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Abstract

A .300 kb cis-regulatory region is required for the proper expression of the three bithorax complex (BX-C) homeotic genes.
Based on genetic and transgenic analysis, a model has been proposed in which the numerous BX-C cis-regulatory elements
are spatially restricted through the activation or repression of parasegment-specific chromatin domains. Particular early
embryonic enhancers, called initiators, have been proposed to control this complex process. Here, in order to better
understand the process of domain activation, we have undertaken a systematic in situ dissection of the iab-6 cis-regulatory
domain using a new method, called InSIRT. Using this method, we create and genetically characterize mutations affecting
iab-6 function, including mutations specifically modifying the iab-6 initiator. Through our mutagenesis of the iab-6 initiator,
we provide strong evidence that initiators function not to directly control homeotic gene expression but rather as domain
control centers to determine the activity state of the enhancers and silencers within a cis-regulatory domain.
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Introduction

The Drosophila bithorax complex (BX-C) is one of two homeotic

gene clusters in the fly and is responsible for determining the

segmental identity of the posterior thoracic segment and each of

the fly abdominal segments [1,2]. It does this by using a .300 kb

cis-regulatory region to control the parasegement-specific expres-

sion of the three BX-C homeotic genes: Ubx, abd-A and Abd-B (for

review, see [3]).

Through the early genetic analysis of the BX-C, it was shown

that its cis-regulatory sequences can be divided into nine

parasegment-specific chromosomal domains (abx/bx, bxd/pbx, and

iab-2 through iab-8), where each domain controls the activation of

one of the three BX-C homeotic genes in a pattern appropriate for

that parasegment [4–8]. Since their identification, these domains

have been dissected using transgenic reporter assays to identify

individual regulatory elements capable of modifying reporter gene

expression. Among the elements identified were early embryonic

enhancers (initiators), cell-type-specific enhancers, silencers and

insulators [9–22]. Interestingly, although homeotic gene expres-

sion is restricted along the antero-postero (A–P) axis, many of the

elements identified by transgenic analysis do not control reporter

gene expression in an A–P restricted manner. These findings,

when combined with the early genetic data suggest a model in

which the cis-regulatory elements of the BX-C are controlled

through the activation or repression of parasegment-specific

chromatin domains [4,23–24].

According to this model, the BX-C functions through multiple

layers of control. First, there are the enhancers that directly

activate homeotic gene expression in a pattern appropriate for a

specific parasegment. Based on the genetic data, these enhancers

are known to be grouped in a way where all the enhancers

required to produce a PS-specific pattern of homeotic gene

expression are clustered into domains within the BX-C sequence.

However, although these enhancers produce a pattern of homeotic

gene expression appropriate for a specific parasegment, in

transgenic assays, they are not restricted along the A–P axis, and

are only restricted to specific cell-types [9,12,22,25].

The second layer of control comes from Polycomb-response

element silencers (PREs). These silencers are thought to turn off

the clusters of enhancers in parasegments where they are not

needed, via modification of the local chromatin structure around

the enhancers (for reviews [26–28]). Once again, however, like the

cell-type-specific enhancers, by themselves, PREs do not seem to

sense positional information and can silence genes regardless of A–

P position [29].

Domain boundary elements form a third layer of BX-C control.

Each of the PS-specific enhancer clusters seems to be flanked by

boundary elements, required to keep each cluster separate and

autonomous from other clusters. In situ, loss of a domain boundary

causes the fusion of PS-specific domains, resulting in mutant

phenotypes, where the affected segments displays phenotypes

characteristic of the other [18,22,30–31] (for review see [32]). In

transgenic assays, these elements have been shown to behave as

insulators, blocking both positive and negative effects of cis-

regulatory elements on reporter gene activity [13–14,17–18,21].

However, the presence of boundary elements cannot explain the

A–P restriction of the BX-C regulatory elements, for, as with the

enhancers and silencers, when taken out of the BX-C, boundary

elements do not seem to have an A–P restricted activity.

So then, how do non-restricted regulatory elements control

homeotic gene expression in an A–P position-dependent manner?
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If we are to assume that the reporter gene assays represent a

reasonable estimate of the activity of the various regulatory

elements in a domain, then there must be some other element in

each domain that coordinates the activity of these elements across

the A–P axis. Special early embryonic enhancers, called initiators,

are the prime candidates to perform this function [9–12,17–18]

[20,22]. As mentioned above, the activity of most of the elements

isolated from the BX-C is not restricted along the A-P axis. In this

respect, however, initiator elements are exceptional. In transgenic

assays, these elements behave as early embryonic enhancers that

activate reporter gene expression in a pattern along the A-P axis,

consistent with the activity of the domain from which it was

isolated. For example, the initiator identified from the iab-5

domain, which controls Abd-B expression in PS10/A5, activates

reporter gene expression in PS10/A5 and more posterior segments

in a pair-rule fashion [12]. Because similar elements were found in

many PS-specific domains and these elements were the only

elements discovered in the BX-C capable of reading the early

parasegmental address set up by the maternal, gap and pair-rule

gene products, it was hypothesized that initiators would act as the

primary switches to determine if a domain was active or silenced.

Unfortunately, although initiators are thought to play such a key

role in BX-C gene regulation, their actual role has never been

directly tested in vivo due to the lack of appropriate mutations and

the difficulties in performing homologous recombination in

Drosophila.

Thus, in order to explore the function of initiators and other

regulatory elements in vivo, we developed a method to streamline

the homologous recombination process for rapid, precise, and

systematic mutagenesis. Using this method, called InSIRT (In Situ

Integration for Repeated Targeting), we have created twenty new

mutations in the iab-6 region of the BX-C, including mutations

that directly test the role of the initiator in BX-C gene regulation

(Figure 1 and Table 1).

