOD FOR VARIATIONAL INEQUALITIES, VARIATIONAL INCLUSIONS AND FIXED POINT PROBLEMS

L.-C. CENG*, Q. H. ANSARI**, M. M. WONG*** AND J.-C. YAO****

*Department of Mathematics, Shanghai Normal University, Shanghai 200234, and Scientific Computing Key Laboratory of Shanghai Universities, China
E-mail: zenglc@hotmail.com

**Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
E-mail: qhansari@gmail.com

***Department of Applied Mathematics, Chung Yuan Christian University, Chung Li, 32023, Taiwan
E-mail: mmwong@cycu.edu.tw

****Center for General Education, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
E-mail: yaojc@cc.kmu.edu.tw

Abstract. Recently, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (4) (2006) 1230-1241] introduced an iterative algorithm for finding a common element of the fixed point set of a nonexpansive mapping and the solution set of a variational inequality in a real Hilbert space via combining two well-known methods: hybrid and extragradient. In this paper, we investigate the problem of finding a common solution of a variational inequality, a variational inclusion and a fixed point problem of a nonexpansive mapping in a real Hilbert space. Motivated by Nadezhkina and Takahashi's hybrid-extragradient method we propose and analyze Mann type hybrid-extragradient algorithm for finding a common solution. It is proven that three sequences generated by this algorithm converge strongly to the same common solution under very mild conditions. Based on this result, we also construct an iterative algorithm for finding a common fixed point of three mappings, such that one of these mappings is nonexpansive and the other two mappings are taken from the more general class of Lipschitz pseudocontractive mappings and from the more general class of strictly pseudocontractive mappings, respectively.

Key Words and Phrases: Variational inclusion, variational inequality, fixed point, nonexpansive mapping, inverse strongly monotone mapping, maximal monotone mapping, strong convergence.

2010 Mathematics Subject Classification: 49J40, 47J20, 47H10, 65K05, 47H09.

***Corresponding author.

In this research, the first author was partially supported by the National Science Foundation of China (11071189), Leading Academic Discipline Project of Shanghai Normal University (DZL707) and Innovation Program of Shanghai Municipal Education Commission (09ZZ133). Part of the research of the second author was done during his visit to King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia. The second author is grateful to King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for providing excellent research facilities during his visit. The fourth author was partially supported by the grant NSC 99-2221-E-037-007- MY3.
References

Received: March 11, 2011; Accepted: August 2, 2011.