ORIGINAL ARTICLE

Impaired Astrocytes and Diffuse Activation of Microglia in the Cerebral Cortex in Simian Immunodeficiency Virus-Infected Macaques Without Simian Immunodeficiency Virus Encephalitis

Hui Qin Xing, MD, PhD, Kazuyasu Mori, PhD, Chie Sugimoto, PhD, Fumiko Ono, PhD, Kimiko Izumo, MA, Ryuji Kuboda, MD, PhD, and Shuji Izumo, MD, PhD

Abstract
Various types of neuronal damage have been reported in acquired immunodeficiency syndrome (AIDS) dementia. We previously demonstrated that inflammation and cortical damage occur independently according to viral tropism in a simian immunodeficiency virus (SIV)-infected macaque model of AIDS dementia. To elucidate the pathogenesis of cortical degeneration, we examined the frontal cortex of SIV-infected macaques and found apoptosis and decreased expression of the excitatory amino acid transporter 2 in astrocytes and diffuse activation of microglia in association with limited neuronal damage. Some activated microglia also expressed excitatory amino acid transporter 2 but not proinflammatory cytokines. No inflammatory changes were seen in the cortex or the white matter, and SIV-infected cells were not detected in or around cortical lesions either by immunohistochemistry or by the polymerase chain reaction detection of SIV genomes of extracted DNA from microdissected tissue samples. These results indicate that an astrocytic abnormality and a compensatory activation of microglia might provide a protective effect against neuronal degeneration in the frontal cortex of SIV-infected macaques without SIV encephalitis.

Key Words: AIDS encephalopathy, Animal model, Cerebral cortex, Immunohistochemistry, Injury of astrocytes, Neuroprotection by microglia

INTRODUCTION

Human immunodeficiency virus 1 (HIV-1) can induce acquired immunodeficiency syndrome dementia complex (ADC), a clinical triad of progressive cognitive decline, motor dysfunction, and behavioral abnormalities, which eventually affects 15% to 20% of AIDS patients (1, 2). Although the introduction of highly active anti-retroviral therapy has reduced progression of AIDS, inconsistent results have been reported regarding the effects of highly active anti-retroviral therapy on central nervous system (CNS) involvement (3–8), thus suggesting that the prevalence of dementia may eventually increase corresponding to longer life spans of people with HIV-1 infection.

One of the histopathologic correlates of ADC is diffuse and nodular inflammatory infiltrates with formation of multinucleated giant cells (MNGCs) in the brain white matter (9, 10). Myelin pallor (11) and axonal damage (12–14) with abundant HIV-1-infected macrophages and microglia have been mainly demonstrated in the white matter (15, 16), but poor correlations between these findings and the clinical manifestations of ADC have been repeatedly reported (17, 18). On the other hand, Budka et al (10, 11) described astrocytic gliosis, a reduction of neurons and proliferation of rod cells in the cerebral cortex of many cases with HIV-1 infection and have identified this diffuse poliodystrophy (DPD) as an additional histopathologic feature of ADC. Furthermore, a variety of pathologic findings, including neuronal loss (19–21), apoptosis (22), and synaptic and dendritic simplification (23–25), have been reported in the cortex in HIV-AIDS. Because of the complexity of the histopathologic findings in human autopsy brains, however, a precise relationship between these histopathologic changes, namely, the inflammatory process in the white matter and degenerative process in the cortex, has not been elucidated.

Simian immunodeficiency virus (SIV) infection in rhesus macaques is considered to be a suitable animal model of human HIV-1 infection and has been used in various studies as a model for AIDS encephalopathy. Desrosiers et al (26) reported that macrophage-tropic variants of SIV were associated with the appearance of encephalitis. Previously, we inoculated macaques with 3 SIV strains and investigated the relationship between the lymph node and brain pathology. The animals infected with macrophage virus tropic-SIV239env/MERT chimeric virus, did not develop AIDS 3 to 4 years after infection, but microglial nodules with MNGCs were demonstrated in the white matter, and no pathologic changes were noticed in the cerebral cortex. The other animals infected with T-cell-tropic viruses SIVmac239 and SIV/HIV-1-(SHIV)-RT...
developed typical simian AIDS pathology in the lymph nodes within 3 years after infection; the cerebral cortex of these animals showed astrocytic gliosis and electron microscopic abnormalities without evidence of microglial nodules or MNGCs in the white matter. From these observations, we hypothesized that there are 2 independent pathogenetic processes in simian AIDS encephalopathy, that is, immune response against virus-infected macrophage/microglial cells in the white matter without immunodeficiency and cortical degeneration caused in the late stage of AIDS (27).

