Multi-objective optimization of reverse osmosis desalination units using different adaptations of the non-dominated sorting genetic algorithm (NSGA)

Chandan Guria, Prashant K. Bhattacharya, Santosh K. Gupta

Abstract

Multi-objective optimization using genetic algorithm (GA) is carried out for the desalination of brackish and sea water using spiral wound or tubular modules. A few sample optimization problems involving two and three objective functions are solved, both for the operation of an existing plant (which is almost trivial), as well as, for the design of new plants (associated with a higher degree of freedom). The possible objective functions are: maximize the permeate throughput, minimize the cost of desalination, and minimize the permeate concentration. The operating pressure difference, ΔP, across the membrane is the only important decision variable for an existing unit. In contrast, for a new plant, ΔP, the active area, A, of the membrane, the membrane to be used (characterized by the permeability coefficients for salt and water), and the type of module to be used (spiral wound/tubular, as characterized by the mass transfer coefficient on the feed-side), are the important decision variables. Sets of non-dominated (equally good) Pareto solutions are obtained for the problems studied. The binary coded elitist non-dominated sorting genetic algorithm (NSGA-II) is used to obtain the solutions. It is observed that for maximum throughput, the permeabilities of both the salt and the water should be the highest for those cases studied where there is a constraint on the permeate concentration. If one of the objective functions is to minimize the permeate concentration, the optimum permeability of salt is shifted towards its lower limit. The membrane area is the most important decision variable in designing a spiral wound module for desalination of brackish water as well as seawater, whereas ΔP is the most important decision variable in designing a tubular module for the desalination of brackish water (where the quality of the permeate is of prime importance). The results obtained using NSGA-II are compared with those from recent, more efficient, algorithms, namely, NSGA-II-JG and NSGA-II-aJG. The last of these techniques appears to converge most rapidly.

© 2005 Elsevier Ltd. All rights reserved.

PACS: 02.60.Pn

Keywords: Multi-objective optimization; Elitist non-dominated sorting genetic algorithm; Jumping genes; Genetic algorithm; Optimization; Desalination; Brackish water; Seawater; Reverse osmosis; Membranes

1. Introduction

Desalination of seawater and brackish water is routinely used nowadays for overcoming the huge scarcity of potable water in different parts of the world. Desalination involves the reduction of the concentration of the total dissolved solids (TDS) to less than about 200×10^{-3} kg m$^{-3}$ (200 mg L$^{-1}$). Brackish water has a much lower TDS ($<10,000 \times 10^{-3}$ kg m$^{-3}$) than seawater ($>30,000 \times 10^{-3}$ kg m$^{-3}$). This difference in the TDS is associated with substantial differences in the osmotic pressures associated with these operations, leading to large variations in the operating pressure differences across the reverse osmosis (RO) membrane. The largest desalination plant in the world treating brackish water (Lohman, 1994) is located at Yuma, AZ, USA. This has a capacity of 275,000 m3 day$^{-1}$. It

Nomenclature

- a: permeability coefficient for water (m·bar⁻¹)
- A: active area of membrane (m²)
- b: permeability coefficient of salt (m·bar⁻¹)
- b_p: osmotic coefficient (Eqs. (A2.4) and (A2.10)) (m·bar⁻¹ kg⁻¹)
- C: salt concentration (kg·m⁻³)
- Cost: operating cost of desalination unit ($·h⁻¹)
- C_{el}: cost of electricity ($·kW⁻¹·h⁻¹$)
- C_{mem}: capital cost of membrane ($·m⁻²·h⁻¹$)
- C_{pump}: capital cost of the pump ($·h⁻¹$)
- d_b: hydraulic diameter of channel (m)
- D_{SB}: mass diffusivity of salt (A·m⁻²·h⁻¹)
- f_i: i^{th} objective function (m³·h⁻¹·$·h^{-1}$·kg⁻¹)
- H: penalty parameter defined in Eq. (3)
- I_{khan}: crowding distance
- I_{rank}: rank
- J_{v}: volumetric flux of water (m³·h⁻¹)
- J_s: mass flux of salt (kg·m⁻²·h⁻¹)
- k_s: mass transfer coefficient of salt in feed side
- k_{select}: string length of jumping gene
- k_{sub}: length of substring
- l_{jump}: string length of jumping gene
- m: defined in Eq. (A2.14)
- n: exponent for the pumping cost (Eq. (A2.13))
- N_{gen}: generation number
- N_{max}: maximum number of generations
- N_p: total number of chromosomes in the population
- p_c: crossover probability
- p_{jump}: jumping gene probability
- p_m: mutation probability
- P: pressure, bar
- Pen: penalty parameter (Eq. (3))
- Q_{fs}: volumetric flow rate (throuput) (m³·h⁻¹)
- R: observed rejection
- Re: Reynolds’ number
- Sc: Schmidt number
- Sh: Sherwood number
- T: temperature of the feed (°C)
- v: velocity of water in feed channel (m·h⁻¹)
- W_{pump}: reference value of power for estimating pumping cost (Eq. (A2.13)) (kW)

Subscript/superscript

- b: bulk
- bw: brackish water
- d: desired
- L: lower bound

Greek letters

- Δ: difference
- η: efficiency of the pump
- ν: kinematic viscosity of salt solution (m²·h⁻¹)
- π: osmotic pressure (bar)
- ρ: density of seawater (kg·m⁻³)

uses spiral wound cellulose acetate membranes to treat raw water having 3100×10^{-3} kg·m⁻³ TDS and produces permeate water having a TDS less than 200×10^{-3} kg·m⁻³. The largest desalination plant in the world processing seawater (Ayyash, 1994) operates in Jeddah, Saudi Arabia. This has a capacity of $56,800$ m³·day⁻¹ and treats water having a TDS of approximately $44,000 \times 10^{-3}$ kg·m⁻³.

RO has several advantages over other desalination processes such as distillation, evaporation and electro-dialysis (Ho & Sirkar, 1992). The main advantages of RO over other desalination processes are its simple design, lower maintenance costs, easier de-bottlenecking, simultaneous removal of both organic and inorganic impurities, low discharge in the purge stream, and energy savings. RO is a rate-governed pressure-driven process. The solvent flux depends upon the applied pressure difference, trans-membrane osmotic pressure difference, concentration of feed, permeability coefficients of salt and water, and the extent of concentration polarization. The flux increases (at the expense of high concentration polarization) with an increase in the operating pressure difference and permeability coefficients, and decreases with an increase in the salt concentration.