Results/Discussion

Creation of an attP integration site in the BX-C
To study the cis-regulatory elements regulating BX-C homeotic

gene expression within their natural chromosomal environment,

we sought to design a method that could be used to rapidly and

repeatedly target the BX-C for site-specific mutagenesis. Because

this method is related to the SIRT method [33], we named it

InSIRT for In Situ Integration for Repeated Targeting. Figure 2

provides a rough schematic of this method as used here in the BX-

C. In short, homologous recombination is used to replace a

genomic region of interest with an entry site (attP) recognized by

the wC31-bacteriophage integrase [34–36]. Once a region of the

genome is replaced by an attP site, a DNA fragment corresponding

to the deleted region can be systematically mutagenized in vitro and

reinserted into its normal chromosomal location by wC31

integration. As wC31 integration is a relatively fast process (by

genetic standards), InSIRT allows site-specific mutagenesis of

actual genes to be accomplished within the timeframe required to

create a simple transgenic fly. For our experiments, we replaced a

19.3 kb region of the BX-C, roughly corresponding to the iab-6 cis-

regulatory domain, with a 255bp wC31 integrase attP site (Figure 1

and Figure 2; note that the previously identified IAB5 initiator

fragment [12] and the Fab-7 boundary element [30–31] are left

intact by the deletion, while the area presumed to be the Fab-6

boundary is removed [22]).

Removal of cis-regulatory domains in the BX-C typically results

in the homeotic transformations of posterior segments towards

anterior segments. The segments transformed depend on the cis-

regulatory domains removed and are transformed towards the last

more-anterior segment whose cis-regulatory domain is intact. For

example, deletion of the iab-6 cis-regulatory domain should result

in the transformation of segment A6 (whose development in

specified by iab-6) into A5 (whose development is controlled by iab-

5). As we were attempting to delete only iab-6 in our deletion, we

thus expected flies homozygous for our 19.3 kb deletion to display

a typical iab-6 mutant phenotype. However, this was not the case.

Flies homozygous for our 19.3 kb deletion have both their A5 and

A6 segments transformed towards A4, indicating that both iab-5

and iab-6 activity are affected by our deletion (Figure 3). This can

be clearly seen on the adult cuticle. Most of the segments of the

adult fly abdomen can be identified independent of their position,

by distinct cuticular features. For example, the wild type male sixth

segment (A6) is distinguished from other segments by having a

darkly pigmented tergite, covered in a distinctive pattern of tiny

hairs, called trichomes, and is devoid of sternite bristles.

Meanwhile, the fifth segment (A5) displays a similar darkly

pigmented tergite that is uniformly covered with trichomes, and

has a sternite with numerous bristles (Figure 3A). Flies homozy-

gous for our deletion display an A4-like pigmentation pattern on

both the male fifth and sixth abdominal tergites (Figure 3C). Also,

the A6 sternite, normally devoid of bristles, displays numerous

bristle like the A4 or A5 sternite. Based on these phenotypes, we

named our deletion iab-5,6CI.

Although the adult cuticular phenotypes indicate that iab-5

function is affected in iab-5,6CI, this inactivation is incomplete and

only some PS10/A5 phenotypes are affected. For example, in the

embryonic CNS, the PS10/A5 Abd-B expression pattern is normal,

indicating that in embryos, iab-5 is still active (compare Figure 3B

with Figure 3D). Also, while iab-5 null mutants are sterile, iab-5,6CI

mutants are fertile. Based on these results, we believe that iab-5,6CI

removes an adult cuticle enhancer from iab-5, while leaving the

rest of the iab-5 cis-regulatory domain intact. iab-6 function, as

would be expected of the deletion we created, seems to be

universally affected, as both the adult cuticle, and the embryonic

CNS staining are affected (Figure 3C, 3D).

As a control for the InSIRT method, we first decided to

reintegrate the 19.3 kb fragment removed in iab-5,6CI. As

expected, the reintegrated line, iab-5,6 rescue, reverts all phenotypes

Author Summary

Understanding how genes become activated is one of the
primary areas of research in modern biology. In order to
decipher the DNA components required for this process,
scientists have traditionally turned to transgenic reporter
assays, where DNA elements are removed from their native
environment and placed next to a simplified reporter gene
to monitor transcriptional activation. Although this ap-
proach is powerful, it can result in artifacts stemming from
the channelization of regulatory element activities into
predetermined classes. In this manuscript, we investigate
the biological role of elements from the Drosophila
bithorax complex, called initiators. In transgenic assays,
these elements have been categorized as enhancers.
However, genetic analysis suggests that, in situ, these
elements perform a far more complex function. Here,
using a new method to repeatedly target a genetic locus
for mutagenesis, we show that initiators function as
control elements that coordinate the activity of nearby
enhancers and silencers. Overall, our study highlights how
gene expression can be controlled through a hierarchical
arrangement of cis-regulatory elements.

Initiator Swap in the BX-C
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associated with iab-5,6CI and demonstrates the feasibility of our

approach (Figure 3E, 3F).

To begin our dissection of the cis-regulatory elements in the iab-

6 domain, we created a series of overlapping deletions spanning

the 19.3 kb iab-5,6CI region (Figure 1 and Table 1) and examined

their resulting phenotypes on the adult cuticle and embryonic

CNS. We will first discuss deletions affecting the iab-6 initiator.

