EXACT DOUBLE DOMINATION IN GRAPHS

MUSTAPHA CHELLALI

Department of Mathematics, University of Blida
B.P. 270, Blida, Algeria

e-mail: mchellali@hotmail.com

ABDELKADER KHELADI

Department of Operations Research
Faculty of Mathematics
University of Sciences and Technology Houari Boumediene
B.P. 32, El Alia, Bab Ezzouar, Algiers, Algeria

e-mail: kader.khelladi@yahoo.fr

AND

FRÉDÉRIC MAFFRAY

C.N.R.S., Laboratoire Leibniz-IMAG
46 Avenue Félix Viallet
38031 Grenoble Cedex, France

e-mail: frederic.maffray@imag.fr

Abstract

In a graph a vertex is said to dominate itself and all its neighbours. A doubly dominating set of a graph \(G\) is a subset of vertices that dominates every vertex of \(G\) at least twice. A doubly dominating set is exact if every vertex of \(G\) is dominated exactly twice. We prove that the existence of an exact doubly dominating set is an NP-complete problem. We show that if an exact double dominating set exists then all such sets have the same size, and we establish bounds on this size. We give a constructive characterization of those trees that admit a doubly dominating set, and we establish a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph.

Keywords: double domination, exact double domination.

2000 Mathematics Subject Classification: 05C69.
1. Introduction

In a graph $G = (V, E)$, a subset $S \subseteq V$ is a \textit{dominating set} of G if every vertex v of $V - S$ has a neighbour in S. The \textit{domination number} $\gamma(G)$ is the minimum cardinality of a dominating set of G. For a comprehensive treatment of domination in graphs and its variations, see [8, 9].

Harary and Haynes [7] defined and studied the concept of double domination, which generalizes domination in graphs. In a graph $G = (V, E)$, a subset S of V is a \textit{doubly dominating set} of G if, for every vertex $v \in V$, either v is in S and has at least one neighbour in S or v is in $V - S$ and has at least two neighbours in S. The \textit{double domination number} $\gamma \times_2(G)$ is the minimum cardinality of a doubly dominating set of G. Double domination was also studied in [2, 3, 4]. Analogously to exact (or perfect) domination introduced by Bange, Barkauskas and Slater [1], Harary and Haynes [7] defined an \textit{efficient doubly dominating set} as a subset S of V such that each vertex of V is dominated by exactly two vertices of S. We will prefer here to use the phrase \textit{exact doubly dominating set}.

Every graph $G = (V, E)$ with no isolated vertex has a doubly dominating set; for example V is such a set. In contrast, not all graphs with no isolated vertex admit an exact doubly dominating set; for example, the star $K_{1,p}$ ($p \geq 2$) does not. In Section 2 we prove that the existence of an exact doubly dominating set is an NP-complete problem. We then show in Section 3 that if a graph G admits an exact doubly dominating set then all such sets have the same size, and we give some bounds on this number. Finally, we give in Section 4 a constructive characterization of those trees that admit an exact doubly dominating set, and we establish a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph.

Let us give some definitions and notation. In a graph $G = (V, E)$, the \textit{open neighbourhood} of a vertex $v \in V$ is the set $N(v) = \{u \in V \mid uv \in E\}$, the \textit{closed neighbourhood} is the set $N[v] = N(v) \cup \{v\}$, and the \textit{degree} of v is the size of its open neighbourhood, denoted by $\deg_G(v)$. We denote respectively by n, δ and Δ the \textit{order} (number of vertices), \textit{minimum degree} and \textit{maximum degree} of a graph G.

2. NP-Completeness

In this section we consider the complexity of the problem of deciding whether
a graph admits an exact doubly dominating set.

EXACT DOUBLY DOMINATING SET (X2D)

Instance: A graph G;

Question: Does G admit an exact doubly dominating set?

We show that this problem is NP-complete by reducing the following EXACT 3-COVER (X3C) problem to our problem.