Rigorous optimal design (or operation) of RO modules will help in reducing their cost. Attempts have been made to obtain optimal designs of RO units considering cost as the single objective function. Wiley, Fell and Fane (1985) have carried out the optimal design of membrane modules for brackish water desalination using the Rosenbrock (1960) hill climb method without constraints, with Palmer’s (Palmer, 1969) axis rotation method. Sequential quadratic programming (SQP; Gill, Murray, & Wright, 1991) has been used by Maskan, Wiley, Johnston, and Clements (2000) to find optimal networks of reverse osmosis modules. These studies involve the optimization of only a single objective function, which may, at times, be taken as a weighted-average of several conflicting objective functions. The assignment of values of the weighting factors is subject to considerable controversy. Like most problems, the design of RO modules is also associated with several non-commensurate, objective functions that need to be optimized simultaneously in the presence of a
few constraints. Such problems are best handled using multi-objective optimization (MOO) techniques. In such problems, a set of several equally good (non-dominated) optimal solutions is often obtained (instead of a single optimal point), called a Pareto set. The basic advantage of MOO formulations is that the decision-maker is not confined to look at only a single mathematically optimal solution (usually that involving the minimum cost), but he/she can examine a set of efficient solutions using a judgment of the trade-offs involved, refining his/her final decision (Mavrotas & Diakoulaki, 1998; Deb, 2001). Indeed, Pareto sets are becoming an increasingly effective way to determine the necessary trade-offs between conflicting objective functions’ (D.E. Goldberg in Deb, 2001). The use of a single objective function which is a weighted-average of several objectives also has the drawback that certain optimal solutions may be lost since they may never be explored, particularly when the non-convexity of the objective function gives rise to a duality gap (Goicoechea, Hansen, & Duckstein, 1982). Unfortunately, there is no study on the optimal design of RO modules in the literature using multiple objective functions, though a parallel study (Yuen, Aatmeeyata, Gupta, & Ray, 2000) on beer dialysis (minimizing the alcohol content of beer to give low-alcohol beer, while maximizing the taste chemicals in the product) has been reported. Optimal RO design in desalination involves the selection of membrane material, module geometry (viz., plate and frame, tubular, spiral wound, or hollow-fiber), membrane area, quality of product, solvent recovery (i.e., water), operating pressure difference across the membrane, and the throughput (Bhattacharyya, Williams, Ray, & McCravy, 1992; Parekh, 1988). One should be able to select optimal module parameters that provide the highest possible throughput (first objective function) while simultaneously minimizing the cost of desalination (second objective function). These are conflicting (and non-commensurate) requirements. Clearly, desalination through RO provides an excellent opportunity for multi-objective optimization studies.

Over the last few years, scientists, engineers and economists have used AI-based evolutionary techniques, particularly, genetic algorithms (GA; Deb, 1995; Goldberg, 1989; Holland, 1975), extensively to solve optimization problems involving single objective functions. This basic algorithm, simple GA or SGA (Goldberg, 1989), offers advantages (Deb, 2001; Holland, 1975) over more traditional optimization approaches (e.g., several search techniques, Pontryagin’s principle, SQP, etc.), in some cases. Moreover, it has the advantage that it does not require good initial guesses for the values of the ‘decision variables’. It uses a population of several points simultaneously along with probabilistic operators, viz., reproduction, crossover and mutation, inspired by natural genetics. In addition, SGA has the advantage that it uses only the values of the objective functions and not any derivatives, as required by gradient search techniques. In the early algorithms, binary coding was used for representing the continuous decision variables, i.e., these variables were represented/coded as a series (string) of binary numbers (and then mapped into real numbers for use in model equations).

This is an unavoidable compromise and causes problems (Deb, 2001), e.g., it slows down the computing speed and, at times, renders convergence impossible. Modifications (e.g., real coded GAs, the jumping gene adaptation, etc.) are becoming available but each technique has its own limitations.

Several workers have extended SGA to solve multi-objective optimization problems. Any of these techniques, reviewed recently by Deb (2001) and Coello Coello, Veldhuizen and Lamont (2002), can be used to obtain the Pareto fronts. A popular algorithm for such problems is the non-dominated sorting genetic algorithm (NSGA), developed by Deb and coworkers (Deb, 2001). Two versions of this technique are available, NSGA-I (Srinivas & Deb, 1995) and NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002). Bhaskar, Ray, and Gupta (2000) have reviewed the variety of multi-objective optimization problems in chemical engineering that have been solved in the last decade using NSGA-I (as well as the earlier optimization studies using traditional techniques). NSGA-II introduces the concept of elitism (Deb, 2001) and has been applied recently to solve two highly computationally intensive problems in chemical engineering, namely, the multi-objective optimization of an industrial fluidized-bed catalytic cracker unit (FCCU; Kasat, Kunzru, Saraf, & Gupta, 2002) and the unsteady operation of a steam reformer (Nandasana, Ray, & Gupta, 2003). An important feature of NSGA-II is that the best members are selected from a combined pool of parents and daughters (generated by crossover and mutation of the parents), and these become the parents for the next generation. Elitism reduces the diversity of the gene pool, but offers several advantages (Deb, 2001). Kasat and Gupta (2003), inspired by the concept of jumping genes (JG or transposons; Mclnstock, 1987; Stryer, 2000) in biology, developed the jumping gene (JG) operator for use with SGA/NSGA. This macro-macro mutation operation in the binary-coded NSGA-II-JG speeds up the optimization of FCCUs by almost an eight-fold factor, and provides the global optimal Pareto front for the test problem, ZDT4 (Deb, 2001; Zitzler, Deb, & Thiele, 2000), which could not be solved satisfactorily using the binary-coded NSGA-II. The JG operator helps improve the diversity of the gene pool and, thus, counteracts the negative effect of elitism. A further adaptation of NSGA-II-JG has been presented by Guria, Verma, Mehrotra, and Gupta, 2005. This is referred to as NSGA-II-JG (modified JG). This algorithm has been found to speed up the convergence to the global optimal solutions for problems involving networks, as for example, froth flotation circuits (Guria et al., 2005) for mineral processing. More recently, Bhat, Saraf, and Gupta (2005) further adapted this concept and proposed NSGA-II-aJG (adapted JG), which could solve ZDT4 even more efficiently. This adaptation has been applied successfully by Khosla, Saraf, and Gupta (2005) for the multi-objective optimization of fuel oil blending operations. Details of NSGA-II-JG as well as NSGA-II-aJG are given in Appendix A.
The present work involves the simulation of the desalination plant (Lohman, 1994) at Yuma, followed by the formulation and solution of a few multi-objective optimization problems for desalination using RO modules. The binary coded NSGA-II (Deb, 2001; Deb et al., 2002) is used. The results are then compared with those obtained with NSGA-II-3G and NSGA-II-4G so as to study the efficiency of these algorithms. The optimization is carried out both at the operating stage (Lohman, 1994; optimization of the operating condition: the pressure difference, ΔP, across the membrane). The solute concentration, C_s, in the feed and the temperature, T, of operation, are usually specified (constants).