The roles of macrophage infiltration and microglial activation in the pathogenesis of HIV encephalitis have been extensively studied. With respect to the cortical pathology, the expression of viral neurotoxins or neurotoxic cytokines from microglia and/or astrocytes has been reported to induce neuronal dysfunction and death (28–31). On the other hand, recent reports suggest that activated microglia express excitatory amino acid transporters (EAATs) and glutamine synthetase, and may be neuroprotective in the early stages of the disease (32, 33). In our SIV model, degenerative changes were observed in the cerebral cortex of macaques infected with T-cell-tropic viruses, and microglial nodules with MNGCs were absent (27); therefore, we further examined the frontal cortex of rhesus macaques infected with T-lymphocyte-tropic SIV and focused on microglial activation, apoptosis, and EAAT-2 expression, as well as localization of virus-infected cells.

MATERIALS AND METHODS

Virus

Molecularly cloned SIVmac239 is a T-lymphocyte-tropic virus, the pathogenic properties of which have been previously described. This virus causes immunosuppression and eventually leads to the development of AIDS in macaques. A chimeric virus, SHIV-RT, consists of a SIVmac239 virus backbone in which the SIV RT gene was replaced by the HIV-1 HxB2 RT gene, as previously described (27, 34). In experimentally infected rhesus monkeys, SHIV-RT has been shown to induce AIDS (34, 35).

Animals

Eleven rhesus macaques were screened and found to be seronegative for SIV, simian T-lymphotropic virus, B virus, and Type D retroviruses. Four macaques (532, 627, 682, and 730) were inoculated intravenously with SIVmac239 and killed 133, 46, 115, and 463 weeks after inoculation, respectively. The other 3 (631, 677, and 700) were inoculated with SHIV-RT and killed 108, 156, and 263 weeks after inoculation, respectively. Four uninfected macaques (671, 630, 778, and 780) were used as controls (Table 1). The animals were housed in individual cages and maintained according to the rules and guidelines of the National Institute for Infectious Diseases for experimental animal welfare. The animals were killed at various times after infection when they became moribund.

CD4⁺ Cell Counts and Viral RNA Loads

CD4⁺ cell counts were performed on peripheral blood samples at the time of autopsy. To measure the level of virus replication in the periphery, viral RNA was quantified in plasma at autopsy. Viral RNA in the plasma of inoculated macaques was measured by real-time reverse transcriptase-polymerase chain reaction (PCR).

Histopathology and Immunohistochemistry

The routine histopathologic methods used in this study have been described elsewhere (27). Brain tissue specimens were embedded in paraffin, sectioned, and mounted on glass slides. The EnVision system (DAKO, Carpinteria, CA) was used for immunohistochemistry except for a guinea pig anti-glial glutamate transporter 1, EAAT-2 antibody with which the avidin-biotin-peroxidase complex method (Vector, Burlingame, CA) was applied. Immunoreactivity was visualized using either diaminobenzidine/peroxidase (brown) or the 3-amino-9-ethylcarbazole substrate-chromogen system (DAKO; red). Light counterstaining was done with hematoxylin.

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Sex</th>
<th>Age at Virus Inoculation, weeks</th>
<th>Age at Death, weeks</th>
<th>Duration of Infection, weeks</th>
<th>Viral Inocula</th>
<th>Viral RNA Load in Plasma at Autopsy, copies/ml</th>
<th>CD4⁺ Cell Count in PBMCs at Autopsy, per µl</th>
<th>Clinical Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>M</td>
<td>260</td>
<td>393</td>
<td>133</td>
<td>SIVmac239</td>
<td>214,300</td>
<td>380</td>
<td>Weight loss and moribund</td>
</tr>
<tr>
<td>627</td>
<td>M</td>
<td>312</td>
<td>358</td>
<td>46</td>
<td>SIVmac239</td>
<td>25,000</td>
<td>90</td>
<td>Weight loss and moribund</td>
</tr>
<tr>
<td>682</td>
<td>M</td>
<td>100</td>
<td>215</td>
<td>115</td>
<td>SIVmac239</td>
<td>480,000</td>
<td>140</td>
<td>Weight loss and self-biting</td>
</tr>
<tr>
<td>730</td>
<td>M</td>
<td>156</td>
<td>619</td>
<td>463</td>
<td>SIVmac239</td>
<td>67,000</td>
<td>275</td>
<td>Weight loss and moribund</td>
</tr>
<tr>
<td>631</td>
<td>F</td>
<td>156</td>
<td>264</td>
<td>108</td>
<td>SHIV-RT</td>
<td>2,500,000</td>
<td>200</td>
<td>Weight loss and inactivity, inguinal B-cell lymphoma</td>
</tr>
<tr>
<td>677</td>
<td>M</td>
<td>104</td>
<td>260</td>
<td>156</td>
<td>SHIV-RT</td>
<td>6,900</td>
<td>100</td>
<td>Weight loss and moribund</td>
</tr>
<tr>
<td>700</td>
<td>M</td>
<td>104</td>
<td>367</td>
<td>263</td>
<td>SHIV-RT</td>
<td>530,000</td>
<td>192</td>
<td>Weight loss and moribund</td>
</tr>
<tr>
<td>630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PBMC, peripheral blood mononuclear cell; SHIV, simian immunodeficiency virus/human immunodeficiency virus-1.
Antibodies
To identify activated microglia, we used a mouse monoclonal antibody to human macrophage CD68 (KP1, 1:50; DAKO) and a rabbit anti-ionized calcium-binding adaptor molecule 1 antibody (Iba1; 1:500; Wako Chemicals, Osaka, Japan) (36). To characterize astrocyte abnormalities, we used a guinea pig anti-glial glutamate transporter 1, EAAT-2 antibody (1:6000; Chemicon, Temecula, CA). For SIV-infected cells, we used an anti-SIV envelope gp160/gp32 antibody (KK41; 1:50; Dr K. Kent and the National Institute for Biological Standards and Control), which has been previously described (27). Lymph nodes of SIV-infected and uninfected animals were used as positive and negative controls, respectively.