EXACT 3-COVER (X3C)

Instance: A finite set X with $|X| = 3q$ and a collection C of 3-element subsets of X;

Question: Is there a subcollection C' of C such that every element of X appears in exactly one element of C'?

EXACT 3-COVER is a well-known NP-complete problem [6].

Theorem 1. EXACT DOUBLY DOMINATING SET is NP-complete.

Proof. Clearly, X2D is in NP. Let us now show how to transform any instance X, C of X3C into an instance G of X2D so that one of them has a solution if and only if the other has a solution.

For each $x_i \in X$, we build a “gadget” graph with vertices a_i, b_i, c_i and $d_i^1, \ldots, d_i^{k_i}$, where k_i is the number of elements of C that contain x_i, and with edges $a_i b_i, b_i c_i$ and $c_i d_{ij}$ ($j = 1, \ldots, k_i$). We view the d_{ij}’s as points of this gadget, each of them being associated with an element of C that contains x_i. See Figure 1.

For each $C_t \in C$, we build a gadget graph with 15 vertices $y_{ij}^0, \ldots, y_{ij}^8$, $z_t, r_t, s_t, u_t, v_t, w_t$ and edges $y_{ij}^j y_{ij}^{j+1}$ ($j = 0, \ldots, 8 \mod 9$) (so that the y_{ij}^j’s induce a C_9) and $z_t y_{ij}^0, z_t y_{ij}^2, z_t y_{ij}^6, z_t r_t, z_t s_t, r_t s_t$ (so z_t, r_t, s_t induce a triangle), and $u_t y_{ij}^1, u_t y_{ij}^2, v_t y_{ij}^4, v_t y_{ij}^5, w_t y_{ij}^7, w_t y_{ij}^8$. We view u_t, v_t, w_t as the three points of this gadget, each of them being associated with an element of C_t. See Figure 1.

Now, for each C_t, if $C_t = \{x_i, x_j, x_k\}$ say, we identify the first, second and third point of the gadget of C_t with the corresponding point in the gadget of x_i, x_j, x_k respectively. We call G the resulting graph. Clearly the size of G is polynomial in the size of X and C.
1. Suppose that the instance \(X, C \) of X3C has a solution \(C' \). We build a set \(S \) of vertices of \(G \) as follows: for each \(C_t \in C' \), we put in \(S \) the vertices \(u_t, y^1_t, v_t, y^4_t, w_t, y^7_t, z_t, r_t \); for each \(C_t \in C - C' \), we put in \(S \) the vertices \(y^1_t, y^2_t, y^3_t, y^6_t, y^7_t, r_t, s_t \); for each \(x_i \in X \), we put in \(S \) the vertices \(a_i, b_i \) (note that exactly one of the \(d^j_i \)'s has been put in \(S \)). It is a routine matter to check that \(S \) is an exact doubly dominating set in \(G \).

2. Conversely, suppose that \(G \) has an exact doubly dominating set \(S \). Note the gadget of a given \(C_t \) is in exactly one of the following two possible states:

(a) \(z_t \in S \), and so exactly one of \(r_t, s_t \) is in \(S \), none of \(y^0_t, y^3_t, y^6_t \) is in \(S \), the other six \(y^j_t \)'s are in \(S \), and none of \(u_t, v_t, w_t \) is in \(S \); or

(b) \(z_t \notin S \), both \(r_t, s_t \) are in \(S \), none of \(y^0_t, y^3_t, y^6_t \) is in \(S \), exactly one of \(\{y^1_t, y^4_t, y^7_t\}, \{y^2_t, y^5_t, y^6_t\} \) is in \(S \) and the other is in \(V - S \), and each of \(u_t, v_t, w_t \) is in \(S \).