Eq. (1a) is an implicit nonlinear algebraic equation that can easily be solved numerically to give J_w and Q_w for a set of values of C_s, T, A, a, b, k_1 and ΔP. b_a can be estimated using Eqs. (A2.17) and (A2.18). The secant method (Ray & Gupta, 2004) is used to solve this equation. This method requires lower and upper bounds (estimates) of J_w, as well as two initial guesses of this root. The values of C_s and the cost can then be evaluated using Eqs. (1b) and (1c), respectively.

2. Multi-objective optimization

The plant at Yuma, AZ, USA (Lohman, 1994) uses a spiral wound module and treats brackish water. The parameters characterizing this unit first need to be estimated (‘tuned’). This is done using the following available information (Lohman, 1994): $A=3.93072 \times 10^3$ m2; $Q_w=275,000$ m3 day$^{-1}$; $\Delta P=27.6$ bar; $C_s=3.1$ kg m$^{-3}$; observed rejection = 97%; $C_p=0.2$ kg m$^{-3}$ and $T=25^\circ$C. The exact value of k_1 depends on the geometric parameters of the element (i.e., the number of leaves, the thickness of spacers, the porosity of the feed spacer and the membrane thickness) and the physical properties (mainly, density, kinematic viscosity and mass diffusivity) of the salt solution, and is estimated using Eq. (A2.9).

Details of different types of spiral wound modules are given by Shock and Miquel (1987). We have used values corresponding to a FilmTec FT 30 spiral wound module (Shock & Miquel, 1987) in the present study. The ‘tuned’ values of the two unknown parameters, a and b, are obtained by curve-fitting the operating data, as 1.80×10^{-3} m bar$^{-1}$ h$^{-1}$ and 5.04×10^{-3} m h$^{-1}$, respectively. A simple two-objective optimization problem for the (operating) plant at Yuma (referred to as operating-stage optimization) is first solved (Problem 1). The optimal value of the single decision variable, ΔP, is to be obtained. Since the permeabilities, a and b, depend primarily on the membrane, and since the latter is the same for all values of ΔP, the tuned values of these parameters are used. Thus, for this problem, values of C_s, b_a, A, a, b, T and the module are specified. Two objective functions are used: maximization of the permeate flow rate, Q_w, and minimization of the Cost. The permeate concentration, C_p, is...
Table 1: Details of the several optimization problems studied

<table>
<thead>
<tr>
<th>Problem no.</th>
<th>Module</th>
<th>Operating/design</th>
<th>Feed</th>
<th>Values (existing or bounds (new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spiral wound (FilmTec FT30)</td>
<td>Operating (Yuma)</td>
<td>Brackish water</td>
<td>10–50, 0.78p^1</td>
</tr>
<tr>
<td>2</td>
<td>Spiral wound (FilmTec FT30)</td>
<td>Design</td>
<td>Brackish water</td>
<td>0.78p^1</td>
</tr>
<tr>
<td>3</td>
<td>Tubular module (PCI)</td>
<td>Design</td>
<td>Sea water</td>
<td>0.78p^1</td>
</tr>
<tr>
<td>4</td>
<td>Spiral wound (FilmTec FT30)</td>
<td>Design</td>
<td>Brackish Water</td>
<td>0.78p^1</td>
</tr>
<tr>
<td>5</td>
<td>Tubular module (PCI)</td>
<td>Design</td>
<td>Sea water</td>
<td>0.78p^1</td>
</tr>
</tbody>
</table>

* ^10^a = 1.8 represents a = 1.8 x 10^{-1}, etc.

constrained to lie below a desired value, C_{p, d}. This problem, relevant to the operation of the existing plant at Yuma, can be written mathematically as:

Problem 1. Yuma plant; specified C_0, h_w, A, a, b, T; FilmTec FT 30 spiral wound module

Max f_1(ΔP) = \frac{Q_a}{Q_{w, ref}} (a)

Min f_2(ΔP) = \frac{Cost}{Cost_{w, ref}} (b)

Subject to (s.t.):

Model equations (Appendix 2) (c)

Bounds: ΔP_L ≤ ΔP ≤ ΔP^{U}_{T} (d)

Constraint: C_{p} ≤ C_{p, d} (e)

In Eq. (2), \(Q_{w, ref} \) and \(Cost_{w, ref} \) are used to normalize the two objective functions, \(ΔP_{L} \) and \(ΔP^{U}_{T} \) are the lower and upper bounds on \(ΔP \) (values given in Table 1) and \(Cost_{w, ref} \) is taken as 0.2 kg m^{-3}. Eq. (A2.9) is used to estimate \(k_{w} \) (for any \(Q_{w} \)), while the Cost is given only by the second (constant for all \(Q_{w} \), since \(A \) is constant) and the membrane permeability coefficients, \(a \) and \(b \), are related to the thickness of the membrane and its properties, namely, the diffusivities of salt and water in the membrane, the partition coefficient of the solute in the membrane, the feed temperature and, the nature of the concentration polarization, and can be considered as decision variables directly. \(A \) is the membrane area and can vary continuously. \(k_{w} \) depends on the hydrodynamics associated with the membrane module, and can be estimated using the correlations in Appendix B for any desired module. Two, two-objective optimization problems are being studied here using two different modules (so that the results can be compared), namely, the FilmTec FT 30 spiral wound module (Shock & Miquel, 1987), and the PCI tubular module (Wiley et al., 1985).