A mouse anti-human Ki-67 antibody (1:300; DAKO) that can detect cells in all active phases (G1, S, G2, and M) of the cell cycle was used to detect dividing cells. Sections of lymph nodes and small intestines were used as positive controls for proliferating cells. A mouse anti-human tumor necrosis factor antibody (TNF-α; 1:400; Abcam, Cambridge, MA) and a rabbit polyclonal antibody against interleukin 1β (IL-1β; 1:200; Santa Cruz Biotechnology, Santa Cruz, CA) were used to detect the respective cytokines. A tonsil with chronic inflammation was used as a positive control. We also performed glial fibrillary acidic protein (GFAP), CD3, and CD20 immunohistochemical staining for routine cell characterization.

Double Label Immunohistochemistry
Double label immunohistochemistry was performed for GFAP or Iba1 and Ki-67 to determine the phenotype of the proliferating cells by first performing immunohistochemistry for Iba1 or GFAP using the EnVision system (DAKO) and then for Ki-67 using avidin-biotin-peroxidase complex (Vector). Double labeling was performed using diaminobenzenidine/peroxidase, followed by Vector blue/alkaline phosphatase. We also performed fluorescence microscopy for double label staining of EAAT-2 and Iba1 using fluorescein isothiocyanate and rhodamine-based detection methods.

Apoptosis
In situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling of fragmented DNA (TUNEL) was used using the ApopTag in situ apoptosis detection kit (Chemicon). We also performed immunohistochemistry using an affinity-purified polyclonal rabbit immunoglobulin G directed specifically against the active form of caspase 3 (1:1000; R and D Systems, Minneapolis, MN) and anti-single-stranded DNA antibody (ssDNA; 1:250; DakoCytonation, Kyoto, Japan) for the identification of apoptotic cells. Lymph nodes and small intestines were used as positive controls. To examine the phenotype of apoptotic cells, we performed double label immunohistochemistry for GFAP and activated caspase 3 or ssDNA using the same method.

Electron Microscopy
Pieces of the frontal cortex from animals 531, 627, 682, and 630 were postfixed in 1% osmium tetroxide and embedded in epoxy resin. One-micrometer semithin sections of Epon-embedded samples were stained with toluidine blue and safranine. For electron microscopy, sections were stained with uranium acetate and lead citrate and examined using a Hitachi H-7000 electron microscope.

Quantitative and Semiquantitative Analysis
Ionized calcium-binding adaptor molecule 1 antibody-positive cells were counted in 10 200×-magnified light microscopic fields of cortical layers 2 to 5 of the middle frontal gyrus. These findings were considered to indicate an increase in the activated microglia when more than 700 Iba1-positive cells were counted in these 10 fields. We also performed semiquantitative assessments for the following immunohistochemical findings: astrocytic gliosis, EAAT-2 expression, Ki-67 or CD68-positive cells, TNF-α, and IL-1β expression.