Clearly, for each \(x_i \in X \), we have \(a_i, b_i \in S \) (else \(a_i \) would not be doubly dominated), then \(c_i \notin S \) (else \(b_i \) would be dominated three times), and it follows that exactly one of the \(d^j_i \)'s is in \(S \). For each \(i = 1, \ldots, 3q \), let \(t(i) \) be the integer such that this special \(d^j_i \) is equal to one point of \(C_t(i) \subseteq C \), and let us say that \(C_t(i) \) is selected by \(x_i \). Thus the gadget of \(C_t(i) \) is in state (b), which means that \(C_t(i) \) is selected by each of its 3 elements. Therefore, the collection \(C' \) of all selected elements of \(C \) (i.e., those whose three points are in \(S \)) is an exact 3-cover.

3. Exact Doubly Dominating Sets

We begin by the following observation which is a straightforward property
of exact doubly dominating sets in graphs. A matching in a graph G is a set of pairwise non-incident edges of E.

Observation 2. The vertex set of every exact doubly dominating set induces a matching.

Next, we show that all exact doubly dominating sets (if any) have the same size.

Proposition 3. If G has an exact doubly dominating set then all such sets have the same size.

Proof. Let D_1, D_2 be two exact doubly dominating sets of G. Let us write $I = D_1 \cap D_2$, and let X_0 and X_1 be the subsets of $D_1 - I$ such that every vertex of X_0 has zero neighbours in I and every vertex of X_1 has one neighbour in I. Clearly $D_1 - I = X_0 \cup X_1$. We define similarly subsets Y_0 and Y_1 of $D_2 - I$. We claim that $|X_1| = |Y_1|$. Indeed, let x be any vertex of X_1, adjacent to a vertex $z \in I$. Since D_2 is an exact doubly dominating set, z has a unique neighbour y in D_2. We have $y \in D_2 - I$, for otherwise z has two neighbours x, y in D_2, a contradiction. Thus $y \in Y_1$. The symmetric argument holds for every vertex of Y_1, and so $|X_1| = |Y_1|$. Since D_2 is an exact doubly dominating set, every vertex of X_1 has exactly one neighbour in $Y_0 \cup Y_1$ and every vertex of X_0 has exactly two neighbours in $Y_0 \cup Y_1$. The same holds about the vertices of Y_1 and Y_0. This implies $|X_0| = |Y_0|$, and thus $|D_1| = |D_2|$.

The next result relates the size of an exact doubly dominating set with the order and minimum degree δ of a graph G.

Proposition 4. If S is an exact doubly dominating set of a graph G, then $|S| \leq 2n/(\delta + 1)$.

Proof. Let S be an exact doubly dominating set of a graph G and let t denote the number of edges joining the vertices of S to the vertices of $V - S$. Then $t = 2|V - S|$ since S is an exact doubly dominating set. By Observation 2, S induces a matching of G, and so every vertex v of S has exactly $\deg_G(v) - 1$ neighbours in $V - S$. Thus $t = \sum_{v \in S}(\deg_G(v) - 1)$. So $|S|(\delta - 1) \leq t = 2|V - S|$. Hence $|S| \leq 2n/(\delta + 1)$.

In [7], Harary and Haynes gave a lower bound for the doubly domination number:
Theorem 5 ([7]). If G has no isolated vertices, then $\gamma_x^2(G) \geq 2n/(\Delta + 1)$.

From Proposition 4 and Theorem 5, we have:

Corollary 6. If S is an exact doubly dominating set of a regular graph G, then $|S| = 2n/(\Delta + 1)$.

Next, we establish a bound on the double domination number based on the neighbourhood packing number for any graph with no isolated vertices. Recall that a set $R \subseteq V(G)$ is a neighbourhood packing set of G if $N[x] \cap N[y] = \emptyset$ holds for any two distinct vertices $x, y \in R$. The neighbourhood packing number $\rho(G)$ is the maximum cardinality of a neighbourhood packing in G. It is easy to see (see [8]) that every graph G satisfies $\rho(G) \leq \gamma(G)$.

Theorem 7. If G is a graph without isolated vertices, then $\gamma_x^2(G) \geq 2\rho(G)$.