Problems 2 and 3. (design stage; specified \(C_0 \), module, \(T \));

Max f_1(ΔP, A, a, b) = \frac{Q_a}{Q_{w, ref}} (a)

Min f_2(ΔP, A, a, b) = \frac{Cost}{Cost_{w, ref}} (b)

Subject to (s.t.):

Model equations (Appendix B) (c)

Bounds: ΔP_L ≤ ΔP ≤ ΔP^{U}_{T}, A_k ≤ A ≤ A^{U}_{k}, a_L ≤ a ≤ a^{U}, b_L ≤ b ≤ b^{U} (d)

Constraint: C_{p} ≤ C_{p, d} (e)

The values of the normalization constants, \(Q_{w, ref} \) and \(Cost_{w, ref} \), are taken to be the same as in Problem 1 (since these are constants anyway; this does not matter, as discussed earlier). Table 1 gives the details. Problem 4 is also described by Eq. (3), but corresponds to the desalination of sea water using a
Problem 1 (Table 1) was run with a single chromosome using value of the penalty, Pen, is taken to be a very large number (compared to the selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.

Problem 2 is a more interesting, design-stage multi-objective optimization problem, involving more than a single degree of freedom. Pareto sets are obtained, as shown in Fig. 1a. The CPU time taken for this problem (as well as all others, using any of the adaptations of NSGA-II) for 1000 generations, and using 100 chromosomes is 1 min (on a Pentium IV, 1.7 GHz, 256 MB RAM). The mean value of the crowding distance, I_{dist} (see Step 3c in Appendix A), as well as the standard deviation of these values, in any generation, can be used to get an idea of the degree of convergence of the Pareto set. Details of this method are described in Kasat and Gupta (2003). Alternatively, an eye estimate can be used to get an idea of when the Pareto set has stopped changing (converged) from generation to generation, and if the ‘spread’ of the points in the set are near-uniform (the standard deviation of I_{dist} can be used for this). The two approaches give nearly similar results. Fig. 1d and e show that the optimal module must have the maximum permeable permeability coefficients (a and b) for the FilmTec FT30 spiral wound membrane. This is not surprising. What is interesting is that the increase in Q_m is first achieved by an increase in the value of membrane area, A, to its maximum permissible value (with ΔP being constant at an intermediate value of about 33 bar).

In Problem 1, there is only one degree of freedom (a selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.

Problem 2 is a more interesting, design-stage multi-objective optimization problem, involving more than a single degree of freedom. Pareto sets are obtained, as shown in Fig. 1a. The CPU time taken for this problem (as well as all others, using any of the adaptations of NSGA-II) for 1000 generations, and using 100 chromosomes is 1 min (on a Pentium IV, 1.7 GHz, 256 MB RAM). The mean value of the crowding distance, I_{dist} (see Step 3c in Appendix A), as well as the standard deviation of these values, in any generation, can be used to get an idea of the degree of convergence of the Pareto set. Details of this method are described in Kasat and Gupta (2003). Alternatively, an eye estimate can be used to get an idea of when the Pareto set has stopped changing (converged) from generation to generation, and if the ‘spread’ of the points in the set are near-uniform (the standard deviation of I_{dist} can be used for this). The two approaches give nearly similar results. Fig. 1d and e show that the optimal module must have the maximum permeable permeability coefficients (a and b) for the FilmTec FT30 spiral wound membrane. This is not surprising. What is interesting is that the increase in Q_m is first achieved by an increase in the value of membrane area, A, to its maximum permissible value (with ΔP being constant at an intermediate value of about 33 bar).

In Problem 1, there is only one degree of freedom (a selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.

Problem 2 is a more interesting, design-stage multi-objective optimization problem, involving more than a single degree of freedom. Pareto sets are obtained, as shown in Fig. 1a. The CPU time taken for this problem (as well as all others, using any of the adaptations of NSGA-II) for 1000 generations, and using 100 chromosomes is 1 min (on a Pentium IV, 1.7 GHz, 256 MB RAM). The mean value of the crowding distance, I_{dist} (see Step 3c in Appendix A), as well as the standard deviation of these values, in any generation, can be used to get an idea of the degree of convergence of the Pareto set. Details of this method are described in Kasat and Gupta (2003). Alternatively, an eye estimate can be used to get an idea of when the Pareto set has stopped changing (converged) from generation to generation, and if the ‘spread’ of the points in the set are near-uniform (the standard deviation of I_{dist} can be used for this). The two approaches give nearly similar results. Fig. 1d and e show that the optimal module must have the maximum permeable permeability coefficients (a and b) for the FilmTec FT30 spiral wound membrane. This is not surprising. What is interesting is that the increase in Q_m is first achieved by an increase in the value of membrane area, A, to its maximum permissible value (with ΔP being constant at an intermediate value of about 33 bar).

In Problem 1, there is only one degree of freedom (a selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.

Problem 2 is a more interesting, design-stage multi-objective optimization problem, involving more than a single degree of freedom. Pareto sets are obtained, as shown in Fig. 1a. The CPU time taken for this problem (as well as all others, using any of the adaptations of NSGA-II) for 1000 generations, and using 100 chromosomes is 1 min (on a Pentium IV, 1.7 GHz, 256 MB RAM). The mean value of the crowding distance, I_{dist} (see Step 3c in Appendix A), as well as the standard deviation of these values, in any generation, can be used to get an idea of the degree of convergence of the Pareto set. Details of this method are described in Kasat and Gupta (2003). Alternatively, an eye estimate can be used to get an idea of when the Pareto set has stopped changing (converged) from generation to generation, and if the ‘spread’ of the points in the set are near-uniform (the standard deviation of I_{dist} can be used for this). The two approaches give nearly similar results. Fig. 1d and e show that the optimal module must have the maximum permeable permeability coefficients (a and b) for the FilmTec FT30 spiral wound membrane. This is not surprising. What is interesting is that the increase in Q_m is first achieved by an increase in the value of membrane area, A, to its maximum permissible value (with ΔP being constant at an intermediate value of about 33 bar).

