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For a tJ -model in the X -operators representation a generating functional
of the field describing fluctuations of matrix elements of electron hopping
on a lattice is presented. The first order functional derivative with respect
to this field determines the electron Green function, while the second order
derivatives determine the boson Green functions of collective excitations
in the system. Thus, the Kadanoff-Baym approach in the theory of fermi
system with a weak Coulomb interaction is generalized on the opposite
limit of systems with strong correlations. A chain of equations for different
order variational derivatives were obtained, and a method was suggested
based on iterations over the parameters of a tJ -model: the hopping ma-
trix element and the exchange integral. This approach corresponds to a
self-consistent Born approximation, not for the effective but for the original
Hamiltonian. A scheme of calculation of the dynamical spin susceptibility
is analyzed with self-consistent corrections of the first and second order.
Connection of this approach with the diagram technique for X -operators
is discussed.
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1. IntroductionA tJ-model is the basic working model in the theory of strongly correlatedelectron systems. It is convenient for the study of an interaction of charge andspin degrees of freedom, because the model describes the correlated motion ofelectrons on the lattice. The model is given by the Hamiltonian (see [1]):H =Xij� tij(1� ni��)Cyi�Cj�(1� nj��) +Xij Jij �SiSj � 14ninj� : (1.1)Here Ci�(Cyi�) is an operator of annihilation (creation) of an electron on site i withspin �, Si | operator of spin, and ni | operator of the electron number on ac
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Yu.A.Izyumov, N.I.Chashchinsite. Hopping matrix elements tij and exchange integrals Jij are usually taken inthe nearest neighbours approximations, so the model contains only two energyparameters: t and J .At half-�lling, when the number of electrons on a site is n = 1, the model (1.1)reduces to the Heisenberg model and has a dielectric antiferromagnetic groundstate. When a deviation from half-�lling takes place then some concentration ofholes � = 1 � n appears. They strongly interact with the magnetic order and lo-cally deform it. As a result, a compound quasiparticle (magnetic polaron) appears,being a carrier of an electron charge in the system. A mathematical descriptionof this situation is achieved by the transformation of Hamiltonian (1.1) into ane�ective Hamiltonian of a hole-magnon interaction. The self-consistent Born ap-proximation (SCBA) is an approximation leading to a magnetic polaron pictureinside the antiferromagnetic phase. The last one exists when � < �c , where crit-ical concentration �c � 1 [1]. It is well known that in high-Tc-compounds thesuperconducting state appears outside the antiferromagnetic phase when � > �c ;therefore, the question about applicability of the magnetic polaron picture for thisconcentration region is left open. For this reason a lot of new attempts are madeto study the properties of the model (1.1) at � > �c [1].We �nd rather perspective here an approach on the basis of equations with vari-ational derivatives in the spirit of the Kadano�-Baym scheme [2]. At the beginningit was applied to the description of usual Fermi systems with a weak Coulomb in-teraction. Our aim is to develop a similar approach for the opposite case of systemswith a strong Coulomb interaction, for example, for Hamiltonian (1.1) describingthe correlated motion of electrons. The most convenient way to do that is to usethe Hamiltonian of the tJ-model in terms of the Hubbard X-operators. Then, bythe analogy with usual Fermi operators, one can introduce 
uctuating �elds, cor-responding to the hopping term in the Hamiltonian, in contrast to Kadano�-Baymwho introduced 
uctuating �elds of the potential interaction. As the result of suchan approach, equations for generating functional Z and variational derivatives ofZ over these �elds are derived. These equations are convenient for iterations withrespect to parameters t and J , in contrast to Kadano�-Baym equations convenientfor iterations with respect to Coulomb interaction U .The obtained equations allow one to develop a scheme of the self-consistentBorn approximation (SCBA), not for the e�ective Hamiltonian, adopted for thedescription of the antiferromagnetic phase, but for the original Hamiltonian (1.1)and for the paramagnetic state as a ground state of the system.The �rst attempt of such an approach was given by us in [3].
2. Generating potential in terms of X -operatorsBecause of the projection factors (1� ni�) in the hopping term of the Hamil-tonian, it is convenient to rewrite it in terms of X-operators:X�0i = (1� ni��)Cyi� ; X��i = Cyi�Ci� ; X���i = Cyi�Ci�� : (2.1)
42



