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Abstract. The Soil and Water Assessment Tool (SWAT) model has been commonly used in Canada for hy-
drological and water quality simulations. However, preprocessing of critical data such as soils information can
be laborious and time-consuming. The objective of this work was to preprocess the Soil Landscapes of Canada
(SLC) database to offer a country-level soils dataset in a format ready to be used in SWAT simulations. A two-
level screening process was used to identify critical information required by SWAT and to remove records with
information that could not be calculated or estimated. Out of the 14 063 unique soil records in the SLC, 11 838
records with complete information were included in the dataset presented here. Important variables for SWAT
simulations that are not reported in the SLC database (e.g., hydrologic soils groups (HSGs) and erodibility factor
(K)) were calculated from information contained within the SLC database. These calculations, in fact, represent
a major contribution to enabling the present dataset to be used for hydrological simulations in Canada using
SWAT and other comparable models. Analysis of those variables indicated that 21.3 %, 24.6 %, 39.0 %, and
15.1 % of the soil records in Canada belong to HSGs 1, 2, 3, and 4, respectively. This suggests that almost two-
thirds of the soil records have a high (i.e., HSG 4) or relatively high (i.e., HSG 3) runoff generation potential.
A spatial analysis indicated that 20.0 %, 26.8 %, 36.7 %, and 16.5 % of soil records belonged to HSG 1, HSG
2, HSG 3, and HSG 4, respectively. Erosion potential, which is inherently linked to the erodibility factor (K),
was associated with runoff potential in important agricultural areas such as southern Ontario and Nova Scotia.
However, contrary to initial expectations, low or moderate erosion potential was found in areas with high runoff
potential, such as regions in southern Manitoba (e.g., Red River Valley) and British Columbia (e.g., Peace River
watershed). This dataset will be a unique resource to a variety of research communities including hydrological,
agricultural, and water quality modelers and is publicly available at https://doi.org/10.1594/PANGAEA.877298.
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1 Introduction

Integrated environmental modeling is inspired by modern en-
vironmental problems and enabled by transdisciplinary sci-
ence and computer capabilities that allow the environment
to be considered in a holistic way (Laniak et al., 2013). In
an agricultural context, synthesis and quantification of mul-
tidisciplinary knowledge via process-based modeling are es-
sential to manage systems that can be adapted to continual
change (Ahuja et al., 2007). The Soil and Water Assess-
ment Tool (SWAT) (Arnold et al., 1998) is an example of
such a process-based model. It has been developed over the
past 30 years to evaluate the effects of alternative manage-
ment decisions on water resources and nonpoint-source pol-
lution in large river basins through the simulation of major
processes including hydrology, soil temperature and proper-
ties, plant growth, nutrient and pesticides dynamics, bacte-
ria and pathogens transport, and land management (Arnold
et al., 2012; Douglas-Mankin et al., 2010). Furthermore, a
weather generator is included in the model to fill gaps that
may exist in meteorological records.

The SWAT model has been extensively tested around the
world for a wide range of hydroclimatic conditions, water
and land management practices, and timescales (Douglas-
Mankin et al., 2010; Arnold et al., 2012; Gassman et al.,
2014). The wide adoption of the SWAT model has been
prompted by preprocessing and post-processing software
tools such as a GIS interface and extensive user documenta-
tion (Arnold et al., 2012), as well as several linked databases
for crops, soils, fertilizers, tillage, and pesticides (Santhi et
al., 2005). Among these, soil properties are especially im-
portant as they are needed for the simulation of influen-
tial processes such as evapotranspiration, soil water balance,
nutrient dynamics, and sediment transport (Neitsch et al.,
2005). However, the existing built-in database is only valid
for SWAT applications in the USA. Accordingly, studies out-
side the USA require the development of a soils dataset by
preprocessing available soils data into a format readable by
SWAT, a time-consuming process as not all data required by
SWAT are readily available for countries outside of the USA.