Laser Microdissection and PCR-Based Detection of SIV gag and SIV env Genes
Polymerase chain reaction-based molecular detection of SIV genomes was performed to detect SIV-infected cells in the brain lesions of SIV-infected animal 532, which showed representative clinical and pathologic features. Paraaffin-embedded sections of the frontal lobe were dehydrated, stained with hematoxylin, and air-dried. The parenchyma of the frontal cortex, perivascular areas of the frontal cortex, and white matter were identified based on cellular staining patterns and separately dissected using a laser microdissection system (AS LMD; Leica, Wetzlar, Germany). From each dissected sample, genomic DNA was extracted by a DNeasy tissue handbook kit (Qiagen, Tokyo, Japan). We used 2 sets of nested oligonucleotide primer pairs for the PCR detection of SIV provirus (37). The sequences of the primer

<table>
<thead>
<tr>
<th>Region of Amplification</th>
<th>Sequence of Outer Primers</th>
<th>Sequence of Inner Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIV gag</td>
<td>5'-ACTGACTGCGCTACCTGGTCG</td>
<td>5'-CAGCGAGAAAAAGTGAAAAC</td>
</tr>
<tr>
<td></td>
<td>5'-GGCCCAATCGGCGGCCTTC</td>
<td>5'-CAGTGAAATCTGGATAGGCC</td>
</tr>
<tr>
<td>SIV env</td>
<td>5'-GGATGTTGCGCTCGCGAGAATGC</td>
<td>5'-TCGACCTGGGAGAAGACGCTAC</td>
</tr>
<tr>
<td></td>
<td>5'-GAGACCAACACCTTGAATTTAGAC</td>
<td>5'-GGAGCAGACAGCTTGGAGACAG</td>
</tr>
<tr>
<td>β-Globin</td>
<td>5'-GGAGCACGTCGCTGGCAATACG</td>
<td>5'-GGAGCACGTCGCTGGCAATACG</td>
</tr>
</tbody>
</table>

PCR, polymerase chain reaction; SIV, simian immunodeficiency virus.
pairs used to detect SIV gag, SIV env, and β-globin as genomic control are listed in Table 2. The relative detection efficiency of all the primer sets was determined in a series of preliminary experiments. The DNA from SIV plasmid and paraffin sections of lymph node from SIVmac239-infected macaque 682 with abundant SIV-Env-positive cells was amplified as positive controls, and DNA from a lymph node of uninfected macaque 671 was amplified as a negative control in all assays to monitor potential PCR contamination. Each cycle consisted of 1 minute denaturation at 94°C, 1 minute primer annealing at 55°C, and 1 minute extension at 72°C. After 30 cycles, 4 ml of the amplified DNA was taken, and 30 additional cycles of amplification were carried out using the nested primers. The same primers for β-globin were used in a second PCR. After the second round of amplification, a 13-μl aliquot of the reaction products was applied for 2% agarose gel electrophoresis and visualized by ethidium bromide staining.

RESULTS

Clinical Manifestations

Table 1 summarizes the clinical data, including the viral RNA loads and CD4⁺ cell counts in the peripheral blood, at the time of autopsy from the 7 SIV-infected rhesus macaques. Among the 4 macaques infected with SIVmac239, macaque 627 showed the most rapid decrease in the CD4⁺ cell counts and became moribund within 46 weeks after infection. Macaque 532 had a prolonged clinical course and showed very high viral loads and decreased CD4⁺ cell counts at 133 weeks after infection; thereafter, it became moribund and was diagnosed to have AIDS because of very low CD4⁺ CD29 high T cells (less than 1% of peripheral blood mononuclear cells). Macaque 682 also had a prolonged clinical course and showed very high viral loads and decreased CD4⁺ cell counts. This animal was killed for autopsy 115 weeks after infection because of self-biting.

FIGURE 1. Representative findings in the frontal cortex of simian immunodeficiency virus (SIV)-infected macaques. Loss of neurons is not apparent (A), but there is an increase in small glial cells and satellitosis around neurons (B) in a SIVmac239-infected macaque (C) and in a SIV/human immunodeficiency virus-1-RT-infected macaque (D) contrasts with the uninfected control (E). By electron microscopy, in the SIVmac239-infected macaque, there is deposition of glycogen-like granules (F) and an increase in lamellar bodies in the dendrites (G). Foamy changes are detected in the cytoplasm of dendritic trunks (H). Some astrocyte processes contain glial fibrils (F, G). (A) Klüver-Barrera; (B) hematoxylin and eosin; (C–E): anti-glial fibrillary acidic protein immunohistochemistry; (F–H) electron microscopy. Original magnifications: (A, E) 100×; (B) 200×; (C, D) 400×; (F) 9,000×; (G) 15,000×; (H) 9,000×. (A, B, F, G) from macaque 627; (C) from macaque 532; (D) from macaque 631; (E) from macaque 630.
behavior. Macaque 730 had the longest clinical course and showed decreased CD4+ cell counts; it was diagnosed as having AIDS at autopsy at 463 weeks. The 3 macaques infected with SHIV-RT also showed decreased CD4+ cell counts and were diagnosed as having AIDS at the time of autopsy. Macaque 631 developed a B-cell lymphoma. All

