Position paper for the End-User Software Engineering Dagstuhl Workshop (Feb. 2007)

Meta-User Interfaces for Ambient Spaces: Can Model-Driven-Engineering Help?

Joëlle Coutaz
Université Joseph Fourier, Lab.Informatique de Grenoble (LIG)
385 rue de la Bibliothèque, BP 53, 38041 Grenoble Cedex 9, France
joelle.coutaz@imag.fr

PERSONAL WORK RELEVANT TO THE WORKSHOP

My goal is to develop concepts and techniques that allow users to control and understand the ambient interactive spaces in which they live. With ambient computing, we are shifing from the control (and understanding) of systems and applications confined to a single computer to that of a dynamic computational aura where the boundaries between the physical and the digital worlds are progressively disappearing, where everything is highly dynamic and adaptive.

As a result, the pre-packaged well-understood solutions provided by shells and desktops that allow end-users to control their computing environments are inadequate for a continuous moving universe. To address this problem, I propose the concept of meta-UI. In addition, user interfaces that used to be defined once for ever for a well-identified context of use, must evolve dynamically. In my research group, we are addressing this problem under the umbrella of UI plasticity. Our approach to UI plasticity brings together MDE (Model Driven Engineering) and SOA (Service Oriented Architecture) within a unified framework that covers both the development stage and the runtime phase of interactive systems.

META-UI

A meta-UI is a special kind of end-user development environment whose set of functions is necessary and sufficient to control and evaluate the state of an interactive ambient space. This set is meta- because it serves as an umbrella beyond the domain-dependent services that support human activities in this space. It is UI-oriented because its role is to allow users to control and evaluate the state of the ambient interactive space. By analogy, a meta-UI is to ambient computing what desktops and shells are to conventional workstations.

As shown in Fig. 1, a meta-UI is characterized by its functional coverage in terms of services such as object discovery and coupling, and object types. Objects discovery allows users (and the system) to be aware of the objects that can be coupled. By coupling objects, users (and the system) build new constructs whose components play a set of roles (or functions). In conventional computing, roles are generally predefined. In ambient computing, where serendipity is paramount, assigning roles to objects becomes crucial. For example, Bob and Jane meeting in a café use spoons and lumps of sugar to denote the streets and buildings of the city they are talking about. Bob couples a spoon with the table by laying it down on the table while uttering “this is Champs-Elysées”. The system can then discover the presence of the spoon and assign it the role of interaction resource (phicon). By doing so, Bob has dynamically defined a mixed-by-construction object.

Fig. 1. A dimension space for meta-UI’s.

UI re-distribution is another important generic service to be provided in ambient spaces. It denotes the re-allocation of UI elements of the interactive space to different interaction resources. For example, the GUI of a web site may dynamically switch from a centralized rendering on a PC screen to a distributed UI between a PDA and a wall-mounted display. In turn, UI re-distribution may require UI re-moulding, that is the capacity of the UI to reconfigure itself or to be reconfigured (under end-user’s control) by suppressing, adding, and/or re-organizing UI elements.
Services and objects are invoked and referenced by the way of an interaction technique (i.e. a UI) that provides users with some level of control (observability only, traceability over time, and controllability or programmability). An interaction technique is a language (possibly extensible) characterized by the representation (vocabulary) used to denote objects and functions as well as by the way users construct sentences and assemble them into programs (including how they select/designate objects and functions).

Given the role of a meta-UI, the elements of the interaction technique of the meta-UI cohabit with the UI’s of the domain-dependent services that it governs. The integration level expresses this relationship: all or parts of the UI elements of the meta-UI are embedded with (or weaved into) the UI components of the domain-dependent services. For example, Collapse-to-zoom uses the weaving approach. Alternatively, UI elements of the meta-UI services may be external, i.e. not mixed with the UI components of the domain-dependent services.

MDE and SOA

MDE aims at integrating different technological spaces using models, models transformations and mappings as key mechanisms. SOA defines the appropriate meta-model for a particular class of models: the runtime components. The flexibility offered by SOA fits our requirements for dynamic UI re-distribution and UI re-molding.

As shown in Fig. 2, an interactive system is a graph of models related by mappings and transformations.

We are currently experimenting the flexibility provided by the interplay between modeling an interactive system as a graph of models, the existence of a meta-UI and of UI transformers encapsulated as OSGi services. In our example of a Home Control Heating System (HHCS), the user’s task is to set the temperature of the rooms of the home. The meta-UI provides the end-user with access to the task and the platform models. For example, the platform model indicates that a PC HTML and a PC XUL are currently available in the home. By selecting a task of the task model then selecting the platform(s) on which the task model indicates that a PC HTML and a PC XUL are currently available in the home. By selecting a task of the task model then selecting the platform(s) on which the user would appreciate to perform the selected task, the UI is recomputed and redistributed on the fly.

** ISSUES TO BE DISCUSSED**

Programming (and debugging) ambient spaces is yet another challenge. Embracing this challenge as a whole may be too complex. Shall we study it based on a classification of ambient spaces (e.g., domestic, public, mobile settings, a day of “my” life, etc.). By extension, what is the problem space of EUSE? How does current approaches cover the problem space? And then, what is the solution space?
REFERENCES
In addition to the classics (A. Cypher, B. Myers, H. Lieberman, etc.), I would like to suggest the following ref. related to ambient spaces as well as to our own work on UI plasticity and meta-UI.