Proof. Let R be a maximum neighbourhood packing set of G. Then for every $v \in R$, every doubly dominating set of G contains at least 2 vertices of $N[v]$ to doubly dominate v. Since $N[v] \cap N[u] = \emptyset$ holds for each pair of vertices v, u of R, we have $\gamma_x^2(G) \geq 2|R|$. \qed

Corollary 8. If S is an exact doubly dominating set of G, then $|S| \geq 2\rho(G)$.

Farber [5] proved that the domination number and neighbourhood packing number are equal for any strongly chordal graph. Thus we have the following corollary to Theorem 7 which extends the result of Blidia et al. [3] for trees.

Corollary 9. If G is a strongly chordal graph without isolated vertices, then $\gamma_x^2(G) \geq 2\gamma(G)$.

4. Graphs with Exact Doubly Dominating Sets

We first consider paths and cycles. The double domination number for cycles C_n and nontrivial paths P_n were given in [7] and [3] respectively:

[7] $\gamma_x^2(C_n) = \lceil 2n/3 \rceil$.

[3] $\gamma_x^2(P_n) = 2\lceil n/3 \rceil + 1$ if $n \equiv 0 \pmod{3}$ and $\gamma_x^2(P_n) = 2\lceil n/3 \rceil$ otherwise.

Now we establish similar results for the exact doubly dominating sets in cycles and paths.
Proposition 10. A cycle C_n has an exact doubly dominating set if and only if $n \equiv 0 \pmod{3}$. If this holds the size of any such set is $2n/3$.

Proof. Let S be an exact doubly dominating set of a cycle C_n. By Corollary 6, we have $|S| = 2n/3$ and so $n \equiv 0 \pmod{3}$. Conversely, assume the vertices of C_n are labelled $v_1, v_2, \ldots, v_n, v_1$. If $n \equiv 0 \pmod{3}$, then it is easy to check that the set $\{v_i, v_{i+1} \mid i \equiv 1 \pmod{3}, 1 \leq i \leq n-1\}$ is an exact doubly dominating set of C_n.

Proposition 11. A path P_n has an exact doubly dominating set if and only if $n \equiv 2 \pmod{3}$. If this holds the size of any such set is $2(n+1)/3$.

Proof. If $n = 2$ the fact is obvious, so let us assume $n \geq 3$. Let S be an exact doubly dominating set of a path P_n. Note that for every vertex v of degree 2, either v or its two neighbours are in S. So $V - S$ is an independent set, and $N(v) \cap N(w) = \emptyset$ for any two $v, w \in V - S$. By Observation 2, every vertex of S has exactly one neighbour in $V - S$. Thus $|S| - 2 = 2|V - S|$ and so $n = |S| + |V - S| = 3|V - S| + 2$.

Conversely, assume that the vertices of P_n are labelled v_1, v_2, \ldots, v_n. If $n \equiv 2 \pmod{3}$ then it is easy to check that the set $\{v_i, v_{i+1} \mid i \equiv 1 \pmod{3}, 1 \leq i \leq n-1\}$ is an exact doubly dominating set of P_n.

Chellali and Haynes [4] established the following upper bound for the double domination number:

Theorem 12 ([4]). Every graph G without isolated vertices satisfies

$$
\gamma_{\times 2}(G) \leq n - \delta + 1.
$$

Theorem 13. Let G be a graph that admits an exact doubly dominating set S. Then $|S| = n - \delta + 1$ if and only if either $G = tK_2$ with $t \geq 1$, if $\delta = 1$, or $G = K_n$ with $n \geq 3$ otherwise.