FIGURE 2. Ionized calcium-binding adaptor molecule 1 antibody (Iba1) immunohistochemical staining of activated microglia in the cerebral cortex. Increased Iba1-positive activated microglia are evident in simian immunodeficiency virus (SIV)-infected macaques (A, B) compared with the control (C). Some Iba1-positive cells are close to neurons and surround neuronal cell bodies with their extended processes (D, E). (A, D) SIVmac239-infected macaque 532; (B, E) SIV/human immunodeficiency virus-1-RT-infected macaque 631; (C) uninfected control (630). Original magnification: (A, B) 400×; (C) 100×; (D, E) 800×.

FIGURE 3. Proliferation and activation of microglia in the frontal cortex of animal 631 infected with simian immunodeficiency virus/human immunodeficiency virus-1-RT. Ki-67-positive cells are scattered in the cortical parenchyma (A). Ionized calcium-binding adaptor molecule 1 antibody (binding adaptor molecule 1 antibody (Iba1)-positive microglia with branches (B), amoeboïd shape (C), and a large nucleus (D) have Ki-67-positive nuclei. (A) Anti-Ki-67; (B–D) double label of Ki-67 (dark blue) and Iba1 (brown). Original magnification: (A) 400×; (B–D) 800×.
SHIV-RT-infected animals had weight loss and were moribund at the time of autopsy. Other than the self-biting behavior in macaque 682, none of the infected animals showed apparent neurologic manifestations.

Histopathology and Electron Microscopy

The animals infected with SIVmac239 and SHIV-RT showed neuropathologic findings as described previously in the cerebral cortex by routine histopathologic examination (27). Briefly, no apparent loss of neurons was detected in the cerebral cortex of any macaques (Fig. 1A). The density of small glial cells seemed to be increased, and they formed apparent perineuronal satellitosis. There were no obvious abnormalities such as pyknosis or chromatolysis evident in the neurons (Fig. 1B). Patchy or diffuse astrocytic gliosis was noted in macaques infected with SIVmac239 (Fig. 1C) and SHIV-RT (Fig. 1D), whereas GFAP-positive staining was limited to the subpial region in the uninfected controls (Fig. 1E). There were no inflammatory infiltrates in the cortex, and there was no evidence of either microglial nodules or MNGCs in the white matter of infected macaques. No abnormalities were observed in the cerebral cortex of 3 uninfected controls. By electron microscopy, the frontal cortex of macaques 532, 627, and 682 showed apparent degenerative changes in the neuropil, including deposition of glycogen-like granules (Fig. 1F), and increased lamellar bodies in the dendrites (Fig. 1G). There were scattered swollen astrocytic processes because an early reaction of astrocytes and some astrocytic processes were filled with glial fibrils (Figs. 1F, G).

Microglia Are Increased and Activated in the Cerebral Cortex

To characterize the cell involved in these cortical changes, we performed immunohistochemistry using various antibodies, including Iba1, which is restricted to macrophages/microglia (36), and Ki-67, a specific marker of cell proliferation. The cells that increased in number in the cortex were negative for CD3, CD20, or CD68 (data not shown). In contrast, Iba1 immunostaining of SIVmac239- and SHIV-RT-infected macaques demonstrated increased numbers and a wider distribution of Iba1-positive microglia (Figs. 2A, B) compared with uninfected controls (Fig. 2C). Some of the Iba1-positive cells were located close to neurons and surrounded the neuronal cell bodies with their extended processes (Figs. 2D, E). Ki-67-positive cells were increased in the cerebral cortex of SIVmac239 (627 and 730) and all SHIV-RT-infected macaques (Fig. 3A; Table 3). Most of the Ki-67-positive cells were located in the parenchyma, and some positive cells were also closely attached to neuronal cell bodies. Some of the Iba1-positive microglia with ramified processes (Fig. 3B), amoeboid shapes (Fig. 3C), or a large nucleus (Fig. 3D) were also Ki-67 positive by double label immunohistochemistry. Ki-67-positive cells were not