Worldwide, SWAT has emerged as one of the most widely
used water quality watershed- and river-basin-scale models
for simulation of a broad range of hydrologic and/or environ-
mental problems (Gassman et al., 2014). These applications
in different regions are described in the extensive body of
peer-reviewed SWAT literature (Arnold et al., 2012). Specif-
ically in Canada, the SWAT model has been used for hydro-
logical simulations in most provinces, including Prince Ed-
ward Island (Edwards et al., 2000), New Brunswick (Cham-
bers et al., 2011; Yang et al., 2009), Nova Scotia (Ahmad
et al., 2011), Ontario (Asadzadeh et al., 2015; Rahman et
al., 2012), Quebec (Lévsque et al., 2008), Manitoba (Yang
et al., 2014), Saskatchewan (Mekonnen et al., 2016), Alberta
(Mapfumo et al., 2004; Watson and Putz, 2014; Faramarzi et
al., 2015), and British Columbia (Zhu et al., 2012). However,

preparation of Canadian soils information in a consistent and
usable format for SWAT is time-consuming (Rahman et al.,
2012), as information has to be collected from soil reports
and cross-checked against GIS datasets, missing soil vari-
ables have to be calculated from other physical and hydraulic
properties, and all parameters have to be attributed to specific
soil grids or polygons.

Some of this preprocessing work can be alleviated by
using publically available databases that contain most of
the information required by SWAT. The Soil Landscapes of
Canada (SLC) database published by Agriculture and Agri-
Food Canada (Soil Landscapes of Canada Working Group,
2010) is an example, and has been used in SWAT applications
in Ontario (Asadzadeh et al., 2015; Rahman et al., 2012),
Saskatchewan (Mekonnen et al., 2016), Alberta (Faramarzi
et al., 2015), and British Columbia (Zhu et al., 2012). The
SLC contains a GIS dataset series that provides information
about the country’s agricultural soils at the provincial and na-
tional levels. It was compiled at a scale of 1 : 1 million, and
the information is organized according to a uniform national
set of soil and landscape criteria based on permanent natu-
ral attributes (Soil Landscapes of Canada Working Group,
2010). The SLC encompasses the southern portions of the
provinces of Ontario and Quebec and a larger portion of the
Prairies provinces of Manitoba, Saskatchewan, and Alberta
as far north as to the boreal shield. Coverage in the maritime
provinces of New Brunswick, Nova Scotia, and Prince Ed-
ward Island is nearly complete (Fig. 1).

Although there are more detailed soil datasets available
at provincial levels (e.g., AGRASID dataset in Alberta), se-
lection of SLC for integration with SWAT was based on the
fact that (i) it covers most soils across the agricultural re-
gions of Canada in a single dataset; (ii) it has been used in
regional studies in Canada, as described above; and (iii) it
is more easily applicable to large-scale national studies as
broad-scale datasets require reduced resources to prepare and
process data (Moriasi and Starks, 2010). Modeling studies
comparing the performance of a single model (calibrated and
uncalibrated) but using soil datasets with varying spatial res-
olution in the USA (i.e., the State Soil Geographic database
(STATSGO) compiled at 1 : 250 000 scale, and the Soil Sur-
vey Geographic database (SSURGO) with scales ranging
from 1 : 12 000 to 1 : 63 360) also revealed that using either
dataset produced comparable results (Mednick, 2008).

Besides the American databases (i.e., STASTSGO and
SSURGO), the authors are not aware of any other effort
to produce a similar dataset from a national soils database
for specific use with SWAT, such as the one presented
here for Canada. Past efforts in preparing a large-scale
soils dataset for modeling include the standardization of
the FAO–UNESCO, but this dataset was not optimized for
SWAT and is presented at a much coarser spatial resolution
(i.e., 1 : 5 000 000; Batjes, 1997). The SOTER (Soil Terrain)
database is another initiative to provide a global soils dataset,
which was intended to have a global coverage at 1 : 1 mil-
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Figure 1. Spatial extent of the Soil Landscapes of Canada (SLC) database showing coverage in the provinces of Newfoundland and Labrador
(NL), Prince Edward Island (PE), Nova Scotia (NS), New Brunswick (NB), Quebec (QC), Ontario (ON), Manitoba (MB), Saskatchewan
(SK), Alberta (AB), and British Columbia (BC), as well as the Northwest Territories (NT).

lion scale but was later degraded to 1 : 5 million scale due to
the lack of means (Dobos et al., 2005). However, SOTER is
not optimized for SWAT use and requires some variables to
be calculated or estimated to this end (Bossa et al., 2012).
Other databases at continental scale, such as the HYPRES
in Europe, only cover soil hydrologic properties (Wösten et
al., 1999). At national level, only a few countries besides
the USA and Canada have a soil electronic database (e.g.,
Australia, Brazil, and China; Shi et al., 2004; Cooper et
al., 2005), while these data are not available in most coun-
tries (Cooper et al., 2005). The reduced number of available
datasets, coupled with the technicalities involved in translat-
ing these datasets into SWAT format and the required vari-
ables not reported in them, contribute to the lack of large-
scale soil databases fully compatible with SWAT. These lim-
itations emphasize the novelty and importance of the dataset
presented in this paper. Besides presenting a soils database
ready to use in SWAT simulations in Canada, the present
work provides a framework to support similar initiatives in
other regions using data from global soil databases.