tJ -model in terms of equations with variational derivativesHere the �rst X-operator is Fermi-like (f-type), and the others are Bose-like (b-type). One can get then [4]H =Xi� "�X��i +Xij� t�ijX�0i X0�j + 12Xij� Jij(X ���i X���j �X��i X ����j ) : (2.2)We included external magnetic �eld h, that is why term "� = ��h=2 appeared.We also introduced in a formal way hopping matrix element tij by spin index �.We shall denote by �gures complex indices including site i and imaginary time� , so that 1 = (i�), etc. Equations of motion for f- and b-operators are written inthe form:�dX0�1d�1 = [X0�1 ; H � �N ] = ("� � �)X0�1 + (1� ni��)t�110X0�10 ++X ���1 t��110X0��10 + J110(X0��1 X ���10 �X��1 X ����10 ) ; (2.3)�dX���1d�1 = [X���1 ; H � �N ] = ("�� � "�)X���1 � (X�0t�)(1)X0��1 ++X�01 (t��X0��)(1) + (X���J)(1)�m1 �X���1 (J�m)(1) : (2.4)As usual, the summation (integrating) is implied over repeated indices becausewe introduced the quantitiest110 = �(� � � 0)tii0 ; J110 = �(� � � 0)Jii0 :Here and further we use a notation for matrix products, for example,(tX0�)(1) � t110X0�10 ; : : :Finally, by ni� and mi we denote the number of electrons on a site and localmagnetization n1� = X��1 ; �m1 = n1� � n1�� :Instead of quantities n1� it is convenient to use F �1 = 1 � n1��, being an anti-commutator of two f-operators [X0�1 ; X�01 ]+ = F �1 : (2.5)Now we introduce the generating potentialZ[t�] = Sp ne��(H��N)T̂e�F [t�]o ; (2.6)F [t�] =X� X�010 t�1020X0�20 ; (2.7)where ��1020 is an auxiliary external �eld depending on thermodynamic time andspin. Here � = 1=T and T̂ is a time-ordering operator. Since F [��] coincides in
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Yu.A.Izyumov, N.I.Chashchinthe form with the hopping term in the Hamiltonian, the quantity t�1020 is to beconsidered as a 
uctuating �eld of the electron hopping on the lattice.The quantity Z[t�] is useful for determining the Green functions of the system,as its variational derivatives over t�12G�(12) = � DT̂X0�1 X�02 E = � 1Z �Z�t�12 ; (2.8)D�1 (12) = DT̂X���1 X ���2 E = � 1Z �2Z�t��12�t�21 ; (2.9)D��00 (12) = DT̂n1�n2�0E = 1Z �2Z�t�11�t�022 : (2.10)It is clear from these de�nitions that G� is the Green function of itinerantelectrons, and two others are the Green functions of collective Bose-like excitations:magnons and plasmons. The Bose-like Green functions are actually two-particlefunctions because b-operator may be presented as a product of f-operators: X���1 =X�01 X0��1 ; n1� = X�01 X0�1 :For the generating functional one can derive the equation of motion with vari-ational derivatives:K�(110) �Z�t�102 = ��12 hF �1 iZ + 
�(1; 1030) �2Z�t�102�t��3030 + 
��(1; 1030) �2Z�t�302�t��1030 (2.11)or in the conjugated form�Z�t�120K�(202) = ��12 hF �1 iZ + �2Z�t�120�t��3030 e
�(3020; 2) + �2Z�t�130�t��3020 e
��(3020; 2): (2.12)Here K� is a di�erential operator, 
� and e
� are matrix elements of the Hamilto-nian. K�(12) = � @@�1 + "�! �(1� 2)� t�12 ; (2.13)
�(1; 23) = t�12�13 + �12J13e
�(32; 1) = �31t�21 + J31�21 9=; : (2.14)One must add the obvious relation to equations (2.11) and (2.12):hF �1 i = 1 + 1Z �Z�t��11 : (2.15)Equation (2.11) is the basic equation corresponding to the Kadano�-Baymmethod applied to a strongly correlated system. In contrast to the theory of ausual Fermi-system here variational derivatives are taken over the 
uctuating �eldof the hopping term but not over the potential one. For this reason equation (2.11)is convenient for iterations with respect to parameters t and J , while in the usual
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tJ -model in terms of equations with variational derivativesFermi-system variational derivatives are taken over the parameters of an electroninteraction.The basic equation (2.11) connects the �rst derivative of Z with the second one.To �nd an equation for the second derivative it is necessary to take a variationalderivative of equation (2.11) over t��34. Then one obtains an equation connectingthe second derivative with the third one:K�(110) �2Z�t�102�t��34 = ��12  �Z�t��34 + �2Z�t��11�t��34!+ �14 �2Z�t�12�t��31 + (2.16)+
�(1; 1030) �3Z�t�102�t��3030�t��34 + 
��(1; 1030) �3Z�t�302�t��1030�t��34 :We write the following equation of the in�nite chain obtained by the di�eren-tiation of the previous equation with respect to t��56:K�(110) �3Z�t�102�t��34�t��56 = ��12  �2Z�t��34�t��56 + �3Z�t��11�t��34�t��56!++�14 �3Z�t�12�t��34�t��56 + �16 �3Z�t�12�t��34�t��56 ++
�(1; 1030) �4Z�t�102�t��3030�t��34�t��56 + 
��(1; 1030) �4Z�t�302�t��1030�t��34�t��56 : (2.17)After di�erentiation in these equations one has to put variable t�12 equal tomatrix element t12 standing in the hopping term of the Hamiltonian.In �gures 1 and 2 a graph representation of the basic equation is given. A four-