The iab-6 initiator is necessary, but not sufficient to
control Abd-B expression in PS11/A6

Previously, we identified a 2.8 kb element from iab-6 that

displayed the characteristics of an initiator in a transgenic reporter

assay. Accordingly, this 2.8 kb fragment was shown to be able to

drive the early expression of a lacZ reporter in a spatially restricted,

pair-rule pattern, from PS11/A6 [22]. Unfortunately, as with

Figure 1. Synopsis of the Abd-B locus of the BX-C and diagram of the mutations created for this study. A. Synopsis of the Abd-B locus of
the BX-C. Diagram of the Abd-B gene and its 39cis-regulatory region. The horizontal line represents the DNA sequence of the BX-C (see scale on top
left). The Abd-B expression pattern in the central nervous system of a 10 hours embryo is shown above the DNA line. In parasegment 10 (PS10) Abd-B
is present in a few nuclei at a relatively low level. This PS10-specific expression pattern is controlled by the iab-5 regulatory domain located 55 kb
downstream from the Abd-B promoter. In PS11, PS12 and PS13, Abd-B is present in progressively more nuclei and at higher levels. These patterns are
controlled by the iab-6, iab-7 and iab-8 regulatory domains, respectively. Each regulatory domain functions autonomously from its neighbors due to
the presence of the boundaries that flank them (red ovals). B. Diagram of the mutations created for this study. The top line shows the DNA
coordinates of iab-6, according to the Drosophila Genome Project. Below this line, and to approximate scale, are the locations of the various elements
isolated from the BX-C including the IAB5 initiator[12], DNase hypersentive site 1 (HS1/Fab-6 including the CTCF binding sites) and 2 (HS2/PRE) [43–
44], the 2.8 kb iab-6 initiator fragment [22], the minimal initiator fragment and the Fab-7 boundary [14,30]. Below this line are the DNAs reintegrated
to make the mutations. The various iab-6 alleles are indicated as solid bars, with gaps indicating the areas deleted. These bars are color coded such
that blue bars indicate mutants that show no cuticle or CNS phenotypes at 25uC, red bars indicate mutants with Fab-6-type phenotypes, turquoise
bars indicate mutants with iab-5,6 phenotypes, and green bars indicate mutants with iab-6 phenotypes.
doi:10.1371/journal.pgen.1001260.g001

Initiator Swap in the BX-C
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other initiators, its precise function in the BX-C was never

investigated genetically. We thus created a mutation that removes

this 2.8 kb initiator fragment from the iab-6 domain. The resulting

mutant is named, iab-61 (see Figure 1B). According to the domain

model, initiators should act as switches to turn on all of the

enhancers in a domain. Thus, removal of the initiator from iab-6

should result in a complete loss of iab-6 function. This is, in fact,

what we see. In flies homozygous for this deletion, A6 seems to be

completely transformed into A5 (Figure 4A). This can be clearly

seen on the adult cuticle where the 6th sternite takes on the shape

and bristle pattern characteristic of A5. The transformation can

also be seen in the embryonic CNS, where the Abd-B expression

pattern in PS11/A6 is replaced by the pattern normally found in

PS10/A5 (Figure 4C).

In as much as the 2.8kb fragment had not been further dissected

in the reporter gene assay, we decided to further narrow down the

initiator by integrating smaller deletions from within the 2.8 kb

fragment. In order to select these deletions, we first applied a

bioinformatic approach (fly_Ahab: http://gaspard.bio.nyu.edu/

fly_ahab.html) to identify regions in the iab-6 domain that

correspond to binding sites for known Drosophila transcription

factors. Using this approach, we identified a potential cis-regulatory

module in an ,900 bp region of the iab-6 initiator. This module

contains the predicted binding sites for the Kruppel, Caudal and

Hunchback proteins, and is supported by recent genome-wide ChIP

analysis (http://genome.ucsc.edu). As previous work had indicated

that initiators sense A-P position through the binding of the

maternal, gap and pair-rule gene products [10,12,17,20,37–41], we

decided to test if this ,900 bp region is required for iab-6 function

in the BX-C. To do this, we created three overlapping deletions, iab-

62, iab-63, and iab-64, that each deletes this 900 bp region

(Figure 1B). As flies homozygous for any of these three mutations

display the same phenotype, we will concentrate on the smallest of

these deletions, iab-64, which deletes only a 927 bp sequence

corresponding to the identified cis-regulatory module. Flies

homozygous for iab-64 show a complete loss of iab-6 function, like

that seen in iab-61 flies. The extent of the transformation is

corroborated by the tergite trichome pattern (Figure 4E) and the

embryonic Abd-B expression pattern in the CNS, where the PS11/

A6-specific pattern is replaced by the pattern normally found in

PS10/A5 (Figure 4F). Based on these results, we conclude that this

927 bp fragment is absolutely necessary for iab-6 activation of Abd-B

in PS11/A6. The fact that a deletion of the initiator is capable of

completely removing iab-6 activity in the epidermis and the CNS, is

consistent with the idea that the initiator functions as a switch to

turn on all of the regulatory elements in a cis-regulatory domain.

However, these results would also be consistent with the initiator

being the sole positive regulatory element in A6/PS11. To rule out

this possibility, we created another mutation that removes much of

the iab-6 cis-regulatory region but leaves intact the 2.8 kb initiator

fragment. This mutation, called iab-68 (Figure 1), also shows a strong

loss of iab-6 function (Figure 4G). Thus, although the iab-6 initiator

is critical for iab-6 function, it is not sufficient for iab-6 activity.

One important point to note regarding iab-68 is that the loss-of-

function (LOF) phenotype is slightly weaker than in iab-64. The

difference between these two mutants can be seen when

examining the trichome pattern on the transformed A6. While

the iab-64 mutation displays a transformed A6 with an A5-like

trichome pattern (uniformly covered, Figure 4E), the iab-68

trichome pattern still resembles that of a wild-type A6 (Figure 4H).

This suggests that although iab-68 removes most of the iab-6

sequence, there is still some functionality left in the domain. This

is an important finding because it supports a prediction of the

domain model, which suggests that removal of cell-type specific

enhancers would affect individual (or grouped) characteristic,

while removal of initiator elements would affect all characteris-

tics. To test this idea more directly, we next performed an

initiator swapping experiment.

Initiators act as domain control centers for cis-regulatory
domains

The domain model suggests that initiators act as switches to turn

on (or off) the various regulatory elements present in a domain. In

the simplest state, this would mean that initiators would not

participate directly in driving homeotic gene expression, but would

simply coordinate the activity of cell/tissue-type specific enhancers

along the A-P axis. If this were true, then we hypothesized that we

should be able to transform a segment into another, simply by

turning on the cell/tissue-type specific enhancers of domain in an

area where they are normally off. Using our InSIRT method, we

could do this by exchanging initiators from different domains.

