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Introduction
▪ There is a need to monitor the flow of user input in a program.

▪ This highlights the parts of a program that can be affected by 
outside input.

▪ Potential Applications: Security, filters, & test cases

▪ Two algorithms described in this paper:
▫ Dynamic Taint Analysis (DTA)

▫ Forward Symbolic Execution (FSE)

2



Motivation & Problem Statement
▪ A program has various sources of input that affect execution

▪ Mal-intended users can exploit security vulnerabilities & run 
malicious outside code

▪ Some code chunks may lead to fatal errors or crashes

▪ These techniques (namely FSE) can generate preconditions or 
postconditions

▪ There was a lack of formalization in these two algorithms
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Related Work
▪ Representative applications of DTA and FSE include:

▫ Automatic test case generation (FSE)

▫ Automatic filter generation (FSE)

▫ Automatic network protocol understanding (DTA)

▫ Malware analysis (FSE, DTA)

▫ Web applications (DTA)

▫ Taint performance & frameworks  (DTA)

▫ Extensions to taint analysis (DTA)
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Key Contributions
▪ SimpIL: Simple Intermediate Language

▫ An intermediate representation that allows for easy 
extension to formalize DTA & FSE semantics.

▪ Definition of operational semantics for DTA and FSE
▫ Including formalization of taint policies for DTA

▪ Discussion of challenges and opportunities with this and other 
implementations of DTA and FSE 
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SimpIL: Simple Intermediate Language
▪ The goal is to create an easily-parsed intermediate representation 

powerful enough to encapsulate a variety of languages languages

▪ Can express anything from Java to Assembly with the same meaning

▪ Makes some assumptions for simplicity, namely that programs are 
well-typed and that operands are applied to the proper types

▪ Does not include high-level constructs (buffers, etc) but making this 
extension to SimpIL is trivial
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SimpIL: Syntax & Contexts
▪ A program is a sequence of statements

▪ Support for both binary and unary 
operators

▪ Very simple types (only includes 
integers)

▪ Various contexts for mapping 
during compilation & runtime 
analysis

Figure 1: SimpIL syntax
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Figure 2: SimpIL execution context variables
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DTA - Definitions & Semantics
▪ Tainted values are denoted by T, 

untainted values are denoted by F

▪ A value can be overtainted 
(false positive) or undertainted 
(false negative)

▪ DTA is considered precise if there is no overtainting or undertainting

▪ Taint status is tracked for both variables and memory cells (i.e. arrays)

Figure 3: SimpIL extensions for DTA
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DTA - Policies
▪ A taint policy is defined by three properties

▫ Taint introduction: how taint is introduced into a system
▫ Taint propagation: how taint is derived for operation arguments
▫ Taint checking: how taint is 

checked during execution

▪ Different policies are defined for 
different applications and contexts

▪ Tainted jump policy focuses on 
detecting control flow hijacking attacks
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Figure 4: Tainted jump policy
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DTA - Example
▪ Below example shows the taint calculations for an example program

▫ Recall: 𝚫 maps variables to their values and 𝜏𝚫 maps variables to 
their taint status

▪ The rules T-ASSIGN and T-GOTO are defined by the operational 
semantics for SimpIL, modified to enforce a given taint policy P
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Figure 5: Example taint calculations for a program
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DTA - Challenges & Opportunities
▪ Tainted Addresses: User input modifying memory addresses or 

the data at that address
▫ Example: arrays, pointers, etc.
▫ Included in tainted jump analysis

▪ Overtaint & Undertaint
▫ Creating precise policies can prove to be challenging

▪ Time of Detection vs. Time of Attack
▫ There is often a delay between the time a value is marked 

tainted and the time an error is actually raised
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FSE - Semantics
▪ An advantage of FSE is that it can reason about multiple inputs at a time

▫ Inputs are grouped into two different classes, those that take the 
true branch and those that take the false branch

▪ Getting the input returns 
a symbol instead of a 
concrete value

▪ Expressions involving 
symbols can’t be fully evaluated to a concrete value

▪ Branches create constraints based on the path executed
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Figure 6: SimpIL extensions for FSE
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FSE - Example
▪ Below example shows the program contexts after forward symbolic 

execution
▫ Recall: 𝚫 maps variables to their values and 𝚷 keeps track of the 

current constraints on symbolic variables
▪ 𝚷 depends on the path taken through the program
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Figure 7: Simulation of forward symbolic execution
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FSE - Challenges & Opportunities
▪ Symbolic Memory Address Problem

▫ Analysis breaks down when memory references are 
symbolic expressions instead of concrete values

▪ Path Selection Problem
▫ Execution must determine which branch to follow first, but 

certain choices can lead to infinite loops

▪ Symbolic Jump Problem
▫ A jump target may be an expression instead of a concrete 

location during execution
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FSE - Performance Considerations
▪ Generic implementation will be exponential in the number of 

program branches

▪ Option to use faster hardware and parallelize the solving of 
formulas

▪ Option to compact redundancies in formulas and identify 
independent subformulas

▪ Alternative to FSE is to use the weakest precondition to calculate 
the formula
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Critique
▪ Thorough & clear definitions for semantics

▪ No formal semantic for raising flags / marking operations to 
raise errors

▪ SimpIL is missing syntax / semantics for output operations

▪ Disorganized figures & tables
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Extensions
▪ Output operations
▫ Formal separation between different forms of output in SimpIL

▪ SimpIL type checking

▪ Addition of high-level constructs to SimpIL

▪ Semantics to raise an alert based on marked operations
▫ If tainted data reaches a marked operation, raise flag or stop 

execution
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Conclusions
▪ Dynamic analyses are becoming more popular, especially in 

security contexts

▪ An intermediate representation, SimpIL, has been defined to 
target the building blocks necessary for DTA and FSE
▫ Including syntax & operational semantics

▪ Extended operational semantics of SimpIL to define DTA and 
FSE

▪ Highlighted some challenges that come from both algorithms
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Thanks!
Questions?
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