Figure 1. Graphic elements.tail diagram denoting a second order variational derivative is not a vertex partbut a two-particle Green function. We shall see later that the zero approximationover 
� contains a nonconnected part, generating in the equation the �rst ordergraphs, corresponding in the usual Fermi system theory to Hartree-Fock terms.The connected part of the zero approximation generates new type graphs absentin the Fermi system theory. Corrections of the �rst and next orders generate vertexparts, more complicated in comparison with the usual Fermi systems [5,6].
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Figure 2. Graphic representation of the basic equation (2.11).
3. Calculation of variational derivativesIn accordance with the graph representation for the second derivative shownin �gure 1, we shall look for the form:1Z �2Z�t�12�t��34 = ���t�110 ���t��330 �̂2(�1020; ��3040) ���t�202 ���t��404 : (3.1)The quantity ��=�t is an electron Green function (Z = ei�), while �̂2 is tobe considered a vertex part. In the theory of the usual Fermi system �̂2 shouldbe a real vertex part of an electron-electron interaction. In the case of stronglycorrelated electrons the situation is di�erent and in representation (3.1) �̂2 shouldbe an operator. It acts on the Green function standing by the left- and the right-hand side and can transform them into other Green functions.The representation (3.1) is, however, convenient because it opens a way tocalculate the second and higher derivatives. For this purpose equation (3.1) has tobe multiplied by the left- and the right-hand side operator quantities (2.13). Thenit is written: K�(110)K��(330) 1Z �2Z�t�1020�t��3040K�(202)K��(404) = K� ���t�!(110) K�� ���t�!(330)�̂2(�1020; ��3040) ���t�K�!(202) ���t��K��!(404): (3.2)In the right-hand side of this relation we may use equations (2.11) and (2.12),and in the left-hand side { equation (2.16) (and a conjugated one). It allows oneto �nd �̂2 as a series in powers of 
� and 
��. After rather cumbersome calculationswe �nd quantities �̂2 for two second variation derivatives with equal and oppositespin indices. In the zero approximation�̂ 02 (�12; �34) = K0�(12)K0�(34)�K0�(14)K0�(32)hF �1 i hF �2 i hF �3 i hF �4 i [d����0 (13) + hF �1 i hF �3 i] ; (3.3)
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tJ -model in terms of equations with variational derivatives�̂ 02 (�12; ��34) = �13�34 K0�(12)hF �1 i hF �2 i hF ��1 i + �12�23 K0��(34)hF �4 i hF ��3 i hF ��4 i ++K0��(14)K0�(32)D�1 (31)hF �1 i hF �2 i hF ��3 i hF ��4 i + K0�(12)K0��(34) [d���0 (13) + hF �1 i hF ��3 i]hF �1 i hF �2 i hF ��3 i hF ��4 i : (3.4)Both equations contain Bose-like Green functions for magnons and plasmons,however, now instead of quantities (2.10) we haved��00 (12) = D��00 (12)� hF �1 i DF �02 E = DT̂[n1� � hn1�i][n2�0 � hn2�0i]E :We see that expressions (3.3) and (3.4) contain operators K0� which act inrelation (3.1) on electron Green functions. In this way the expression for the secondderivatives of Z splits into a number of terms containing not four electron Greenfunctions but a smaller number of them, three or two. We have used the fact thatat the zero approximation, according to equation (2.11), K0�(��=�t�) is just hF �i.As a result, the second derivative of Z can be written in a graph form (�gures 3and 4). When writing analytical expressions, one has to keep in mind the following

