RESILIENCE AND MULTICAST ASPECTS OF THE STRUCTURED NETWORK OVERLAY GP3

Markus Esch - University of Luxembourg
Ingo Scholtes - University of Trier
MOTIVATION

• HyperVerse project

• Massive Multiuser Virtual Environment (MMVE)
 • Global-scale
 • Open
 • Similar to the Web
 • 3D Web
THE IDEA OF A 3D WEB
THE IDEA OF A 3D WEB

3D Web =
THE IDEA OF A 3D WEB

3D Web = Online Communities
THE IDEA OF A 3D WEB

3D Web = Online Communities + Virtual Globes
THE IDEA OF A 3D WEB

3D Web = Online Communities + Virtual Globes + Web Content
TWO TIER INFRASTRUCTURE

Public Server overlay:
• Reliable hosting
• Client management

Client overlay:
• Data distribution

Tuesday, February 16, 2010
BACKBONE OVERLAY - GP3

- Interconnect Public Servers
- Tailored to DVE scenario
 - Data locality in DVEs
- Spatial index
- Resilience
- Multicast
GP3 - BASIC

- Subdivide world surface into rectangles with increasing order
- One k-order rectangle \rightarrow 4(k+1)-order rectangles

Order: 1
GP3 - BASIC

- Subdivide world surface into rectangles with increasing order
- One k-order rectangle → 4(k+1)-order rectangles

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Order: 1,5</td>
</tr>
<tr>
<td>B</td>
<td>Order: 1,5</td>
</tr>
</tbody>
</table>
GP3 - BASIC

- Subdivide world surface into rectangles with increasing order
- One k-order rectangle \rightarrow $4(k+1)$-order rectangles

<table>
<thead>
<tr>
<th>A</th>
<th>Order: 2</th>
<th>C</th>
<th>Order: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>Order: 1,5</td>
</tr>
</tbody>
</table>
GP3 - BASIC

- Subdivide world surface into rectangles with increasing order
- One k-order rectangle \(\rightarrow \) 4(k+1)-order rectangles

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order: 2</td>
<td></td>
<td>Order: 2</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Order: 2</td>
<td></td>
<td>Order: 2</td>
</tr>
</tbody>
</table>
GP3 - BASIC

• Subdivide world surface into rectangles with increasing order

• One k-order rectangle $\rightarrow 4(k+1)$-order rectangles

<table>
<thead>
<tr>
<th></th>
<th>O: 2,5</th>
<th></th>
<th>C</th>
<th>Order: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>C</td>
<td>Order: 2</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>Order: 2</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>Order: 2</td>
</tr>
</tbody>
</table>
GP3 - BASIC

- Distributed and decentralized algorithm
- No perfect distribution

![Diagram with rectangles of different orders: Second Order Rectangle, Third Order Rectangle, Fourth Order Rectangle]
GP3 - RECTANGLE ORDER

• Links to m-order neighbors

• Links into adjacent k-order rectangles (k<m)
GP3 - LINK STRUCTURE

• Links to m-order neighbors

• Links into adjacent k-order rectangles (k<m)
GP3 - UNIFORMITY

- Worst case order variation: $O(\log_4 n)$
GP3 - JOIN NODES

- Worst case hop count: $O(\log_4 n)$
GP3 - NODES LOCKUP

- Worst case hop count: $O(\log_4 n)$
REORGANIZATION

- Keep structure in case of failure
- Consider random node failures
- Failed node is replaced by the m-order neighbor with the highest order
REORGANIZATION

• Keep structure in case of failure

• Consider random node failures

• Failed node is replaced by the m-order neighbor with the highest order
REORGANIZATION

• Keep structure in case of failure

• Consider random node failures

• Failed node is replaced by the m-order neighbor with the highest order
REORGANIZATION

• Keep structure in case of failure
• Consider random node failures
• Failed node is replaced by the m-order neighbor with the highest order
REORGANIZATION

- Keep structure in case of failure
- Consider random node failures
- Failed node is replaced by the m-order neighbor with the highest order
• Keep structure in case of failure

• Consider random node failures

• Failed node is replaced by the m-order neighbor with the highest order
• Keep structure in case of failure
• Consider random node failures
• Failed node is replaced by the m-order neighbor with the highest order
REORGANIZATION

- Average order variation while removing random nodes

![Graph showing order variation against nodes removed.](image)
REORGANIZATION

• Average number of nodes involved in reorganization
MULTICAST

- Sending messages to a certain region in the virtual world
- Virtual Geocast
- Geographic routing
- Similar to unicast routing
- Efficient
MULTICAST

- Unicast routing into surrounding rectangle T with order t
- Forward into all $t+1$ rectangles intersecting with the target region
- Repeated till end of cascade
MULTICAST - EVALUATION

- Multicast receivers vs. immediate nodes:

Fit: \(r(n) = \frac{\text{Target Region Size}}{\text{World Size}} \times n \)
MULTICAST - EVALUATION

- Hops per receiver

![Graph showing the relationship between network size and hops per receiver.]
MULTICAST - EVALUATION

- Average and maximum path length
CONCLUSION

• Highly-structured overlay GP3

• Interconnect Public Servers

• Simple and efficient reorganization scheme

• Efficient Geocast
THANK YOU FOR YOUR ATTENTION!

... Questions?