Proof. Let S be an exact doubly dominating set of G such that $|S| = n - \delta + 1$. If $\delta = 1$, then $|S| = n$. Since S induces a 1-regular subgraph, G itself is 1-regular, i.e., $G = tK_2$ with $t \geq 1$. Now assume that $\delta \geq 2$. Let v be a vertex of S. Then $V - S$ contains all the neighbours of v except one, and so $\deg_G(v) - 1 \leq |V - S| = n - (n - \delta + 1) = \delta - 1$. Thus all the vertices of S have the same degree δ, and $|V - S| = \delta - 1$. Let u be a vertex of $N(v) \cap S$. Then u is adjacent to all the vertices of $V - S$ and
hence at this point every vertex of \(V - S \) is doubly dominated by \(u \) and \(v \). Thus \(S = \{ u, v \} \) and all the vertices of \(V - S \) are mutually adjacent. So \(G \) is a complete graph.

Next, we consider nontrivial trees. A vertex of degree 1 is called a leaf, and a support vertex is any vertex adjacent to a leaf. It is easy to see that a star with at least three vertices is an example of a tree that does not admit an exact doubly dominating set. The following observation generalizes this remark.

Observation 14.
- If a graph \(G \) has a leaf, then any doubly dominating set of \(G \) contains this leaf and its neighbour.
- If a graph \(G \) has an exact doubly dominating set, then every support vertex is adjacent to exactly one leaf, and no two support vertices are adjacent.

We now define recursively a collection \(T \) of trees, where each tree \(T \in T \) has two distinguished subsets \(A(T) \), \(B(T) \) of vertices. First, \(T \) contains any tree \(T_1 \) with two vertices \(x, y \), and for such a tree we set \(A(T_1) = \{ x, y \} \) and \(B(T_1) = \{ y \} \). Next, if \(T' \) is any tree in \(T \), then we put in \(T \) any tree \(T \) that can be obtained from \(T' \) by any of the following two operations:

Type-1 operation: Attach a path \(P_3 = uvw \), with \(u, v, w \not\in V(T') \), by adding an edge from \(w \) to one vertex of \(A(T') \). Set \(A(T) = A(T') \cup \{ u, v \} \) and \(B(T) = B(T') \cup \{ u \} \).

Type-2 operation: Attach a path \(P_5 = a_1a_2a_3a_4a_5 \), with \(a_1, a_2, a_3, a_4, a_5 \not\in V(T') \), by adding an edge from \(a_3 \) to one vertex of \(V(T') \) - \(A(T') \). Set \(A(T) = A(T') \cup \{ a_1, a_2, a_4, a_5 \} \) and \(B(T) = B(T') \cup \{ a_1, a_5 \} \).

Lemma 15. If \(T \in T \), then:

(a) \(A(T) \) is the unique exact doubly dominating set of \(T \).

(b) \(B(T) \) is a neighbourhood packing set of \(T \).

(c) \(|A(T)| = 2\gamma(T) \).

Proof. Consider any \(T \in T \). So \(T \) can be obtained from a sequence \(T_1, T_2, \ldots, T_k \) \((k \geq 1) \) of trees of \(T \), where \(T_1 \) is the tree with two vertices, \(T = T_k \), and, if \(1 \leq i \leq k - 1 \), the tree \(T_{i+1} \) is obtained from \(T_i \) by one of the two operations. We prove (a) by induction on \(k \). If \(k = 1 \), then \(A(T) \) is
obviously the unique exact doubly dominating set of T. Assume now that $k \geq 2$ holds for T and that the result holds for all trees in T that can be constructed by a sequence of length at most $k - 1$. Let $T' = T_{k-1}$. We distinguish between two cases.

Case 1. T is obtained from T' by using the Type-1 operation. Note that $A(T)$ is an exact doubly dominating set of T since, by the induction hypothesis, $A(T')$ is an exact doubly dominating set of T' and u, v and the neighbour of w in T' are in $A(T)$. Now let S be any exact doubly dominating set of T'. By Observation 14, we have $\{u, v\} \subseteq S$, and consequently $w \notin S$ (for otherwise v would be dominated three times by S). If x is any vertex in $V(T')$, then x is not dominated by any of u, v, so $S - \{u, v\}$ is an exact doubly dominating set of T'. By the inductive hypothesis $A(T')$ is the unique such set, so $S - \{u, v\} = A(T')$, and so $S = A(T)$, which shows the unicity announced in (a).