Due to the importance of the SWAT model for integrated
environmental modeling in Canada, and the prominence of
the SLC database as a potential input dataset for this model
at a national level, the objective of this work was to offer a
country-level soils dataset in a format ready to be used in
SWAT simulations. The dataset was derived to provide over
20 parameter values for different soil types that are varied for

each soil layer. It was prepared in a format suitable for use in
the ArcSWAT version of the model, which is attributed to a
grid or polygon-based soil map. Such a laborious preprocess-
ing exercise is widely, but inconsistently, adopted in SWAT
simulations reported in the literature. Finally, deficiencies in
the dataset are also presented and discussed.

2 SLC data structure

The SLC database (http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/
index.html, last access: 20 June 2017) is structured as a
component-based GIS layer, whereby a single polygon may
contain several soil records. This structure is similar to that of
the State Soil Geographic (STATSGO) database in the USA
(Srinivasan et al., 2010). Such structure creates a one-to-
many relationship, whereby the multiple soil components of
a polygon are not spatially defined. The actual soil informa-
tion in the SLC database is stored in a number of tables linked
together through intricate relationships (Soil Landscapes of
Canada Working Group, 2010). Among these, four tables are
relevant for developing a dataset for SWAT applications:

– The Polygon Attribute Table (PAT) provides the linkage
between geographic locations (polygons in the SLC GIS
coverage) and soil landscape attributes in the associated
database tables (e.g., unique soil ID in the Soil Name
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Table 1. Description of variables in SWAT’s “usersoil” table.

Variable group Column number in
usersoil table

Variables∗

Database indexing 1 OBJECTID
Soil classification 2 through to 6 MUID; SEQN; SNAM; S5ID; CMPPCT
Soil properties

Profile 7 through to 12 NLAYERS; HYDGRP; SOL_ZMX; ANION_EXCL; SOL_CRK; TEXTURE
Layers 13 through to 132 (12 vari-

ables for 10 soil layers)
SOL_Zx ; SOL_BDx ; SOL_AWCx ; SOL_Kx ; SOL_CBNx ; CLAYx ; SILTx ;
SANDx ; ROCKx ; SOL_ALBx ; USLE_Kx ; SOL_ECx

Inactive 133 through to 152 SOL_CALx ; SOL_PHx

∗ Subscript x corresponds to soil layer from 1 to 10.

Table (SNT) and respective number of layers in the Soil
Layer Table (SLT)).

– The Component Table (CMP) describes each of the
individual soil and landscape features comprising the
polygons. That is, it describes which soil records are
present in each spatial unit (i.e., polygon) in the GIS
layer.

– The Soil Name Table (SNT) describes the general phys-
ical and chemical characteristics for all of the soils iden-
tified in a geographic region.

– The Soil Layer Table (SLT) contains soil information
that varies in the vertical direction (i.e., layered at-
tributes).

The CMP table describes the proportion of each nonspa-
tially defined soil component in a polygon if more than a
soil component exists (the soil component(s) refers to the
soil(s) element(s) that comprise each polygon). The com-
ponent numbering follows a sequence of decreasing propor-
tion in a polygon (i.e., first component has the highest pro-
portion; last component has the smallest proportion). This
component-based structure of the SLC database does not af-
fect the analysis since all the soil records listed in the SNT
table were processed to generate the present dataset. How-
ever, it has implications for the SWAT model user, who has
to make a decision on how to handle the relationship between
the polygon (spatially defined) and each nonspatially defined
soil component in multicomponent polygons (e.g., selecting
the larger component in a polygon or generating a hybrid soil
incorporating properties of each soil component).