For these experiments, we chose to remove the 927 bp iab-6

initiator and replace it with the molecularly identified initiator from

iab-5. The iab-5 initiator is defined as a 1 kb DNA fragment (called

IAB5) that, when cloned in front of the Ubx-lacZ reporter gene,

activates strong b-galactosidase in a pair-rule fashion from PS10

Table 1. Mutations and phenotypes.

Mutation Region Deleted A5 A6 Oligos

iab-5,6CI 3R:12705250–12724572 A4/A5 A4/A5

iab-5D1 3R:12705410–12706585 A5 A6 D1+P7

Fab-61 3R:12705410–12708661 A4/A6 A4–5/A6 D1+P6

Fab-62 3R: 12705410–12713431 A4/A6 A4–5/A6 D1+P5

Fab-63 3R:12706583–12708661 A4/A6 A4–5/A6 D2+P6

Fab-64+IAB5 3R:12717635–12718561{ A6 A6 D6+P3

iab-61 3R:12716494–12719281 A5 A5 D5+P2

iab-62 3R:12717635–12719281 A5 A5 D6+P2

iab-63 3R:12716494–12718561 A5 A5 D5+P3

iab-64 3R:12717635–12718561 A5 A5 D6+P3

iab-65 3R:12717635–12724398 A5 A5 D6+P1

iab-66 3R:12712171–12724398 A5* A5* D4+P1

iab-67 3R:12708714–12724398 A5* A5* D3+P1

iab-68 3R:12712171–12716492 A5* A5/A6 D4+P4

iab-6D5 3R:12721546–12724398 A5 A6** D8+P1

iab-6D6 3R:12719282–12724398 A5 A6** D7+P1

iab-6D7 3R:12708714–12713431 A5 A6 D3+P5

iab-5,62 3R:12705410–12716492 A4/A6 A4/A6 D1+P4

iab-5,63 3R:12705410–12718561 A4/A5 A4/A5 D1+P3

iab-5,64 3R:12705410–12719281 A4/A5 A4/A5 D1+P2

Column one lists the name of each mutation created for this work. Column
two indicates the regions deleted in each line based on the coordinates of the
Drosophila genome project (Release 5). Columns three and four summarize
the transformations observed in the cuticle and embryonic CNS of A5/PS10
(labeled A5) and A6/PS11 (labeled A6). ({) indicates that in the Fab-64+IAB5

mutation, the sequence indicated was deleted, but was replaced by the
sequence of the IAB5 initiator. (*) has been used to indicate that the cuticle
trichome pattern occasionally shows signs of weak transformation towards A6.
Based on other observations, we believe this could be a cis-over expression
effect [29,57] due to the loss of PRE sequences. (**) Mutations iab-6D5 and iab-
6D6 display a slight loss of A6 cuticle at 18uC. Finally column five indicates the
oligos listed in Table 2 that were used to generate the corresponding
deficiencies.
doi:10.1371/journal.pgen.1001260.t001

Initiator Swap in the BX-C
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[12]. Therefore, if the domain model is correct, by replacing the iab-

6 initiator with that of iab-5, we should be able to activate the

enhancers required for PS11/A6 development in PS10/A5. As the

difference in the expression pattern of Abd-B between PS10 and

PS11 can be summarized as PS11 having a higher level of Abd-B

expression than PS10 (and in more cells), we would expect ectopic

activation of iab-6 to be epistatic to the activity of iab-5. In other

words, we expected to see a posterior transformation of A5 into A6.

As predicted by the domain model, the swapping of the iab-6

initiator with that of iab-5 results in a dominant A5 to A6

transformation that is stronger in homozygous flies. This type of

posterior-directed abdominal transformation in the BX-C is

typically called a Frontabdominal (Fab) transformation. For this

reason, we have named this new mutation, Fab-6IAB5. Figure 5C

shows an abdominal cuticle of a Fab-6IAB5 homozygous male. In

this fly, we observe an A6-like lack of A5 sternite bristles, an A6-

like trichome pattern on the A5 tergite and a PS11/A6-like Abd-B

pattern of expression in PS10/A5 (Figure 5F). The fact that A5

appears to be a copy of A6 suggests that everything required for

the patterning of A6 is still present in the modified iab-6 domain,

but that these elements have simply been activated one segment

too-anterior. These findings strongly support the model in which

Figure 2. InSIRT. A. Step one: Homologous Recombination. The original ‘‘ends-out’’ donor vector (pW25) was modified to contain an attP insertion
site and a removable yellow reporter gene. Using the yellow reporter, homologous recombination events could be identified by screening for flies
with yellow expression in the A5 and A6 segments (a consequence of having yellow inserted in the iab-5 domain). The yellow reporter could then be
removed to leave only the attP site and a single loxP recombination site (white triangle) in place of iab-6. B. Step two: Reintegration. Plasmids
containing a 288 bp attB site, a single loxP site, a yellow reporter and a version of the 19.3 kb fragment were injected into iab-5,6CI embryos
expressing a maternally supplied wC31 integrase [36]. Integration events were isolated based on yellow gene expression, then crossed to the Cre
recombinase to remove the yellow gene and all vector backbone sequence.
doi:10.1371/journal.pgen.1001260.g002

Initiator Swap in the BX-C
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initiators function, not as enhancers to directly control homeotic

gene expression, but rather as domain control centers to turn on

the other cis-regulatory elements in a domain.

Interestingly, in the Fab-6IAB5 mutation, A6 seems to be

unaffected by the IAB5 swap. As mentioned above, the IAB5

fragment drives reporter gene expression in a pair-rule manner

from PS10/A5 (i.e. not in PS11) [12]. In fact, reporter transgenes

carrying the entire iab-5 domain are still only capable of driving

reporter gene expression in a pair-rule fashion [22]. If this assay

reflects IAB5 activity in vivo, then what turns on iab-6 in PS11/A6?