Case 2. T is obtained from T' by using the Type-2 operation. Note that $A(T)$ is an exact doubly dominating set of T since, by the induction hypothesis, $A(T')$ is an exact doubly dominating set of T' and the neighbour of a_3 in T' is not in $A(T')$ while a_1, a_2, a_4, a_5 are in $A(T)$. Now let S be any exact doubly dominating set of T. By Observation 14, we have $\{a_1, a_2, a_4, a_5\} \subseteq S$, and consequently $a_3 \notin S$. If x is any vertex in $V(T')$, then x is not dominated by any of a_1, a_2, a_4, a_5, so $S - \{a_1, a_2, a_4, a_5\}$ is an exact doubly dominating set of T'. By the inductive hypothesis we have $S - \{a_1, a_2, a_4, a_5\} = A(T')$, and so $S = A(T)$. So (a) is proved.

It is a routine matter to check item (b). Note that the tree T_1 with two vertices has $|A(T_1)| = 2$ and $|B(T_1)| = 1$; moreover, each operation adds twice as many vertices to $A(T)$ as to $B(T)$, so $|A(T)| = 2|B(T)|$ holds for every tree $T \in T$. It follows from this and from (a) and (b) that $\gamma_{x,2}(T) \leq |A(T)| = 2|B(T)| \leq 2\gamma(T)$, and we have equality throughout by Corollary 9.

This proves part (c) and concludes the proof of the lemma.

We now are ready to give a constructive characterization of trees with an exact doubly dominating sets.

Theorem 16. Let T be a tree. Then T has an exact doubly dominating set if and only if $T \in T$.

Proof. First suppose that $T \in T$. Then Lemma 15 implies that T has an exact doubly dominating set. Conversely, assume that T is a tree that has
an exact doubly dominating set S, and let n be the order of T. Clearly, $n \geq 2$. If $n = 2$, then T is in \mathcal{T}. Observation 14 implies that $n \in \{3, 4\}$ is impossible and that $n = 5$ implies that T is a path on 5 vertices, which is in \mathcal{T} since it can be obtained from T_1 by the Type-1 operation.

Now assume that $n \geq 6$ and that every tree T' of order n' with $2 \leq n' < n$ such that T' has an exact doubly dominating set is in \mathcal{T}. Root T at a vertex r. Let u be a leaf at maximum distance from r, let v be the parent of u in the rooted tree, and let w be the parent of v. By Observation 14, u is the unique child of v, $\{u, v\} \subseteq S$, $w \notin S$, and w is neither a support vertex nor a leaf. This implies that every child of w is a support vertex. Furthermore, w has at most two children, for otherwise w would be dominated at least 3 times by S, a contradiction. So $w \neq r$. Let z be the parent of w in the rooted tree.

Suppose that w has exactly one child in the rooted tree. Let $T' = T - \{u, v, w\}$. Since $\{u, v\} \subseteq S$ and $w \notin S$, we have $z \in S$ so that w is dominated twice by S. Moreover, $S - \{u, v\}$ is an exact doubly dominating set of T'. By the inductive hypothesis, we have $T' \in \mathcal{T}$ and, by Lemma 15, $S - \{u, v\} = A(T')$ is the unique exact doubly dominating set of T'. Thus T can be obtained from T' by using Type-1 operation (with the path uvw and since $z \in A(T')$), so $T \in \mathcal{T}$.