3 SWAT soils data structure

The SWAT soils information is stored in the “usersoil” table,
located within the SWAT 2012 database in Microsoft Access
format (i.e., SWAT2012.mdb). Each soil record is stored as a
new record (i.e., row) in the table. Specific soil variables (Ta-
ble 1) comprise the 152 columns of the usersoil table. The

first column is an OBJECTID field assigning a unique iden-
tifier for each record. Columns two through six pertain to
soil classification. The second column is the map unit identi-
fier (MUID), which is used for mapping a collection of areas
grouped by the same soil characteristics. A single MUID may
describe different soil types, which are stored with a record
counter in the third column (SEQN), while a soil identifying
name (SNAM), a soil interpretation record (S5ID), and the
percent of each soil component (CMPPCT) are recorded in
the fourth, fifth, and sixth columns, respectively (Sheshukov
et al., 2009). Columns 7 through 12 describe major soil prop-
erties pertaining to the soil record, namely, the number of
layers (NLAYERS), the hydrological soil group to which that
soil belongs (HYDGRP), the maximum rooting depth of the
soil profile (SOL_ZMX), the fraction of soil porosity from
which anions are excluded (ANION_EXCL), the potential
of maximum crack volume of the soil profile expressed as a
fraction of the total soil volume (SOL_CRK), and the texture
of the soil layer (TEXTURE).

The next 120 columns starting from column 13 (i.e.,
columns 13 to 132) describe the information for each layer of
the soil record. These columns are arranged in sets of 12 vari-
ables each for 10 possible soil layers. The variable NLAY-
ERS indicates how many of these sets should be populated.
Variables for any sets beyond NLAYERS should be assigned
a value of zero. The variables included in each set of soil
layers are the depth from the soil surface to the bottom of
the layer (SOL_Z), moist bulk density (SOL_BD), available
water capacity of the soil layer (SOL_AWC), saturated hy-
draulic conductivity (SOL_K), organic carbon (SOL_CBN),
clay (CLAY), silt (SILT), sand (SAND), and rock fragment
(ROCK) contents, moist soil albedo (SOL_ALB), erodibil-
ity factor (USLE_K), and electrical conductivity (SOL_EC).
Beyond the columns describing layered soil information,
there are 20 columns (i.e., columns 133 to 152) describ-
ing two variables (i.e., soil CaCO3 (SOL_CA) and soil pH
(SOL_PH)) for 10 soil layers. These variables are not cur-
rently active in SWAT and are assigned a value of zero.
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4 Merging the two datasets

Despite its usefulness as a source of soil information for hy-
drological simulations, the SLC dataset is not assembled in a
format readable by SWAT or other similar models. For exam-
ple, SWAT stores all the properties for a specific soil record
in a single row in the usersoil table, while this information
is stored in the SLC as multiple rows in two different tables
(i.e., SNT and SLT). Thus, the information contained in the
SLT database has to be processed to satisfy SWAT’s format
requirements. In addition, all properties in the usersoil table
are spatially defined, while those of SLC are often stored in a
multi-polygon structure with no unique spatial identification.
Variables required by SWAT and contained in the dataset pre-
sented here were either extracted from SNT and SLT, or cal-
culated from the information therein. Some other variables
were estimated from published values. Extraction or calcula-
tion of variables was done through an R code that imported
both SNT and SLT, screened the data for missing records
and missing SWAT-required information (data screening is
described in Sect. 5), and sequentially populated unique soil
records in the database. The next section describes how these
variables were defined.

5 Data screening

5.1 Screening out incomplete soil information
in the SNT

The use of the SNT is necessary as it links the soils informa-
tion to the GIS coverage containing the PAT. However, a first
screening was required to remove soil records from the SNT
that are not present in the SLT, as soil layer information is re-
quired by SWAT. The mismatch among soil records in both
tables can occur for a number of reasons. For example, there
are records in both tables that pedologists have identified but
whose properties have not yet been characterized. Also, soil
records listed in one table may be absent from another ta-
ble due to changes in soil classification. Finally, soil records
listed as unclassified in the SNT (i.e., variable KIND=U) do
not have any data associated with them in the SLT and do not
occur on any published map.