Currently, we do not have a completely satisfying answer to this

question. However, previous genetic studies tell us that the iab-5

cis-regulatory domain is indeed capable of working in PS11/A6. In

iab-6 mutants, for example, A6 is transformed into A5 [22,42].

Thus, it seems clear that our interpretation of IAB5 activity from

the transgenic reporter assay, oversimplifies IAB5 function. This is

perhaps not too surprising, as the reporter gene assays were

designed to simply test if a DNA fragment is capable acting as an

enhancer. From our experiments, however, it seems that initiators

may have a more complex function that is not reflected in the

transgene assay.

Mutations affecting Fab-6 boundary function
During our dissection of the iab-6 domain, we also created a

number of deletions affecting Fab-6 boundary function. Boundar-

ies function to keep domains autonomous. Based on what was

observed in other boundary deletions, we know that boundaries

prevent both ectopic activation of posterior domains by elements

present in anterior domains (initiators), as well as, prevent anterior

domains from being silenced by posterior silencing elements

(PREs) [18,31]. The removal of a boundary element, therefore,

results in a mixed transformation, where clones of cells in anterior

segments become transformed towards cells of more-posterior

segments, and clones of cells from posterior segments become

transformed towards cells of more-anterior segments. Using our

series of deletions, we have narrowed down the Fab-6 boundary to

an ,650 bp region of the BX-C.

Previous work from our lab [22] genetically mapped the Fab-6

boundary to an ,4.5 kb region of the BX-C between the distal

(relative to the Abd-B transcription unit) breakpoints of the iab-6IH

(3R:12712604) and Fab-6,71 (3R:12708067) mutations. By using

deletions nested on the Abd-B-distal side of the iab-5,6CI mutation,

we were able to quickly narrow down the location of the Fab-6

boundary further. The first deletion we will speak about, iab-5D1,

removes an ,1.2 kb region from the distal side of iab-5,6CI but

displays no visible phenotype. This indicates that neither the iab-5

cuticle enhancer (see above), nor the Fab-6 boundary element is

removed by this deletion. On the other hand, two bigger deletions,

removing ,3.2 kb and ,8 kb respectively (Fab-61 and Fab-62),

show mixed anteriorizing (LOF) and posteriorizing (GOF)

transformations of A5 and A6 towards A4 or A6. An example of

this (Fab-62) can be seen in Figure 6A where we see a loss of bristles

on the A5 sternite (indicative of a posterior-directed transforma-

tion of A5 to A6), and a loss of pigmentation on the A5 tergite

(indicative of an anterior-directed transformation of A5 to A4).

Meanwhile, in the A6 segment of each mutant, we see a gain of

bristles on the sternite and a loss of pigmentation on the tergite,

both indicative of an anterior-directed transformation (probably

towards A4). Although very similar, we must note that the Fab-62

mutation displays a slightly stronger GOF phenotype than Fab-61

(data not shown). Consistent with this finding, a PRE has recently

been mapped to the region differentiating the Fab-61 and Fab-62

mutations [43]. Thus, if Fab-62 functions like other boundary

mutations, the enhanced Fab-6 GOF phenotype is probably

caused by deleting this silencing element and shifting the balance

between GOF and LOF phenotypes.

The smallest mutation we created that displays an Fab-6

phenotype is Fab-63 which deletes an ,2 kb span of DNA between

the proximal breakpoints of iab-5D1 (3R:12706585) and Fab-61

(3R:12708661). As expected Fab-63 displays a phenotype similar to

Fab-61 and Fab-62 (Figure 6B) with mixed gain- and loss-of-

function phenotypes. Meanwhile, a deletion spanning the PRE

Figure 3. iab-5,6CI phenotype and rescue. A. A wild-type adult male
cuticle with A4-A6 labeled. Segment A5 differs from A6 based on the
sternite shape and the bristles present on the A5 sternite. For reference,
the A6 tergite is indicated by a red arrowhead and the A6 sternite is
indicated by a red arrow. B. A wild-type embryonic nerve cord (anterior
towards the top) stained with an antibody to Abd-B (brown). Notice the
step gradient of Abd-B expression increasing in each parasegment
towards the posterior. C. An adult male cuticle of a fly homozygous for
the iab-5,6CI chromosome with A5 and A6 transformed towards A4
(notice the A4-like pigmentation on the tergites and the bristled
sternites). D. The embryonic nerve cord of homozygous iab-5,6CI

embryos shows only a transformation of A6 into A5, as seen by the
repetition of PS10/A5-like Abd-B levels in PS11/A6, indicating that the
inactivation of iab-5 is incomplete and not seen in the embryo. E. An
adult male cuticle from a fly homozygous for the iab-5,6rescue

chromosome, where the entire 19.3 kb area deleted in iab-5,6CI is
reintegrated into iab-5,6CI, looks completely wild type. F. The complete
rescue is confirmed by the wild-type pattern of Abd-B in the embryonic
ventral nerve cord.
doi:10.1371/journal.pgen.1001260.g003
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region that differs between Fab-61 and Fab-62 shows no phenotype

(iab-6D7, Figure 1), suggesting that the critical elements required

for Fab-6 function are all contained in Fab-63. Thus, when

combining our new data with those of the past, we can now

narrow down the Fab-6 boundary to an ,650 bp region, spanning

from the proximal breakpoint of Fab-6,71 (3R:12708067) to the

distal breakpoint of iab-6D7 (3R:12708714). Consistent with this

mapping, it has recently been shown that this region contains

binding sites for the insulator protein dCTCF [44], and that a

fragment containing these dCTCF binding sites blocks enhancer-

promoter interactions in an insulator reporter assay [45].

Additional mutations in the iab-6 region
Other deletions created for this study are presented here, solely

for the purpose of completeness. These additional deletions are

depicted in Figure 1 and their phenotypes are summarized in

Table 1. Although we will not discuss these mutants in detail, we

would like to point out two key issues surrounding these

mutations. First, all deletions removing the initiator fragment

show a loss of iab-6 function comparable to that seen in iab-64.