TABLE 3. Pathologic Findings in Lymph Nodes and Frontal Cortex

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Sex</th>
<th>Viral Inocula</th>
<th>Lymph node Pathology</th>
<th>Decrease of EAAT-2</th>
<th>CD68</th>
<th>GFAP</th>
<th>Ki-67</th>
<th>IL-1β</th>
<th>TNF-α</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>M</td>
<td>SIVmac239</td>
<td>Collapse</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>627</td>
<td>M</td>
<td>SIVmac239</td>
<td>Collapse</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>682</td>
<td>M</td>
<td>SIVmac239</td>
<td>Collapse</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>730</td>
<td>M</td>
<td>SIVmac239</td>
<td>Collapse</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>631</td>
<td>F</td>
<td>SHIV-RT</td>
<td>Follicular atrophy and degeneration</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>677</td>
<td>M</td>
<td>SHIV-RT</td>
<td>Follicular atrophy and degeneration</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>700</td>
<td>M</td>
<td>SHIV-RT</td>
<td>Follicular atrophy and degeneration</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>630</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>671</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>778</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>780</td>
<td>Control</td>
<td>None</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*, Immunohistochemical staining for each antigen was assessed semiquantitatively by scoring from 0 to 3 in each animal. EAAT, excitatory amino acid transporter; F, female; GFAP, glial fibrillary acidic protein; IL, interleukin; M, male; SIV, simian immunodeficiency virus; SHIV-RT, SIV/human immunodeficiency virus-1; TNF-α, tumor necrosis factor-α.
observed among GFAP-positive astrocytes by double label immunohistochemistry with anti-GFAP and anti-Ki-67. Only a few Ki-67-positive cells were found in the cerebral cortex of uninfected controls, and most of them were located near vessels.

In counts of stained cells in 10 microscopic fields at 200× magnification (Fig. 4), the numbers of Iba1-positive cells in all 4 control animals tended to be less than 70 per field. We therefore considered 70 or more cells per field to indicate more Iba1-positive cells. Among the SIVmac239 and SHIV-infected animals, 6 of 7 showed increased Iba1-positive cells. Five showed more than 130 Iba1-positive cells per field, and 1 animal infected with SIVmac239 (627) had 78.2 Iba1-positive cells per field. Another animal infected with SIVmac239 (682) showed no increase in the number of Iba1-positive cells (45.2 per field).

Apoptosis of Astrocytes in SIVmac239- and SHIV-RT-Infected Animals

Our previous study demonstrated astrocytic gliosis, increase in lamellar bodies in the dendrites, and swelling of astrocytic processes in the frontal cortex of macaques infected with SIVmac239 and SHIV-RT (27). To analyze which cell types were predominantly affected, we performed the in situ TUNEL method (Figs. 5A, C, E) and immunohistochemical staining for activated caspase 3 (Figs. 5B, D, F) and ssDNA (Figs. 6E, G) to detect apoptosis. Although the staining results tended to vary in each animal sample, consistent results such as comparable staining patterns in all 3 methods in duplicate can be obtained in samples from SIVmac239-infected (532, 682, 627, and 730), SHIV-RT-infected (700 and 631), and uninfected control (671 and 778) animals.

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling of fragmented DNA-positive cells were mainly demonstrated in the second layer of the cortex and mostly in glial cells (Figs. 5A, C, E). Some of the positive cells were located close to neurons in SIVmac239-infected (Fig. 5C) and in SHIV-RT-infected animals (Fig. 5E). In activated caspase 3 staining, positive cells showed intracytoplasmic and nuclear labeling (Figs. 6A, C). The numbers of positive cells tended to be high, but most of

FIGURE 5. ApopTag in situ and anti-activated caspase 3 immunohistochemical staining in the cerebral cortex. Stained glial cells are seen in the simian immunodeficiency virus (SIV)mac239-infected (A–D) and SIV/human immunodeficiency virus-1 (SHIV)-RT-infected (E, F) macaques. (A, C, E): ApopTag in situ; (B, D, F) anti-activated caspase 3. (A, B) SIVmac239-infected macaque 532, (C, D) SIVmac239-infected macaque 730; (E, F) SHIV-RT-infected macaque 700. Original magnification: (A–F) 400×.
the positive cells seemed to be glia (Figs. 5B, D, F). The ssDNA-positive cells showed nuclear labeling and also seemed to be glia (Figs. 6E, G). Based on double label immunohistochemistry (Figs. 6B, D, F, H), more than half of the activated caspase 3 and ssDNA-positive cells were also positive for GFAP. Some of the activated caspase 3 and ssDNA-positive cells seemed to be microglia according to the shape of their nuclei. No apparent neuronal staining with these markers of apoptosis was observed. Only very few positive cells were detected in the uninfected controls by the in situ TUNEL method and based on activated caspase 3 and ssDNA immunostaining.