Out of the 14 063 unique soil records in the SNT, 489
were missing in the SLT and, therefore, removed from the
analysis. These 489 soil records correspond to around 3.5 %
of the soils listed in the SNT. Most of the missing records
were reported as unclassified (305 soils; 62.2 %), suggest-
ing that these soils have been identified, but their properties
have not yet been characterized. Mineral soil records corre-
sponded to 29.4 % (144 soils) of the total, likely a reflec-
tion of changes in classification. The other two classes com-
prised non-true soils (e.g., mine tailings, urban land; 33 soils;
6.7 %) and organic soils (8 soils; 1.6 %). Also, only 58 of the
489 missing soil records (11.0 %) could be mapped through
linking with the CMP table, making it impossible to do

any spatial analysis on the distribution of these soils across
the country. However, since the SNT assigns a province for
each soil record, it is possible to identify where these miss-
ing records occur. Most of the missing soil records were in
British Columbia (167 soils; 34.2 %), Manitoba (151 soils;
30.9 %), and Saskatchewan (133 soils; 27.2 %), with smaller
proportions in Yukon (13 soils; 2.7 %), Ontario (11 soils;
2.3 %), Nova Scotia (9 soils; 1.8 %), and Newfoundland (5
soils; 1.0 %).

5.2 SWAT requirements

The SWAT data requirements were used as a second level
of screening to build the present dataset. The soil input vari-
ables in SWAT can be either required or optional (Table 2;
Arnold et al., 2013). Required variables that could not be
calculated or estimated (e.g., SOL_BD, SOL_K, SOL_CBN,
CLAY, SILT, and SAND) were used to separate complete
from incomplete records. Soil records in the SLT containing
or allowing derivation of all the variables required by SWAT
were compiled in a dataset comprising 11 838 unique records
that were importable into the model. Soils in the SLT with
missing records (i.e., variables entered as−9 in the database)
for the required SWAT variables (gray rows in Table 2) were
removed from the analysis. These soil records were compiled
into a soils list provided as a reference.

As for the nonmatching soil records in the SNT and
SLT, only 547 out of 1736 (i.e., 31.5 %) records with miss-
ing information could be mapped through linking with the
CMP table, which renders any spatial representation of
these records nonmeaningful. However, the provinces where
these records occur could also be identified. The high-
est proportions of soil records with incomplete information
were in British Columbia (490 records; 28.2 %) and Mani-
toba (391 records; 22.54 %). Ontario (182 records; 10.5 %)
and Alberta (180 records; 10.4 %) had intermediate values,
while Newfoundland (123 records; 7.1 %), Saskatchewan
(102 records; 5.9 %), New Brunswick (93 records; 5.4 %),
the Northwest Territories (80 records; 4.6 %), Nova Scotia
(47 records; 2.7 %), Quebec (30 records; 1.7 %), and Yukon
(17 records; 1.0 %) had less than 10 % of the soil records
missing information.

6 Populating the usersoil table in SWAT

The variables in SWAT’s usersoil table refer to record index-
ing and soil classification, as well as soil properties pertain-
ing to the entire profile or specific layers. The variables in
each of these groups are described in the following subsec-
tions. The usersoil table starts with a number of columns that
define the database and soil classification variables, followed
by soil profile and layer information, and inactive soil prop-
erties (Table 2).
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Table 2. Variables included in the SWAT usersoil table.

Column Variablea Description Units Status

1 OBJECTID Object identifier – Optional
2 MUID Mapping unit identifier – Optional
3 SEQN Record counter calculated by SWAT – Optional
4 SNAM Soil identifying name – Optional
5 S5ID Soil interpretation record – Optional
6 CMPPCT Soil component percent – Optional
7 NLAYERSb Number of layers – Required
8 HYDGRP Hydrologic soil group – Required
9 SOL_ZMX Maximum rooting depth of the soil profile mm Required
10 ANION_EXCL Fraction of soil porosity from which anions are ex-

cluded
– Optional

11 SOL_CRK Potential of maximum crack volume of the soil profile
expressed as a fraction of the total soil volume

mm3 mm−3 Optional

12 TEXTURE Texture of soil layer – Optional
13 SOL_Zx Depth from soil surface to bottom of layer mm Required
14 SOL_BDx Moist bulk density Mg m−3 or g cm−3 Required
15 SOL_AWCx Available water capacity of the soil layer mm mm−3 Required
16 SOL_Kx Saturated hydraulic conductivity mm h−1 Required
17 SOL_CBNx Organic carbon content % (w/w) Required
18 CLAYx Clay content % (w/w) Required
19 SILTx Silt content % (w/w) Required
20 SANDx Sand content % (w/w) Required
21 ROCKx Rock fragment content % (w/w) Required
22 SOL_ALBx Moist soil albedo – Required
23 USLE_Kx Erodibility factor (K) 0.01 ton ac h ac ft-ton in−1 Required
24 SOL_ECx Electrical conductivity dS m−1 Optional