In Problem 1, there is only one degree of freedom (a selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.

Problem 2 is a more interesting, design-stage multi-objective optimization problem, involving more than a single degree of freedom. Pareto sets are obtained, as shown in Fig. 1a. The CPU time taken for this problem (as well as all others, using any of the adaptations of NSGA-II) for 1000 generations, and using 100 chromosomes is 1 min (on a Pentium IV, 1.7 GHz, 256 MB RAM). The mean value of the crowding distance, I_{dist} (see Step 3c in Appendix A), as well as the standard deviation of these values, in any generation, can be used to get an idea of the degree of convergence of the Pareto set. Details of this method are described in Kasat and Gupta (2003). Alternatively, an eye estimate can be used to get an idea of when the Pareto set has stopped changing (converged) from generation to generation, and if the ‘spread’ of the points in the set are near-uniform (the standard deviation of I_{dist} can be used for this). The two approaches give nearly similar results. Fig. 1d and e show that the optimal module must have the maximum permeable permeability coefficients (a and b) for the FilmTec FT30 spiral wound membrane. This is not surprising. What is interesting is that the increase in Q_m is first achieved by an increase in the value of membrane area, A, to its maximum permissible value (with ΔP being constant at an intermediate value of about 33 bar).

In Problem 1, there is only one degree of freedom (a selected value of J_w determines the complete solution) and so the solution of Eq. (2) can be obtained analytically. It is found that as ΔP increases, Q_m increases and the Cost goes down, a characteristic of a Pareto set. This problem is a relatively trivial one and so detailed results are not being presented here (but can be supplied on request), and this problem is not pursued further.
Fig. 1. Optimal solutions for Problem 2 (see Table 1 for details).
Fig. 2. Optimal solutions for Problem 3 (see Table 1 for details).
Fig. 3. Optimal solutions for Problem 4 (see Table 1 for details).
Optimal solutions for Problem 5 (see Table 1 for details).
value of the permeate concentration when its specification is violated. Thus, and several other interesting optimization problems, can be solved but are not presented since the aim is to present results of only a few simple problems.

Fig. 2 shows results for the design-stage two-objective optimization problem for the desalination of brackish water using a different module, namely the PCI tubular module. Fig. 2a shows the Pareto set. Fig. 2d and e show that the optimal values of the permeabilities of water and salt must have the maximum possible values. This is similar to observations from Fig. 1 (for the spiral wound module). In the case of the PCI module, the increase in Q_w is first achieved by an increase of ΔP to its maximum possible value (with the membrane area being constant at its minimum specified value). Thereafter, Q_w and Cost both increase with an increase in the membrane area (with the ΔP being constant at its upper limit). This indicates that Q_w is more sensitive to ΔP than to A for this module. The contrast in the behaviors of the results for the two modules is clearly brought out in Figs. 1 and 2. The value of C_p remains almost constant after ΔP attains

![Graph showing optimal Pareto solutions for Problem 4 using NSGA-II, NSGA-II-JG and NSGA-II-aJG. Results for NSGA-II-JG and NSGA-II-aJG are displaced upwards by 10,000 and 20,000 h^{-1}, respectively, on the ordinates so that the plots can be easily compared.](image)
its maximum value. This is consistent with intuitive expectations. A small amount of scatter is observed in the optimal values of \(\Delta P, A, a, \) and \(b \) in Figs. 1 and 2. It is clear that differences in these four decision variables compensate for each other, and do not affect the Pareto set much. This is a characteristic of problems associated with several degrees of freedom, and such insensitivity of the Pareto set to scatter in a few decision variables has been encountered earlier in real-life studies (Bhaskar et al., 2000; Sareen & Gupta, 1995; Tarafder, Rangaiah, & Ray, 2005). It is known that GA does not guarantee optimality of the final solutions (Deb, 2001) and a few sub-optimal points/solutions are almost always encountered. However, one can easily infer the optimal Pareto solution from the results generated. One way of eliminating the scatter is to express the decision variables as low-order polynomials (Sareen & Gupta, 1995), and obtain optimal values of the coefficients used. These would give near-optimal solutions that are more useful. It is interesting to observe from Figs. 1 and 2 that spiral wound modules give higher throughputs than tubular ones (for similar values of the operating variables), of course at higher costs.

Fig. 3 presents the Pareto set for the design-stage, two-objective optimization of a sea water desalination unit using the FilmTec FT 30 spiral wound module (Problem 4, Table 1).
Here, the bounds of the membrane permeability coefficients of water and salt (i.e., \(a\) and \(b\)) of Problem 2 are used, but much higher ranges of \(\Delta P\) are imposed for obvious reasons. In this case, \(Q_w\) increases initially because of the increase in both the membrane area, \(A\), as well as \(\Delta P\). After the maximum area of the membrane is attained, a further increase in \(Q_w\) is obtained due to the increase in \(\Delta P\). Small amounts of scatter in the decision variables, mainly, \(\Delta P, A, a\) and \(b\) is observed, but the final Pareto set is insensitive to these variations. The qualitative similarity of the optimal solutions for the two cases (Problems 2 and 4, involving different ranges for \(\Delta P\)) for treating brackish water and sea water, respectively, using the FilmTec FT 30 spiral wound membrane is to be noted, and contrasted to the results for the PCI tubular module (Problem 3).

The occurrence of a minimum in \(C_p\) in Problem 3 (Fig. 2) suggests that we can take the minimization of \(C_p\) as a third objective function. We, therefore, solve the following three-objective optimization problem (at the design stage):
Problem 5. (design stage: specified C, T, PCI module):

Max \(f_1(\Delta P, A, a, b) = \frac{Q_{e}}{Q_{e,ref}} \)

Min \(f_2(\Delta P, A, a, b) = \text{Cost} \)

Min \(f_3(\Delta P, A, a, b) = C_T \)

Subject to (s.t.):

Model equations (Appendix B)

Bounds: \(\Delta_j a \leq \Delta \leq \Delta_j b \), \(a \leq a \leq a_j b \), \(b \leq b \leq b_j b \)

The Cost is estimated for Problem 5 using all four terms on the right in Eq. (1c). The reference values of \(Q_{e,ref} \) and Costref are the same as in Problem 1.