Figure 3. Graphic representation of 1Z �2Z�t�12�t�34 in zero approximation. Daskedlines denot plasmon Green functions (2.10).rule: a complex vertex creates a numerical factor corresponding to each outgoingand ingoing electron line. For example, to the �rst connected graphs in �gure3 there corresponds factor hF �1 i�1 hF �4 i�1. Coe�cients A� and B� for the triplegraphs in �gure 4 are equal toA�1 = hF �1 i+ hF ��1 i � 12�hm1i ; B�2 = hF ��2 i � hF �2 i+ 12�hm1i :
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Yu.A.Izyumov, N.I.ChashchinBesides, according to the mentioned rule, to these two graphs additional factorshF ��i�2 hF �i�1 or hF �i�1 hF �i�2 should be prescribed.

Figure 4. Graphic representation of 1Z �2Z�t�12�t��34 in zero approximation. Daskedlines with an arrow denotes the magnon Green function (2.9).The third order variational derivative is calculated in the same way. It is neces-sary to start from the relation of type (3.1) not with four but six factors ��=�t. Thecomplete expression is too complicated to write it down. It contains nonconnecteddiagrams corresponding to the product of the second derivative and the �rst one.Among the connected diagrams there are graphs constructed only from electronlines (�ve lines) and graphs with one boson line and four electron lines convergingto one point (as in the pure electron graphs in �gure 4). Finally, there are peculiargraphs containing a structure corresponding to a six-tailed one with pairs of jointelectron lines (a 
ower with three clovers). Such type of graphs is shown in �gure5. One can check that a complete set of graphs for the third derivative providesthe necessary symmetry arising from the possibility to change the order of di�er-entiation. Besides, the symmetry is achieved according to the permutation of pairindices (3,5) and (4,6).In principle, in the same way it would be possible to obtain a graphical repre-sentation for the fourth derivative (eight-tailed) of the zero approximation.
48



tJ -model in terms of equations with variational derivatives

Figure 5. The third order variational derivative in zero approximation.
4. The magnon Green functionThe magnon Green function can be found if the second derivative �2Z=�t��12�t�34is calculated in some approximation. According to de�nition (2.9), it is enough toequate indices 4 = 1 and 3 = 2. We calculate �rst D�1 (12) at the zero approxima-tion. In the left- and the right-hand sides of the graph relation in �gure 4 we makethese indices equal to each other. Then, an equation for D�1 (12) appears, which wewrite in the analytical form:"1�  12X�1 hn�11 ihF �11 i! 12X�2 hn�22 ihF �22 i!#D�1 (12) =�G��(12)G�(21) "1 + 12  A��1 hn�1 ihF ��1 i hF �1 i2 + A�2 hn��2 ihF �2 i hF ��2 i2 + B�1 hn��1 ihF �1 i hF ��1 i2 + B��2 hn�2 ihF ��2 i hF �2 i2!#�14X�0 1DF �01 E DF ��02 EG��(12)d���0 (21)G�(21): (4.1)One can check here the rules of writing analytical expressions.For the paramagnetic phase we have from here:D�1 (12) = �1 + n2=41� n G(12)G(21) : (4.2)We neglect the last term in expression (4.2) which changes only a numericalcoe�cient. If in this expression sites 1 and 2 are put to be the nearest neighbours
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Yu.A.Izyumov, N.I.Chashchinand also time �1 and �2 to be equal, we obtain a relation between the spin andelectron correlators coinciding with the one obtained in [4].To include corrections of the �rst order in the magnon Green function wemust calculate the second derivative with the accuracy up to the �rst order withrespect to t and J . Then, making the indices equal in the same way as in the zeroapproximation, we come to the equation, presented in �gure 6. Its solution gives

