
All You Ever Wanted to Know About
Dynamic Taint Analysis and Forward
Symbolic Execution (but might have

been afraid to ask)
Edward J. Schwartz, Thanassis Avgerinos, David Brumley

Carnegie Mellon University

IEEE Symposium on Security and Privacy, 2010

Collin Jones
Yarden Ne’eman

Program Analysis
Spring 2019

Introduction
▪ There is a need to monitor the flow of user input in a program.

▪ This highlights the parts of a program that can be affected by
outside input.

▪ Potential Applications: Security, filters, & test cases

▪ Two algorithms described in this paper:
▫ Dynamic Taint Analysis (DTA)

▫ Forward Symbolic Execution (FSE)

2

Motivation & Problem Statement
▪ A program has various sources of input that affect execution

▪ Mal-intended users can exploit security vulnerabilities & run
malicious outside code

▪ Some code chunks may lead to fatal errors or crashes

▪ These techniques (namely FSE) can generate preconditions or
postconditions

▪ There was a lack of formalization in these two algorithms

3

Related Work
▪ Representative applications of DTA and FSE include:

▫ Automatic test case generation (FSE)

▫ Automatic filter generation (FSE)

▫ Automatic network protocol understanding (DTA)

▫ Malware analysis (FSE, DTA)

▫ Web applications (DTA)

▫ Taint performance & frameworks (DTA)

▫ Extensions to taint analysis (DTA)

4

Key Contributions
▪ SimpIL: Simple Intermediate Language

▫ An intermediate representation that allows for easy
extension to formalize DTA & FSE semantics.

▪ Definition of operational semantics for DTA and FSE
▫ Including formalization of taint policies for DTA

▪ Discussion of challenges and opportunities with this and other
implementations of DTA and FSE

5

SimpIL: Simple Intermediate Language
▪ The goal is to create an easily-parsed intermediate representation

powerful enough to encapsulate a variety of languages languages

▪ Can express anything from Java to Assembly with the same meaning

▪ Makes some assumptions for simplicity, namely that programs are
well-typed and that operands are applied to the proper types

▪ Does not include high-level constructs (buffers, etc) but making this
extension to SimpIL is trivial

6

SimpIL: Syntax & Contexts
▪ A program is a sequence of statements

▪ Support for both binary and unary
operators

▪ Very simple types (only includes
integers)

▪ Various contexts for mapping
during compilation & runtime
analysis

Figure 1: SimpIL syntax

Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution

Figure 2: SimpIL execution context variables

7

DTA - Definitions & Semantics
▪ Tainted values are denoted by T,

untainted values are denoted by F

▪ A value can be overtainted
(false positive) or undertainted
(false negative)

▪ DTA is considered precise if there is no overtainting or undertainting

▪ Taint status is tracked for both variables and memory cells (i.e. arrays)

Figure 3: SimpIL extensions for DTA

Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution 8

DTA - Policies
▪ A taint policy is defined by three properties

▫ Taint introduction: how taint is introduced into a system
▫ Taint propagation: how taint is derived for operation arguments
▫ Taint checking: how taint is

checked during execution

▪ Different policies are defined for
different applications and contexts

▪ Tainted jump policy focuses on
detecting control flow hijacking attacks

Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution

Figure 4: Tainted jump policy

9

DTA - Example
▪ Below example shows the taint calculations for an example program

▫ Recall: 𝚫 maps variables to their values and 𝜏𝚫 maps variables to
their taint status

▪ The rules T-ASSIGN and T-GOTO are defined by the operational
semantics for SimpIL, modified to enforce a given taint policy P

Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution

Figure 5: Example taint calculations for a program

10

DTA - Challenges & Opportunities
▪ Tainted Addresses: User input modifying memory addresses or

the data at that address
▫ Example: arrays, pointers, etc.
▫ Included in tainted jump analysis

▪ Overtaint & Undertaint
▫ Creating precise policies can prove to be challenging

▪ Time of Detection vs. Time of Attack
▫ There is often a delay between the time a value is marked

tainted and the time an error is actually raised

11

FSE - Semantics
▪ An advantage of FSE is that it can reason about multiple inputs at a time

▫ Inputs are grouped into two different classes, those that take the
true branch and those that take the false branch

▪ Getting the input returns
a symbol instead of a
concrete value

▪ Expressions involving
symbols can’t be fully evaluated to a concrete value

▪ Branches create constraints based on the path executed
Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution

Figure 6: SimpIL extensions for FSE

12

FSE - Example
▪ Below example shows the program contexts after forward symbolic

execution
▫ Recall: 𝚫 maps variables to their values and 𝚷 keeps track of the

current constraints on symbolic variables
▪ 𝚷 depends on the path taken through the program

Figures from All You Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic Execution

Figure 7: Simulation of forward symbolic execution

13

FSE - Challenges & Opportunities
▪ Symbolic Memory Address Problem

▫ Analysis breaks down when memory references are
symbolic expressions instead of concrete values

▪ Path Selection Problem
▫ Execution must determine which branch to follow first, but

certain choices can lead to infinite loops

▪ Symbolic Jump Problem
▫ A jump target may be an expression instead of a concrete

location during execution

14

FSE - Performance Considerations
▪ Generic implementation will be exponential in the number of

program branches

▪ Option to use faster hardware and parallelize the solving of
formulas

▪ Option to compact redundancies in formulas and identify
independent subformulas

▪ Alternative to FSE is to use the weakest precondition to calculate
the formula

15

Critique
▪ Thorough & clear definitions for semantics

▪ No formal semantic for raising flags / marking operations to
raise errors

▪ SimpIL is missing syntax / semantics for output operations

▪ Disorganized figures & tables

16

Extensions
▪ Output operations
▫ Formal separation between different forms of output in SimpIL

▪ SimpIL type checking

▪ Addition of high-level constructs to SimpIL

▪ Semantics to raise an alert based on marked operations
▫ If tainted data reaches a marked operation, raise flag or stop

execution

17

Conclusions
▪ Dynamic analyses are becoming more popular, especially in

security contexts

▪ An intermediate representation, SimpIL, has been defined to
target the building blocks necessary for DTA and FSE
▫ Including syntax & operational semantics

▪ Extended operational semantics of SimpIL to define DTA and
FSE

▪ Highlighted some challenges that come from both algorithms

18

Thanks!
Questions?

19