Fig. 4 shows the results of Problem 5. The optimal points in Fig. 4a and b, together, comprise a three-dimensional Pareto surface. A 3D plot involving the objective functions is shown in Fig. 4g. Since the cost increases (worsens) and \(C_T \) increases (worsens), albeit slightly, as \(Q_e \) increases (improves) over the entire range of the latter, the optimal solution has the characteristics of a Pareto set. In the 3D plot, some peaks are observed because of the outliers in Fig. 4a and b, but a general increase is observed from the low \(Q_e \)-low \(C_T \)-low Cost end to the high \(Q_e \)-high \(C_T \)-high Cost end. This problem is clearly, more meaningful. A decision maker can be provided these results, and may be asked to select an appropriate ‘preferred’ solution. The results of the three-objective Problem 5 are also compared with those of the two-objective Problem 3 in Fig. 4. It is seen that the degree of scatter increases with the introduction of the third function to Problem 3. The optimal values of \(C_T \) for Problem 5 are always lower than those obtained in Problem 3 because this variable is being minimized (Eq. (6c)). This forces the membrane permeability coefficient of the salt, \(h \), to take on its lowest value (Fig. 4e), while \(a \) shifts to its upper limit (Fig. 4d) (as compared with the two-objective problem with the constraint on the permeate concentration (Problem 3)).

Other optimal parameters for the three-objective problem, viz., \(\Delta P, a \) and \(A \), vary with \(Q_e \) (Fig. 4c, d and f) almost in a similar manner as compared to the two-objective problem.

Two recent improvements of NSGA-II (Deb, 2001; Deb et al., 2002), namely, NSGA-II-JG (Kasat & Gupta, 2003) and NSGA-II-aJG (Bhat et al., 2005), have been used to solve one of the problems (Problem 4) to see if the jumping gene (HG) adaptations provide any advantage. The best values of the computational parameters have been obtained for all these techniques, and are listed in Table 2. Fig. 5 shows the development of the Pareto set over the generations using the three codes (the values of the cost for NSGA-II-JG and NSGA-II-aJG have been increased by 10,000 and 20,000 $ h^{-1}$, respectively, to displace their plots vertically, so that they can be compared easily), while Table 3 gives numerical values at a few generations. It is observed from Fig. 5 as well as Table 3 that the ‘range’ of the Pareto set (minimum and maximum
values of Q_w increases with the generation number, with the range of NSGA-II-aJG becoming satisfactory (i.e., almost the same as that at the 1000th generation) at the 20th generation itself, faster than for NSGA-II and NSGA-II-JG. Another characteristic of the Pareto sets is the distribution/spread of the several points. Two parameters describe this aspect of the Pareto sets: the mean distance between consecutive points (note that the same number of chromosomes are used for all three techniques), and the standard deviation of these distances. Kasat and Gupta (Kasat & Gupta, 2003) have suggested the use of the mean and the standard deviation of $I_{i,dist}$ (see Appendix A) in any generation for this purpose. Fig. 6 and Table 3 show these parameters for the three techniques, at different generations. Fig. 6a and Table 3 show that the mean value of $I_{i,dist}$ is lower at the beginning (after some initial large values). This is because the range (of the Pareto set) is smaller and the same number of points is present in all generations. It is found that the mean and standard deviation of $I_{i,dist}$ (and the range) do not change much above about 80–100 generations. This can be taken as an indication that convergence has been attained (in fact, this can be used for all previous results, even though higher values of $N_{g_{max}}$ have actually been used). Interestingly, the mean and standard deviation of $I_{i,dist}$ at the 100th generation are almost the same for all the three algorithms. Fig. 6 and Table 3 show that there are oscillations in both these parameters, even for as high a value of $N_{g_{max}}$ as 80. Similar oscillations in the behavior of the Pareto set have been observed earlier, though qualitatively. It is also observed that the mean and the standard deviation of $I_{i,dist}$ converge faster to their final converged value for NSGA-II-aJG than for the other two techniques (see italicized entries in Table 3). This means that this technique is the least expensive, computationally (since the computational time to achieve convergence is directly proportional to the number of generations necessary). It may be added that one could improve the ‘spread’ of the Pareto sets by using the ε-constraint
method (Deb, 2001), in which we replace one objective function (in this case, Q_w) by an equality constraint and solve the resulting optimization problem (with a single objective function, in this case) several times over for several constant values of Q_w. This methodology has its own problems (Deb, 2001).

4. Conclusions

A few two-objective (maximizing the throughput while minimizing the cost) and three-objective optimization problems (maximizing throughput while minimizing the cost as well as the permeate concentration) are studied for the desalination of brackish water and sea water. Pareto optimal sets of equally good non-dominated solutions are obtained. The optimal solutions for spiral wound modules are compared to those for tubular modules. The membrane area, A (design parameter), is the most important decision variable in the desalination of brackish water and seawater using spiral wound modules. In contrast, the applied pressure, ΔP (operating parameter), is the most important decision variable in the desalination of brackish water using tubular modules. Three AI-based algorithms, NSGA-II, NSGA-II-JG and NSGA-II-aJG, are used to obtain the optimal solutions and it is observed that NSGA-II-aJG is the most rapid of these algorithms if one is interested in obtaining reasonable, near-optimal solutions with a small computational effort.

Acknowledgement

Partial financial support from the Department of Science and Technology, Government of India, New Delhi (through grant III-5(13)/2001-ET) is gratefully acknowledged.

Appendix A. Binary coded elitist non-dominated sorting genetic algorithm, NSGA-II (Deb, 2001; Deb et al., 2002) with the jumping gene operators, JG (Kasat & Gupta, 2003) and aJG (Bhat et al., 2005)

1. Generate box, P, of N_p binary-coded parent chromosomes (see flowchart in Fig. A1), using a sequence of random numbers (e.g., a chromosome representing two decision variables, each represented by five binaries could be 11010 10110). Map each chromosome into a set of real values of the decision variables. Use the model equations to compute the values of all the objective functions (for each chromosome).