Figure 6. Equation for magnon Green function.the magnon Green function of the form:D�1 (q) = ��(q)1� n� n2 [Q(q) + �(q)]� J(q)�(q) ; (4.3)where f�(q); Q(q); �(q)g =Xk f1; "(k); "(k� q)gG(k� q)G(k) : (4.4)corresponds to an electron loop and the loops with an inserted wavy line. Suchexpressions appeared earlier in the diagram technique with X-operators [7].Result (4.3) is consistent with the expression obtained by us [3], with a di�er-ence in numerical coe�cients. At q = 0 the last term in the denominator can be ne-glected, thus, the ferromagnetic instability of the system is determined by the hop-ping term in the Hamiltonian. In contrast, at q = Q = (�; �; : : :)=a Q(q)+�(q) =0 the antiferromagnetic instability is determined by the exchange term. In [3] weshowed that in the Hubbard-1 approximation for electrons �(Q; 0) � (1� n) andantiferromagnetic instability occurs only when J � t, which is not consistent withthe known idea [1] that critical value J=t for the appearance of antiferromagneticorder should be small, as half-�lling (1 � n) is approached. It means that nearn = 1 for the analysis of antiferromagnetic instability it is probably necessary to
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tJ -model in terms of equations with variational derivativesgo beyond the mean �eld approximation for electrons. The other possibility is totake into account the second order corrections for t and J . In the next chapter wewill give a preliminary analysis of these corrections without explicit calculations.
5. On the second order corrections in the magnon Green func-