This finding is in agreement with the domain model and our

data, which suggests that the initiator is absolutely required for

activating iab-6 function in the cuticle and CNS. Second, we have

also isolated a number of mutations that show no noticeable iab-6

phenotype. These mutations, iab-6D7, iab-6D5 and iab-6D6, remove

a total of ,9.8 kb of iab-6 sequence without dramatically

changing the morphology of the adult cuticle or modifying the

Abd-B expression pattern in the embryonic CNS (data not shown).

Does this mean that these sequences are without function?

Absolutely not. In fact, we know that the region deleted in iab-6D7

probably contains a PRE, whose deletion produces a phenotype

when combined with the deletion of the Fab-6 boundary. Also, as

we have scanned only a small fraction of the possible

developmental pathways in which Abd-B is involved, we believe

that it is very likely that these other regions contain cell-type

specific enhancers controlling Abd-B expression in other tissues

than the CNS and the cuticle. Obviously, now that we have the

ability to manipulate regions of the BX-C at a base-pair level, we

now require equally precise methods to monitor potential

phenotypic changes.

Figure 4. Phenotypes from initiator mutants. Genotypes are as follows: A.–C. iab-61, D.–F. iab-64 and G.–I. iab-68. A., D. and G. show adult male
cuticles. B., E. and H. show pseudo-darkfield views of the fifth and sixth tergites to visualize the trichome patterns. C., F. and I. show the Abd-B staining
pattern in the embryonic nerve cord. In wild-type flies, A5/PS10 differs from A6/PS11 based on the sternite shape, the bristles present on the A5
sternite, the trichome pattern on the fifth and sixth tergites, and the Abd-B staining pattern in the CNS (see Figure 3 and Figure 4). The iab-61 and iab-
64 show transformations of A6 to A5 for all phenotypes monitored. Meanwhile iab-68 shows only a partial transformation of A6 to A5 as seen by the
sternite shape and trichome pattern on A6, which remain A6-like.
doi:10.1371/journal.pgen.1001260.g004
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The initiator and a hierarchical structure to gene
regulation

For more than twenty years, much of the work on the BX-C has

proceeded on the assumption that the BX-C cis-regulatory regions

control homeotic gene expression through a multilayered,

hierarchical process, summarized in the domain model. Key to

this model was the idea that there existed specialized switch

elements to control the activity state of the entire domain. Based

on transgenic assays, these switch elements were thought to be

special early embryonic enhancers, often called initiators.

Although through the years, we, and others, have generated

many results consistent with this model, we were never able to

directly test initiator function in situ, due to experimental

difficulties. Thus, a key prediction of the domain model went

untested for decades. Here, we have finally provided the data

confirming the key role of the initiator in domain activation.

Besides being important for studies on BX-C gene regulation,

our findings highlight the possibility of having elements whose sole

function may be to control the activity state of other elements.

Although we still do not understand how this is accomplished

mechanistically, we believe that it is probably through modifying

the local chromatin environment around the enhancers. In fact,

taking into account the enhancer activity of initiators in transgenic

constructs, we are left with an intriguing and testable model for

initiator action. As mentioned above, initiators were first isolated

as early embryonic enhancers that turned on reporter gene

expression in an A-P restricted manner. It has been known for

years that the cis-regulatory sequences of the BX-C are transcribed

in a parasegment-specific manner where transcripts from each cis-

regulatory domain are expressed along the A-P axis in correspon-

dence to where a domain is expected to be active [46–49]. In other

experiments it has been shown that forced transcription across

PREs in the BX-C can prevent Pc-dependent silencing, and hence,

activate a domain [50–52]. Thus, by combining these findings, it is

possible to imagine a causal relationship between the initiator and

transcription, and the transcription of a domain and domain

activation. Accordingly, we propose that initiators might act as

enhancers, responding to gap and pair-rule gene products to

activate transcription from promoters within the cis-regulatory

domains. In doing so, they would indirectly activate homeotic gene

expression by preventing the Pc silencing of homeotic gene

enhancers. Using the tools developed here, we are now in the

process of testing this model.

Another question that we can now address using InSIRT is

whether or not initiators are required later in development. Thus

far, we have been discussing initiators as only functioning early in

development. It is still possible, however, that initiators are

constantly required for domain activation or that they play a later

role in the regulation of homeotic gene expression. Although the

initiator being constantly required to keep a domain active cannot

be ruled out, based on our current understanding of initiator

function, we do not believe this to be the case. Perhaps the

strongest evidence supporting this belief comes from transgenic

assays. In transgenic assays, initiator fragments seem to respond to

Figure 5. Phenotypes from initiator mutants. Genotypes are as follows: A. and D. iab-64. B. and E. wild type. C. and F. Fab-6IAB5. A.–C. Show the
ventral sternite cuticles made from adult males, homozygous for the genotype indicated above. Notice that A5 differs from A6 based on the sternite
shape and the bristles present on the A5 sternite. The opposite homeotic transformations are highlighted by the direction of the arrows on the left
and the right of the cuticles. D.–F. Show ventral nerve chords made from homozygous embryos of the genotypes indicated above. Parasegment
borders are marked to the left.
doi:10.1371/journal.pgen.1001260.g005
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the maternal, gap and pair-rule gene products. Upon disappear-

ance of the early expression pattern of these proteins, initiator

activity in transgenes often disappears, or produces a pattern of

expression not restricted along the A-P axis (if not paired with a

PRE/maintenance element). Based on this, we believe that their

role in coordinating the activity of a domain is probably limited to

early development. However, this does not mean that all initiators

would have no activity outside of initiation phase, only that their

function in domain initiation would be limited to early

embryogenesis. As mentioned above, the pattern of reporter gene

expression driven by some initiator fragments degenerates into a

cell-type specific enhancer-like pattern later in development.

Therefore, it may be possible that DNA fragments with initiator

function may also contain cell-type specific enhancers.