2. Classify these chromosomes into fronts based on non-domination (Deb, 2001) as follows:
 (a) create new (empty) box, P', of size, N_p;
 (b) transfer the ith chromosome from P to P', starting with the first;
 (c) compare chromosome, i, with each member, j, in P', one at a time;
 (d) if i dominates j (i.e., all objective functions of i are superior to/better than those of j), remove j from P' and put it back in P at its place;
 (e) if i is dominated by j, remove i from P' and put it back in P at its place;
 (f) if i and j are non-dominated (i.e., at least one objective function of i is inferior to that of j, while all others are superior), keep both i and j in P'.

3. Evaluate the crowding distance, $I_{i,dist}$, for the ith chromosome (Deb, 2001) as follows:

\[I_{i,dist} = \frac{f_{max} - f_{min}}{2} \]

where f_{max} and f_{min} are the maximum and minimum values of the objective functions for the ith chromosome.

4. Select the best N_p from P'.

5. Select new population, P'', of size, N_p, from P' by selecting chromosomes from each front, $I_{i,rank} = 1, 2, 3, \ldots$,

6. Reproduce the population, P'', into the next generation, P'', using selection, crossover, and mutation operators. The selection operator is used to select the best chromosomes from P'' to P''.

7. Repeat the above steps for a fixed number of generations or until a stopping criterion is met.

Fig. A1. Flow chart of NSGA-II and the JG adaptations.

(c) if i is dominated by j, remove i from P' and put it back in P at its place;
(d) if i dominates j (i.e., all objective functions of i are superior to/better than those of j), remove j from P' and put it back in P at its place;
(e) if i is dominated by j, remove i from P' and put it back in P at its place;
(f) if i and j are non-dominated (i.e., at least one objective function of i is inferior to that of j, while all others are superior), keep both i and j in P'.

(g) repeat, sequentially, for all chromosomes in P, P' constitutes the first front or sub-box (of size $\leq N_p$) of non-dominated chromosomes. Assign all chromosomes in this front $I_{rank} = 1$.
(h) create subsequent fronts in (lower) sub-boxes of P' using the chromosomes remaining in P'. For a sub-box, $I_{max} = 2, 3, 4, \ldots$ Finally, all N_p chromosomes are in P', boxed into one or more fronts.

3. Evaluate the crowding distance, I_{chbox}, for the ith chromosome in any front using:
5. Carry out crossover and mutation (Deb, 1995) of chromosomes.

6. Do JG or aJG operation: select a chromosome (sequentially) from P, P′ (‘better’ parents). Use:
(a) rearrange all chromosomes in front, j, in ascending order of the values of any one of their fitness functions, \(F_i \).
(b) find the largest cuboid (rectangle for two fitness functions) enclosing \(i \), that just touches its nearest neighbors in the F-space;
(c) \(l_{cub} = \text{max}(l) \) (sum of all sides of this cuboid);
(d) assign large values of \(I_{chrom} \) to solutions at the boundaries to make them important.

4. Copy the better of the \(N_p \) chromosomes of \(P' \) in a new box, \(P'' \) (‘better’ parents). Use:
(a) select any pair, \(i \) and \(j \), from \(P' \) (randomly, irrespective of fronts);
(b) identify the better of these two chromosomes, \(i \) is better than \(j \) if (for minimization of all fitness functions):
\[
I_{rank}^i = I_{rank}^j \Rightarrow I_{rank}^i < I_{rank}^j,
\]
\[
I_{rank}^i = I_{rank}^j \Rightarrow I_{rank}^i > I_{rank}^j;
\]
(c) copy (without removing from \(P' \)) the better chromosome in a new box, \(P'' \);
(d) repeat till \(P'' \) has \(N_p \) members;
(e) copy all of \(P'' \) in a new box, \(D \), of size \(N_p \);
Not all of \(P'' \) need be in \(P'' \) or \(D \).

5. Carry out crossover and mutation (Deb, 1995) of chromosomes in \(D \). This gives a box of \(N_p \) daughter chromosomes:
(a) Crossover: randomly select two chromosomes and a random crossover site (say, after the third position) and exchange the binaries as shown below:
\[
1010101100 \rightarrow 11011111100
\]
(b) Mutation: for each binary in each chromosome, generate a random number and check (using \(p_m \)) if it needs to be changed by this operator. If yes, switch it over (from 0 to 1 or vice versa).

6. Do JG or aJG operation: select a chromosome (sequentially) from \(D \), say \(1010101100 \).
Check if JG/aJG operation is needed, using a random number and \(p_m \). If yes:
(a) generate a random number between 0 and 1;
(b) multiply this by \(l_{trans} \), the total number of binaries in the chromosome. Round off to convert into an integer. This represents the position of the beginning of a transposon (say, at the end of the third binary in the above chromosome);
(c) JG or aJG:
- JG: generate another similar random number and identify a second location (end of the JG) in the selected chromosome (say, the after the seventh binary);
- aJG: fix the second end of the JG using the specified string length, \(l_{aJG} = 4 \); so place a marker at the end of the 3 + 4 = seventh binary) of the jumping gene (Bhat et al., 2005);
(d) replace the set of binaries between these two locations by a new set of binaries (use random numbers).

7. Copy all \(N_p \) members of \(P'' \) and all the \(N_p \) members of \(D \) into box PD (elitism). Box PD has \(2N_p \) chromosomes.