tionIt would be di�cult to look for these corrections by the method of [3] becauseone should know self-energy of electrons up to the third order. In the presentapproach it is su�cient to have corrections up to only the second order for thesecond derivative. We need for this the forth order derivative (eight-tailed) in thezero approximation. As we saw earlier, the number of terms increases very fastwith the order of the derivative, and a selection of actual diagrams is necessary. Inour case (nearly half-�lling) this selection might be done on the basis of parameter1� n� 1.Let us look for the magnon Green function (4.2) of the zero approximation.Factor 1 � n in the denominator does not yet mean a singularity because it maybe cancelled by the numerator. However, it is necessary to pay attention to all theterms containing this factor in the denominator. Notice that this factor appeareddue to the coe�cient in the left-hand side of equation (4.1). We try to search forsuch factors in expressions for the third and fourth derivatives, however, we shalluse now another method based on the Wick theorem for X-operators [5,7].We start from the second order derivative written in the form:1Z �2Z�t�12�t��34 = DT̂ �(1) y�(2) ��(3) y��(4)E ; (5.1)where  �(1) � X0�1 is a Fermi-like operator. When averaging in (4.4) with theHamiltonian of the zero approximation, the average of T-product would be reducedto the pair-averages by the procedure based on the Wick theorem. We should takeall the possible systems of pairing. First, consider the systems with the pairing ofonly  and  y operators, for example:hT̂ �(1) y�(2) ��(3) y��(4)�- i = �G��(32)G�(14)hT̂X���2 X ���4 i : (5.2)Here G�(12) is the fermion Green function of the zero approximation. Ourapproximation now is the one, in which we take only  -operators pairing and inexpressions of type (5.2) the Green functions are replaced by the exact ones. Theyare related to the electron Green functions by the identityG�(12) = G�(12) hF �2 i : (5.3)Taking into account in (5.1) only two systems of pairing, we can write1Z �2Z�t�12�t��34 � hG�(12)G��(34) DT̂F �2 F ��4 E� G��(32)G�(14) DT̂X���2 X ���4 Ei 1hF �2 i hF ��4 i :(5.4)
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Yu.A.Izyumov, N.I.ChashchinIn this approximate relation we put indices 4=1 and 3=2, then we have an equationfor the magnon Green function:"1� hn�1 ihF ��1 i hn��2 ihF �2 i#D�1 (12) = �G��(12)G�(21)1 + d���0 (21)hF ��1 i hF �2 i : (5.5)Here we use the value for the electron Green function with coincided arguments:G�(11) = hX��1 i = hn�1 i .For the paramagnetic phase the coe�cient in the left-hand side is proportionalto 1 � n, and we come to the result consistent with (4.2). Thus, the decouplingof the Wick theorem type leads for the second derivative to the same result as onthe basis of representation (3.1).Consider now the third order derivative1Z �3Z�t�12�t��34�t��56 = DT̂ �(1) y�(2) ��(3) y��(4) ��(5) y��(6)E : (5.6)Let us consider a system of pairing, when only  and  y operators are paired,for example,hT̂ �(1) y�(2) ��(3) y��(4)�-  ��(5) y��(6)- i = G�(14)G��(32)G��(56)hT̂X���2 X ���4 F ��6 i= �G�(14)G��(32)G��(56) " 1Z �3Z�t��24�t�42�t�66 �D�1 (24)# : (5.7)Taking only this system of pairing in (5.6) we have approximately1Z �3Z�t�12�t��34�t��56 � �G�(14)G��(32)G��(56) " 1Z �3Z�t��24�t�42�t�66 �D�1 (24)#+Symm. (5.8)Putting arguments 4=1, 3=2, 5=6 we get an equation for a six-tailed diagramwith equal arguments. For the paramagnetic phase this equation is as follows:241 +  n=21� n=2!335 1Z �3Z�t��24�t�42�t�66 �  n=21� n=2!3D�1 (24) : (5.9)This third order derivative with equal arguments corresponds to a six-tailed dia-gram with joint lines. Comparing relation (5.8) with the graphs in �gure 5 showsthat decoupling by the Wick theorem corresponds to the two graphs explicitlyshown in �gure 5. One of them is a 
ower with three clovers. As we see fromequation (5.9), the 
ower does not have a singular factor 1� n.A di�erent situation occurs if the forth order derivative (eigt-tailed) is studiedby the same method. When calculating T-product of eight  -operators, we takeinto account only two systems of pairing:DT̂ �(1) y�(2) ��(3) y��(4) �(5) y�(6) ��(7) y��(8)E == G�(14)G��(32)G�(58)G��(76)D�1 (24)D�1 (68) hF �4 i hF �8 i++G�(14)G��(32)G�(58)G��(76) DT̂X���2 X ���4 X���6 X ���8 E+ : : : (5.10)
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Figure 7. The forth order variational derivative in zero approximation.Graphic expressions of these terms are shown in �gure 7. The average of T-productof four b-operators corresponds to the fourth order derivative with coinciding argu-ments in pairs. Putting in (5.10) the corresponding arguments equal, one obtainsan equation:241�  n=21� n=2!435 1Z �4Z�t�42�t��24�t�86�t��68 =  n=21� n=2!4D�1 (24)D�1 (68) hF �4 i hF �8 i :(5.11)We see from here that the derivative has a singular factor 1�n in the denominator.The di�erence in the third and fourth derivatives is caused by di�erent signs indiagrams of the 
ower type in six-tailed and eight-tailed diagrams. It is easy to
Figure 8. A second order correction tomagnon Green function.