EAAT-2 Expression

The expression of Na⁺-dependent glutamate transporters (EAAT-1 and EAAT-2) primarily on astrocytes is thought to keep the extracellular glutamate concentration low in the brain and prevent excitotoxicity to neurons. In all
animals studied, EAAT-2 expression was predominantly in the neuropil of the cerebral cortex. A diffuse decrease in EAAT-2 expression and scattered astrocyte staining in the neuropil were observed in SIVmac239-infected animal 730 (Fig. 7A) and SHIV-RT-infected animal 700 in contrast to the diffuse staining in the control animals (Fig. 7B). The 2 infected animals had very long durations of SIV infection: 463 and 263 weeks, respectively. A patchy decrease in EAAT-2 expression was observed in SIVmac239-infected animals 627 (Fig. 7C) and 532. In addition, we observed a strong expression of EAAT-2 by microglial cells, some of which came in close contact with neurons and blood vessels in SIV-infected animals (Fig. 7D), as demonstrated by double label immunofluorescence with anti-Iba1 and anti-EAAT-2 (Figs. 7E–G). The decrease in EAAT-2 in the neuropil seemed to be mild when the activated microglia expressed EAAT-2 (Fig. 7D).

Diffusely Activated Microglia Do Not Express TNF or IL-1β

To clarify the role of microglial activation in the frontal cortex, we examined expression of the potentially harmful proinflammatory cytokines. Cells positive for IL-1β and TNF were detected in the marginal zone of follicles of the positive control tonsil, but IL-1β and TNF were not detected in the cortex where the microglia were diffusely activated. However, TNF was detected in a few perivascular cells of SIVmac239-infected (627) and SHIV-RT-infected (700) macaques (Table 3).

SIV Infection Is Undetectable in the Frontal Cortex of SIV-Infected Animals

We performed immunohistochemistry for SIVenvgp160/gp32 to detect virus-infected cells in the frontal cortex in which astrocytic gliosis and microglial activation were observed. No SIVenvgp160/gp32-positive cells could be detected in the cerebral cortex of any SIV-infected animals. Only a few mononuclear cells were positive in the meninges of the macaque 682 infected with SIVmac239. To confirm the absence of SIV-infected cells in these cortical lesions, nested PCR was carried out on genomic DNA extracted from 3 different parts of paraffin-embedded frontal lobe sections, that is, the frontal cortex parenchyma, perivascular areas of the frontal cortex, and the white matter, using AS LMD. Our PCR system detected a single copy of SIV gag/SIV env genes in 100 cells by a sensitivity assay using SIV plasmid DNA diluted with DNA from paraffin-embedded lymph node sections of an uninfected macaque. Although strong bands can be easily detected by PCR of SIV DNA in infected lymph nodes, no positive bands were obtained from the

FIGURE 7. Decreased excitatory amino acid transporter (EAAT) 2 expression and EAAT-2 expression by microglia in the cortex of simian immunodeficiency virus (SIV)mac239-infected animals. A diffuse decrease in EAAT-2 (A; 730) and patchy decrease in EAAT-2 (C; 627) contrast with diffuse staining in the uninfected control animal (B; 671). In animal 627, strong EAAT-2 expression was noted on perineuronal and perivascular cells (arrows), and the decrease in the expression of EAAT-2 in the neuropil seemed mild (D; 627). Activated microglia expression of EAAT-2 is demonstrated by double label immunofluorescence with anti-ionized calcium-binding adaptor molecule 1 antibody (Iba1) and anti-EAAT-2 (E–G; 627). (A–E) Excitatory amino acid transporter 2; (F) Iba1; (G) merged. Original magnification: (A–C) 100×; (D–G) 400×.
DNA samples of any of the 3 regions of the frontal lobe of the SIVmac239-infected animal (Fig. 8).

DISCUSSION

In this study, we examined the cortical pathology seen in animals infected with T-cell-tropic SIV, especially focusing on the change in the astrocytes and microglia. We observed abnormalities of astrocytes, including apoptosis and a decreased expression of EAAT-2 in the neuropil. We used 3 different methods, TUNEL and immunohistochemistry for activated caspase 3 and ssDNA to analyze apoptosis, and found that most positive cells were astrocytes by all 3 methods. Although the numbers of caspase 3- and ssDNA-positive cells seemed higher than expected, the concordance of the results of all 3 methods and double immunohistochemistry suggested a predominant involvement of astrocytes in the frontal cortex of SIV-infected animals. The apoptosis of astrocytes might be observed under physiologic conditions whereby the brain removes any excessive astrocytes that have proliferated after certain types of brain injury (38). Proliferation of astrocytes was not a plausible explanation in this study because Ki-67-positive astrocytes could not be detected by double label immunohistochemistry (data not shown). Another astrocytic change observed was a remarkable decrease in the expression of EAAT-2 in the neuropil because a major cellular component of the brain astrocyte have important effects on neuronal biology by buffering the extracellular milieu, providing cytoskeletal support, and protecting neurons during CNS injury. The neuroprotective role of astrocytes has been described in connection with the expression of glutamate transporters (EAAT-1 and EAAT-2). The astrocytes maintain a low extracellular glutamate concentration in the brain. Glutamate, the major neurotransmitter in the CNS, induces excitotoxic neuronal cell death when its extracellular concentration increases, and it is also believed to be an important factor in the pathogenesis of many CNS disorders, including amyotrophic lateral sclerosis, Huntington disease, Alzheimer disease, and multiple sclerosis (39–43). The present findings suggest that astrocytes in the cerebral cortex are also primarily involved in the pathogenesis of AIDS encephalopathy.