8. Reclassify these \(2N_p \) chromosomes into fronts (box PD) using only non-domination (see Step 2 above).

9. Take the best \(N_p \) from box PD′ and put into box \(P''' \).

10. This completes one generation. Stop if criteria are met.

11. Copy \(P''' \) into starting box, \(P \). Go to Step 2 above.

Appendix B. Model equations

The volumetric flux, \(J_w \) (Lonsdale et al., 1965; Rautenbach, 1986; Sherwood, Brian, & Fischer, 1967; Soltanieh & Gill, 1981) of the solvent is represented phenomenologically by
\[
J_w = a(\Delta P - \Delta \pi) \tag{A2.1}
\]
while the mass flux, \(J_s \), of the solute is given by
\[
J_s = b(C_{wall} - C_p) \tag{A2.2}
\]
In the presence of concentration polarization (Sherwood et al., 1967), \(J_s \), at steady state, is also given by
\[
J_s = k_b \ln \frac{C_{wall} - C_p}{C_p - C_0} \tag{A2.3}
\]
We use
\[
\Delta \pi = \phi_s(C_{wall} - C_p) \tag{A2.4}
\]
to estimate the osmotic pressure across the membrane. We can also write the solute flux as
\[
J_s = J_w C_0 \tag{A2.5}
\]
Combining Eqs. (A2.1)–(A2.3) (eliminating \(C_{wall} \)), we obtain, finally (Rautenbach, 1986):
\[
J_w = a \frac{\Delta P - b_2}{b - b_2} \left(C_p - \frac{bC_p \exp(J_w/k_s)}{J_w + b \exp(J_w/k_s)} \right) \exp(J_w/k_s) \tag{A2.6}
\]
and
\[
C_p = \frac{bC_0}{b - J_w \exp(-J_w/k_s)} \tag{A2.7}
\]
The observed rejection is given by
\[
R = 1 - \frac{C_0}{C_b} \tag{A2.8}
\]
Estimation of mass transfer coefficient, \(k_s \)

Spiral wound module (Shock & Miquel, 1987)
\[
Sh = 0.065 Re^{0.105} S_0^{0.25} \tag{A2.9}
\]
where, \(Sh = \frac{k_{dh}}{D_{AB}} \), \(Re = \frac{d_u v}{v} \) and \(Sc = \frac{v}{D_{AB}} \).

The hydraulic diameter of a spiral wound module depends on the channel height, the specific surface area of the spacer and the void fraction. Details for various membranes are given by Shock and Miquel (1987).

For brackish water, the kinematic viscosity, \(v \), can be estimated from the data given by Sourirajan (1970) for the NaCl–H₂O system at 25 °C estimated as 5.5 × 10⁻⁶ m²/s (Sourirajan, 1970).

\[v = 0.0032 + 3.0 \times 10^{-6} C + 4.0 \times 10^{-9} C^2 \] \hspace{1cm} (A2.10)

The mass diffusivity, \(D_{AB} \) (NaCl–H₂O; \(T = 25 \) °C), is estimated as 5.5 × 10⁻⁶ m²/s at \(C = 1.1 \) kg m⁻³ (Sourirajan, 1970).

For seawater, \(D_{AB} \), \(\mu \) and \(\rho \) (Sekino, 1994; Taniguchi & Kimura, 2005; Taniguchi et al., 2001) can be estimated from the following equations:

\[D_{AB} = 6.725 \times 10^{-6} \left(0.1546 \times 10^{-3} C - \frac{2513}{273.15 + T} \right) \] \hspace{1cm} (A2.11)

\[\mu = 1.234 \times 10^{-6} \left(0.00212C - \frac{1965}{273.15 + T} \right) \] \hspace{1cm} (A2.12)

and

\[\rho = 498.4m + \sqrt{24000b^2 + 752} \text{ m}^{-2} \] \hspace{1cm} (A2.13)

where, \(m = 1.0069 - 2.757 \times 10^{-4} T \). \hspace{1cm} (A2.14)

B.1. Tubular module (Wiley et al., 1985)

For laminar flow, i.e., for \(Re \leq 2100 \) in a circular tube, the Leveque relationship (Perry et al., 1997):

\[Sh = 1.62 \left(\frac{Re}{Sc} \right)^{0.33} \] \hspace{1cm} (A2.15)

and for turbulent flow, i.e., for \(Re \geq 2100 \) (Perry et al., 1997; Wiley et al., 1985):

\[Sh = 0.023Re^{0.33}Sc^{0.33} \] \hspace{1cm} (A2.16)

for \(Sc < 1 \),

\[Sh = 0.023Re^{0.3375}Sc^{0.25} \] \hspace{1cm} (A2.16)

for \(1 \leq Sc \leq 1000 \),

\[Sh = 0.0096Re^{0.36}Sc^{0.36} \] \hspace{1cm} (A2.16)

for \(Sc > 1000 \).

B.2. Estimation of the osmotic coefficient (Sourirajan, 1970)

The osmotic pressure, \(\pi \), is obtained from the data given by Sourirajan (1970) for the NaCl–H₂O system at 25 °C (concentration range: 0–49.95 kg m⁻³) and is correlated as:

\[\pi = 0.7949C - 0.0021C^2 + 7.0 \times 10^{-4} C^3 - 6.0 \times 10^{-3} C^4 \] \hspace{1cm} (A2.17)

Therefore, the osmotic coefficient, \(b_v \), can be obtained as

\[b_v = \frac{\pi}{C} \] \hspace{1cm} (A2.18)

B.3. Estimation of the cost

The cost of production of desalinated water is given by the following equation (Maskan et al., 2000):

\[Cost = C_{mem}A + C_{mem}A + C_{pump} \left(\frac{Q_w \Delta P}{W_{mem}} \right)^{0.67} \] \hspace{1cm} (A2.19)

Substituting the appropriate cost coefficients and \(n = 0.6 \), one obtains (Maskan et al., 2000; Perry et al., 1997):

\[Cost = 1.946 \times 10^{-3} A^4 + 3.57 \times 10^{-3} A^4 \] \hspace{1cm} (A2.20)

The first and third terms on the right hand side of Eq. (A2.20) are not used in evaluating the ‘Cost’ for the operating-stage optimization Problem 1, since they represent ‘sunken’ capital that is already invested in an existing unit.

References

Kimura, 2005; Taniguchi et al., 2001) can be estimated from the following equations:

\[D_{AB} = 6.725 \times 10^{-6} \left(0.1546 \times 10^{-3} C - \frac{2513}{273.15 + T} \right) \] \hspace{1cm} (A2.11)

\[\mu = 1.234 \times 10^{-6} \left(0.00212C - \frac{1965}{273.15 + T} \right) \] \hspace{1cm} (A2.12)

and

\[\rho = 498.4m + \sqrt{24000b^2 + 752} \text{ m}^{-2} \] \hspace{1cm} (A2.13)

where, \(m = 1.0069 - 2.757 \times 10^{-4} T \). \hspace{1cm} (A2.14)