see that the singular factor should al-ways appear in the 
ower type dia-grams with an even number of clovers.If in expression (5.10) for the fourthderivative we take only the last term,we obtain a second order correction inthe magnon Green function presentedin �gure 8. For this graph an analyti-cal contribution into the denominatorof expression (4.3) is18(1� n)Xk J(k� q)G�(k� q)G��(k) Xq1 J(q1)D�1 (q1)G�(k� q1)! : (5.12)Of course, a symmetrical graph in �gure 8 should be added which gives expression(5.12) with the change q! �q.Due to singular factor 1 � n, the second order corrections are as important,when n! 1, as the �rst order ones. Zero in the denominator of the magnon Greenfunction (4.3) at ! = 0 and q=Q determines a boundary of the paramagnetic phasestability with respect to the appearance of an antiferromagnetic order. As one can
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Yu.A.Izyumov, N.I.Chashchinsee from (4.3) and (5,12), this boundary goes along the line of type 1� n � J=t,as it should be. Detailed analysis of the magnetic phase diagram will be givenelsewhere.
6. ConclusionsWe have generalized the Kadano�-Baym approach to systems with strong elec-tron correlations and applied it to a tJ-model. The X-operator representation al-lows one to derive equations for variational derivatives of the generating functionalin a form convenient for iteration with respect to t and J . Within the frameworkof the general approach we suggested an approximation of the SCBA type, whereelectron and boson Green functions are considered as exact, and vertex parts areexpanded over t and J . In such an approach the problem of calculation of theGreen functions reduces to the calculation of the variational derivatives in the"zero" approximation with exact Green functions. It opens a possibility to obtainself-consistent equations for Green functions.We have suggested a method for the calculation of variational derivatives in thezero approximation, which gives a correct symmetry arising from the possibility tochange the order of di�erentiation. The results for such calculations are too cum-bersome and we presented them only for the second derivatives. It is remarkablethat they are consistent with the diagram technique for X-operators based on thegeneralized Wick theorem [7].We used this formalism for the calculation of the magnon Green function in theparamagnetic phase. To avoid cumbersome calculations of higher order derivativesbased on the representation of the (3.1)-type we calculated the third order deriva-tive by using the Wick theorem, because in this case the exact symmetry is notimportant. We have found graphs giving a growing contribution when the systemtends to half-�lling. In n ! 1 limit only graphs of the second order containingsingular factor (1 � n)�1 should be taken into account. They produce instabilityof the paramagnetic phase with respect to antiferromagnetic ordering. Singularcontribution (5.12) in the denominator of the magnon Green function comes fromthe graph in �gure 8. One can see that it involves a magnon in the intermediatestate. The corresponding physical process is the following: a magnon creates anelectron-hole pair with the same spins and still it exists itself. Then, one of parti-cles of the pair absorbs this magnon. As a �nal result, an electron-hole pair withthe opposite spins appears. Notice that the possibility of such a virtual processis connected with the existence of two types of vertices for the electron-magnoninteraction in the diagram technique for the tJ-model: elastic and inelastic ones.Both vertices are involved in the second order graph.We consider the results of the calculation of the magnon Green function aspreliminary ones. It is necessary to look for singular terms among high orderdiagrams. It is also necessary to calculate the plasmon Green functions (2.10),particularly for the longitudinal spin deviations, and also to calculate the secondorder correction to the electron Green function. In this way a self-consistent system
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tJ ­модель в термінах рівнянь з варіаційними

похідними

Ю.О.Ізюмов, Н.І.Чащін

Уральське відділення Інституту металофізики РАН,

Росія, 620219 Єкатєрінбург, вул. С.Ковалевської, 18

Отримано 17 червня 1998 р.

Для tJ моделі в представленні X ­операторів введено узагальнений

функціонал поля, що описує флуктуації матричних елементів елек­

тронних перескоків на гратці. Функціональна похідна першого по­

рядку по цьому полю визначає електронну функцію Гріна, тоді як

похідні другого порядку визначають бозонні функції Гріна колектив­

них збуджень в системі. Таким чином узагальнено підхід Каданова­

Бейма в теорії фермі­систем з слабою кулонівською взаємодією на

протилежний випадок систем з сильними кореляціями. Отримано

ланцюжок рівнянь для варіаційних похідних різного порядку і запро­

поновано метод, що базується на ітераціях за параметрами tJ мо­

делі: матричним елементом перескоку і обмінним інтегралом. Цей

підхід відповідає самоузгодженому наближенню Борна, але не для
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ефективного, а для вихідного гамільтоніану. Аналізується схема роз­

рахунку динамічної спінової сприйнятливості з самоузгодженими по­

правками першого і другого порядку. Обговорюється зв’язок цього

підходу з діаграмною технікою для X ­операторів.

Ключові слова: tJ ­модель, оператори Хаббарда, функції Гріна,

антиферомагнетизм

PACS: 71.27.+a, 74.90.+n
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