Now suppose that w has exactly two children v, v' in the rooted tree. Let T_w be the subtree of T induced by w and its descendants, rooted at w. By Observation 14, each child of w has exactly one child, and we call u' the child of v', so T_w is a path on five vertices $uvwv'u'$ with central vertex w. Moreover, by Observation 14, we have $\{u, v, u', v'\} \subseteq S$, $w \notin S$, and $z \notin S$ since w is dominated twice in S by v, v'. Thus z is doubly dominated by $S \cap V(T')$ and consequently $S \cap V(T')$ is an exact doubly dominating set of T'. By the inductive hypothesis, we have $T' \in \mathcal{T}$ and, by Lemma 15, $S \cap V(T') = A(T')$ is the unique exact doubly dominating set of T'. Thus T can be obtained from T' by using Type-2 operation (with the path $uvwv'u'$ and since $z \notin A(T')$), so $T \in \mathcal{T}$. This completes the proof of the theorem. □

The proof of the theorem suggests a polynomial-time algorithm which, given a tree T with n vertices, decides whether T is in \mathcal{T} and, if it is, returns the set $A(T)$. Here is an outline of the algorithm. If T is a path on 2 or 5 vertices, answer $T \notin \mathcal{T}$, return the obvious set $A(T)$, and stop. Else, if either $n \leq 5$ or T is a star, answer $T \notin \mathcal{T}$ and stop. Now suppose $n \geq 6$. Pick a vertex r, root the tree T at r, and pick a vertex u at maximum distance from r. Let v be the parent of u in the rooted tree and w be the
parent of v. If either v has at least two children, or w has at least three children, or w has exactly two children and its second child has either zero or at least two children, then return the answer $T \notin T$ and stop. Else, let z be the parent of w. If w has exactly one child, call the algorithm recursively on the tree $T' = T - \{u, v, w\}$; if the answer to the recursive call is $T' \in T$ and $z \notin A(T')$, then answer $T \notin T$ and stop, else answer $T \in T$, return $A(T) = A(T') \cup \{u, v\}$, and stop.

Next, we give a necessary and sufficient condition for the existence of an exact doubly dominating set in a connected cubic graph. Recall that a matching in a graph $G = (V, E)$ is perfect if its size is $|V|/2$. With any perfect matching $M = \{e_1, e_2, \ldots, e_{n/2}\}$ of a graph G we associate a simple graph denoted by $G_M = (V_M, E_M)$ where each edge $e_i \in M$ is represented by a vertex in V_M and two vertices of V_M are adjacent if the corresponding edges in M are joined by an edge in G. A graph is an equitable bipartite graph if its vertex set can be partitioned into two independent sets S_1 and S_2 such that $|S_1| = |S_2|$, and in this case (S_1, S_2) is called an equitable bipartition of G.

Theorem 17. Let G be a connected cubic graph. Then G has an exact doubly dominating set if and only if G has a perfect matching M such that the associated graph G_M is an equitable bipartite graph.

Proof. Let G be a connected cubic graph with an exact doubly dominating set S. So S induces a 1-regular graph, whose edges form a matching M_1, and every vertex of S has two neighbours in $V - S$. Since every vertex of $V - S$ has exactly two neighbours in S, the subgraph induced by $V - S$ is 1-regular, and its edges form a matching M_2. Thus G admits a perfect matching $M = M_1 \cup M_2$. Each edge of $E - M$ joins a vertex of S with a vertex of $V - S$, and the bipartite subgraph $(S, V - S; E - M)$ is 2-regular, so $|S| = |V - S|$, and so $|M_1| = |M_2|$. It follows that the graph G_M associated with M is an equitable bipartite graph with equitable bipartition (M_1, M_2).

Conversely, let M be a perfect matching of a connected cubic graph G such that the associated graph G_M is equitable bipartite, with equitable bipartition (A, B). Let A_M (resp. B_M) be the vertices of G that are contained in the edges corresponding to the vertices of A (resp. B). Since A (resp. B)
is independent in G_M, the subgraph of G induced by A_M (resp. by B_M) is 1-regular. This also implies that every vertex of A_M (resp. of B_M) has two neighbours in B_M (resp. in A_M) since G is a cubic graph. Consequently, A_M and B_M are two disjoint exact doubly dominating sets of G. This completes the proof.

References

Received 15 January 2004
Revised 8 November 2004