InSIRT as a method to study gene expression
The transgenic reporter assay has played an important role in

shaping our understanding of eukaryotic gene expression [53]. Its

advantages stem from its speed and the cleanliness of the approach

in isolating cis-regulatory elements away from competing or

obfuscating signals. To gain these advantages, reporter assays must

make a number of critical assumptions. First, they must assume

that an activity performed by an element in the reporter assay, is

the activity performed by the element in vivo. Second, they must

assume that critical transcriptional activities can be tested using the

molecular construct devised. And third, they must assume that it is

through the addition of these cis-regulatory activities that

controlled gene expression is achieved. However, these assump-

tions are not always correct. Although in the study of the BX-C,

transgenes have been extremely useful in estimating the activity of

elements, our work on the initiator and our previous work on

boundary elements [54] highlight how sometimes the activity seen

in transgenes assays only represents a portion of an element’s

activity in vivo.

InSIRT is a complementary approach. Relative to the

transgenic approach, InSIRT has one main advantage: it tests

for changes on biologically relevant targets without necessarily

simplifying or assuming an activity. This is key when trying to

understand unusual regulatory elements, like initiators. Further-

more, this advantage can be achieved with only a small penalty in

time, as, once the homologous recombination has been performed,

InSIRT mutagenesis takes only as much time as establishing a

single transgenic line. Because transgenic approaches often require

the analysis of multiple lines to control for genomic position effects,

this penalty is further reduced. Thus, we believe that InSIRT

offers scientists a powerful new tool that can be used in

combination with classical transgenic methods to better study

gene regulation.

Materials and Methods

Fly methods and phenotypes
All crosses, and cuticle preparations were performed using

standard Drosophila methods. Abd-B antibody staining was

performed as in [22]. Abd-B monoclonal antibody was purchased

from the ‘‘Developmental Studies Hybridoma Bank’’ at the

University of Iowa. Injection experiments were performed using

cleaned DNA preparations (Qiagen) and injected into the iab-5,6CI

flies stocks containing an X chromosome expressing the wC31

integrase enzyme under the control of the vasa promoter [36] see

http://www.frontiers-in-genetics.org/flyc31/).

Phenotypes depicted are representative of the genotypes shown.

As some of the boundary phenotypes seem to be clonal in nature,

there is an occasional variance in the exact number of bristles and

the exact pattern of trichomes. We have, therefore, attempted to

choose an average representative cuticle for display. Otherwise,

the phenotypes can be considered 100% penetrant.

Homologous recombination
Creation of a donor vector for homologous recombination: An

AscI-NotI fragment containing the yellow reporter gene flanked by

the two loxP sites, and a 255 bp attP integration site was cloned

into pW25 digested with AscI-NotI to create the pY25 plasmid.

Homology regions of ,4 kb were created by PCR using the

following primer pairs: IAB7-AvrII: CCTAGGCGGCGAACAG-

Figure 6. Fab-6 boundary mutations. The genotypes of the adult
male cuticles of A. Fab-62, and B. Fab-63. C. (wild type) and D. (Fab-63)
are embryonic nerve cords stained for Abd-B protein. Notice the
increased level of Abd-B in PS10 in mutants (D.) relative to wild-type
(C.).
doi:10.1371/journal.pgen.1001260.g006
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TAGGGAAG and Fab7-AscI: CAGC-AAAAATCGTAAAAA-

AG, and IAB5-NotI: GCGGCCGCGGTCAGTAAACGG-

GTCCC and IAB5-SpHI: GCATGCACTGGCGACATTT-

CTC. These homology regions were then cloned into the pY25

vector in the AvrII and AscI sites or the NotI and SphI sites

respectively. The resulting P-element vector, Py-del iab-6, was

injected into yw flies and transformants were isolated as yellow+

flies. Homologous recombination was performed using two

independent transformants and the ends-out homologous recom-

bination method of Gong and Golic [34].

Potential homologous recombinants were isolated based on

their yellow pigmentation limited to the segments posterior and

including A5 (as a result of being in iab-5). Genomic southern

blots, however showed that all identified events were aborted

recombination events in the BX-C. As aborted events happened

on each side of the targeted region, we were able to generate the

final ‘‘planned’’ deletion by recombining two chromosomes each

having recombined properly at one homology region. This

recombination was mediated by the Cre recombinase at the loxP

sites left behind after removal of the yellow reporter gene. The final

chromosome, iab-5,6CI, was verified by genomic southern blot and

sequencing.

Generation of integration vectors
A base vector containing the 19.3 kb area deleted in the iab-

5,6CI deletion, a 288 bp attB sequence, a yellow reporter, and one

loxP site (called KsY-iab6H) was generated using gap-repair

recombineering ([55,56] see Figure 1B). For this, ,500 bp PCR

products were generated to both the iab-5 and iab-6 regions (each

starting at the breakpoints of the iab-5,6CI deletion) using the

following primers:

Iab-5 N: ATAAGAATGCGGCCGCGGTGCGTTTCCAT-

TT-TCCCTAGG

Iab-5 new (+PmeI): CTCACCATAGAGCACCACGTTTA-

AACGTCGT-CCGGAAATGGCAACCAG

Iab-6: CTTTGCCAGCTTTTGCCACTCGTCC

Iab-6P(+PmeI): GGTTGCCATTTCCGGACGACGTTTAA-

ACGGTG-AAGGCGCG-AAACTGTGA.

These two products were linked using overlap PCR. This 1 kb

fragment was then cloned into a vector containing a 288 bp attB

sequence, a yellow reporter, and one loxP site (in that order),

resulting in the plasmid, Ks-Y attB-loxP.

The Ks-Y attB-loxP plasmid was digested with PmeI and used in

recombineering experiments to capture the 19.3 kb region deleted

in the iab-5,6CI deletion. All recombineering procedures were

performed as in ([55,56]. Basically, the digested plasmid was

transformed by electroporation into heat-shock induced compe-

tent cells of the EL350 recombineering bacterial strain that was

previously transformed with the Abd-B region-containing BAC,

BACR24L1 (BACR24L18, GenBank: AC095018). The resulting

plasmid is called KsY-iab6H.