We found diffuse activation of microglia in the cortex of infected animals and some of the activated microglia expressed EAAT-2; expression of TNF and IL-1β was not detected by immunohistochemistry. In general, microglia are distributed ubiquitously throughout the CNS and become activated in response to harmful stimuli (44). Activated microglia release proinflammatory cytokines such as IL-1β and TNF and thus mediate a neurotoxic function (29, 30). On the other hand, activated microglia may also secrete neurotrophic factors and provide neuroprotective functions (45). The expression of EAAT-2 by microglia has been reported in both AIDS brains (33, 34) and in SIVmac251-infected macaques (46). We confirmed the EAAT-2 expression by activated microglia in our model. The decrease in the expression of EAAT-2 in the neuropil seemed to be mild where activated microglia expressed EAAT-2. These data suggest that microglia might, like astrocytes, clear extracellular glutamate, thereby playing a neuroprotective role in the cortical degeneration seen in AIDS brains.

The involvement of the cerebral cortex in ADC is one of the major pathologic changes, and this phenomenon is called DPD (11). Neuron loss and apoptosis are believed to be the primary lesion in DPD. In our model, however, we observed only mild neuronal damage, that is, ultrastructural changes of dendrites. Because, with only 1 exception, our animals did not show any neurologic signs, we suspect that neuroprotection by activated microglia was efficient, and that this may also explain the absence of neuronal loss. Another possible explanation might be the difference in the stage of DPD. In human ADC, an autopsy is usually performed at the advanced stages such as in patients demonstrating a...
consciousness disturbance or who are in a vegetative state. If our animals were in a subclinical stage and the findings observed in this model were the early changes of DPD, abnormalities of astrocytes and microglial activation might precede neuronal damage, indicating that astrocytes are primarily involved in DPD.

In human AIDS encephalopathy, HIV-infected macrophages and microglia produce viral neurotoxins or neurotoxic cytokines that lead to neuronal dysfunction and death (30, 31). The presence of activated microglia has been discussed regarding their roles as effectors of neuronal degeneration. In the present study, SIV encephalitis was not observed in any of the T-cell-tropic SIV-infected animals, and we did not detect any SIV-infected cells in or around cortical lesions. Moreover, expression of IL-1β and TNF were not detected in activated microglia in the frontal cortex of SIV-infected animals. These findings suggested that reduced expression of EAAT-2 and activation of microglia in the cerebral cortex occur independently from SIV encephalitis. Similarly, Gray et al (47) reported an interesting human case of ADC with prominent cortical atrophy and severe neuronal loss with minimal changes in the white matter and basal ganglia.

With respect to the question as to how the decrease in EAAT-2 may occur, Wang et al (48) demonstrated that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT-2 transporter gene in human astrocytes and attenuate glutamate transport by the cells in vitro. Although we could not detect any SIV-infected cells in and around the cortical lesions analyzed, our animals did develop systemic AIDS and showed high viral loads in their plasma. It might therefore be possible that an increase in the soluble form of virus antigens such as gp120 and Tat in the blood and cerebrospinal fluid (as may occur in the late stages of AIDS) might induce an astrocytic abnormality, thus inducing subsequent neuronal damage.

In conclusion, we demonstrate the presence of abnormalities in astrocytes, increase in activated microglia, and a compensatory expression of EAAT-2 by microglia in the frontal cortex of SIV-infected animals without evidence of SIV encephalitis. These findings suggest that a degeneration of the cerebral cortex might occur in human ADC independently from HIV-1 encephalitis.

ACKNOWLEDGMENTS

The authors thank Y. Tomita of Kagoshima University for excellent technical assistance.

REFERENCES

44. Kreutzberg GW. Microglia: A sensor for pathological events in the CNS. Trends Neurosci 1996;19:312–18