The KsY-iab6H was then modified using recombineering. For

the initiator deletions, we generated PCR fragments containing a

Kanamycin selector gene surrounded by two FRT sites, using

primers containing 59 leaders with 50 bp of homology to the

region flanking the sequences to be deleted. The FRT-kanamycin-

FRT DNA template for PCR came from pGEM1-K7-FRT-Kan-

FRT (kindly provided by François Spitz). For the modification of

KsY-iab6H by recombineering, PCR targeting fragments (con-

taining an FRT-Kan-FRT cassette) were generated using the

primers listed in Table 2.

For the recombineering of the iab-6/iab-5 initiator swap, the iab-

5 initiator was amplified by PCR using the following primers:

s-sub-iab5 59ATGGCGCGCCGGAGGCGGCAAATGCAC-

AAAG39

as-sub-iab5 59ATGGCGCGCCTACTACGCCGATTCTGC-

TGG39

Two fragments (of 1.7 kb and 1.3 kb, respectively), each

homologous to one side of the iab-6 initiator were amplified by

PCR using the following primers:

Table 2. Oligos used to generate the deletions.

Sequence Dist

TGCCACTCACGCAGGACCCAGTTCCATCGAGGGATATTTATAGGGAGATGGAATACAAGCTTGGGCTGCAGG D5

CAGAAATGTAAAATAAACCTTTAATATTTTCTAACCATTCCAGAAATCTGGAATACAAGCTTGGGCTGCAGG D6

TACGAGCGAGCATCTTGCCAAAATGAGAAAACTTTTGCCAACACCAAACGGAATACAAGCTTGGGCTGCAGG D1

GACTAAACTCGAAGCACTTGAGCCGGCATATCTTTTTAATTTGGACGAGGGAATACAAGCTTGGGCTGCAGG D2

CCGACGACCGAGTGGTGGAATACGCGGAATCTGGTTAACAATCTTGTTTGGAATACAAGCTTGGGCTGCAGG D3

AAGTGCCCACTGTGCGCATGTGCGGGATTTCGCGTTGCCACGACCCATGGGAATACAAGCTTGGGCTGCAGG D7

CGAGGGTCACAAAAAGAGGGGGCGGGGTGCTGGTTCCATGTGTCCCAGCCGAATACAAGCTTGGGCTGCAGG D4

GGCAGCACGAATAGTTTAGTTTATTTTAGCCATAGCTCAAGAACGACAGCGAATACAAGCTTGGGCTGCAGG D8

Prox

TGGCGTCATGTACCAGAATTTTCTTTGGCGGTGGAAAAGCGAGCAATTTCCTCGCCCGGGGATCCTCTAGAG P2

GTCACTCGTTTTTCCAGTAATAAGGAGTATAAAATATATTAACTTACTGCCTCGCCCGGGGATCCTCTAGAG P3

AACAAGATTGTTAACCAGATTCCGCGTATTCCACCACTCGGTCGTCGGCCCTCGCCCGGGGATCCTCTAGAG P6

GCACGAAAGACCCACAACTGGACCCCGTGGAATATGAATGCATCTCGAGCCTCGCCCGGGGATCCTCTAGAG P4

TTGGCAACAAAGTTGGATGCATTGTGGGTGGCAAAATATCAAACAATGGCCTCGCCCGGGGATCCTCTAGAG P1

CTTGGGCGAAGGGTTCGGCACTGGCTTCATTAAGTGCCAGAAGGTGCTGCCTCGCCCGGGGATCCTCTAGAG P5

TGCTGGGGATATAAAAGAAAAGTTTGGCAGGCCAAAATATTGGCCAACACCTCGCCCGGGGATCCTCTAGAG P7

Bold sequences correspond to the FRT-kanamycin-FRT sequences used to prime the amplification of the FRT-kanamycin-FRT cassette. Regular characters correspond to
the homology regions used to generate the deletions by recombineering. P1–P7 correspond to the oligos used to generate the proximal breakpoint of the deletions
(relative to the Abd-B promoter), while D1–D8 correspond to the oligos used to generate the distal breakpoint.
doi:10.1371/journal.pgen.1001260.t002
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sub1-AscI: 59ATGGCGCGCCCAGATTTCTGGAATGGT-

TAGAAAAT-ATTAAAGG39

sub2-NotI: 59ACTCGCGGCCGCTCGGAAACATCAAAG-

CATCAGCA-AC39,

sub3-AscI: 59ATGGCGCGCCGCAGTAAGTTAATATATT-

TTATAC-TCC39

sub4-NotI: 59ACTCGCGGCCGCAGAGAAATATATTCTT-

TGGCAG-CGAGC39.

The IAB5 initiator was cloned between these regions of

homology using the AscI restriction site to create the vector,

Target iab5(+). An FRT-Kan-FRT cassette was amplified by PCR

using the following primers:

59 SnaBI: 59ACATGGAAAACAACAGTTTCAATCAGGT-

CATGTAC-CTAATAAATGTATACGAATACAAGCTTGG-

GCTGCAGG39

39 SnaBI 59AGCTTACATTTTGATAGCTTAAGTGGAT-

GTTTCAAGGA-ATTTATATATACCTCGCCCGGGGATCC-

TCTAGAG39

This cassette was then cloned into a unique SnaBI site within

the 1.7 kb homology domain (245 bp from the IAB5 initiator) of

Target iab5(+), to make Target iab5(+) Kan FRT. A NotI

fragment containing the two homology regions, the IAB5 initiator

and the Kan-FRT cassette was then used to recombineer the iab-5

swap integration vector. The recombineering was otherwise

performed as above.

Upon recombineering on the KsI-iab6H plasmid, the plasmids

carrying the designed deletion were selected on Kan plates. The

Kanamycin cassette was then removed using a bacterial strain

expressing the flipase enzyme under an inducible arabinose

promoter (EL 250; [55].
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