Adapted from Arnold et al. (2013) and Sheshukov et al. (2009). a Subscript x corresponds to soil layer from 1 to 10. The variables SOL_CALx and SOL_PHx are
present in the usersoil table after all the columns listed above for all the 10 preexisting layers. These variables refer to soil CaCO3 and soil pH, respectively, and are not
currently active in the model. Thus, their records are entered as zero in the SWAT 2012 database. b The number of layers defines how many entries will be required in
the layered information, signalled by the subscript x. For example, a soil with NLAYERS= 4 should have subscript x corresponding to soil layer variables from 1 to 4.
As a result, the records extend to column 60 in the usersoil table. (i.e., 4 layers× 12 variables+ 12 preceding variables= 60).

6.1 Database and soil classification variables

The SWAT soil classification variables include the OBJEC-
TID (general listing number), MUID (map unit identifier),
SEQN (sequence number), SNAM (soil name), S5ID (Soils5
ID number for USDA soil series data), and CMPPCT (per-
centage of the soil component in the MUID). A numbering
system used for the OBJECTID variable was chosen to avoid
conflicts with existing soil records in the usersoil table. The
SWAT model comes with more than 200 soil records in a
built-in database that cannot be easily overwritten, and any
soil record imported into the database with the same OB-
JECTID as the existing record will not be imported. Thus,
the OBJECTID field was populated sequentially from 1001
to the number of unique soil records in the SLC database
plus 1000 (i.e., OBJECTID ends in 12 838 in the case of the
COMPLETE dataset, which has 11 838 unique soil records).
The map unit ID (MUID) was assigned the SOIL_ID code
in the SLC dataset, which is a concatenation of the province
code (two digits), a soil code (three digits), a modifier code
(five digits), and a profile code (one digit). The sequence

number (SEQN) variable was assigned the same value as the
OBJECTID variable. This process created a unique SEQN
for each recurrence in the SLC dataset.

Similar to the MUID variable, the soil name variable
(SNAM) was also assigned the SOIL_ID code in the SLC,
despite the soil name being in the database, so as to link the
soil information to the GIS layer. The S5ID variable was cre-
ated as a concatenation between the acronym “SLC” and the
province two-digit abbreviation code. For example, all the
soil records in the province of Alberta have an S5ID equal to
“SLCAB”. The CMPPCT variable was assigned a value of
100, meaning that the soil comprises 100 % of this compo-
nent. As stated in Sect. 2, the user has to make a decision on
how to handle multipart polygons in the preprocessing of the
SLC GIS dataset since the soil records in multicomponent
polygons are not spatially defined.

6.2 Soil profile information

The following six variables in the dataset (i.e., columns 7 to
12) pertain to soil profile information. The number of layer
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variables (NLAYERS) was defined according to the soil lay-
ers in the SLT below the soil surface. The SLT table also
contains information for layers above the soil surface, as
is the case for litter, which have negative values for upper
and lower depths (i.e., the ground surface corresponded to
the zero depth, while above-surface and below-surface lay-
ers have negative and positive values, respectively). Above-
surface layers were removed from the dataset prior to anal-
ysis through filtering layers with lower depth above the soil
surface (i.e., lower depth less than or equal to zero).

The hydrologic soil group (HSG) variable (HYDGRP) is
an influential parameter for estimation of runoff using the
SCS curve number method and, consequently, for hydrolog-
ical simulations in SWAT (Gao et al., 2012; Neitsch et al.,
2005). The HSGs were calculated according to the method
outlined by USDA-NRCS (1993), which is based on depth
to the impermeable layer (e.g., bedrock), depth from soil sur-
face to shallowest water table during the year, hydraulic con-
ductivity of the least conductive layer of the soil profile, and
depth range of the hydraulic conductivity. The specific cri-
teria used are provided in tabular form in the Supplement.
Soils in the dual HSG classes were assigned to the less re-
strictive class since most agricultural areas in Canada exhibit
some degree of drainage (e.g., municipal drainage network,
surface drains, or tile drainage). SWAT translates HSG alpha-
betical classification into a numeric system, where HSGs A,
B, C, and D, are interpreted as 1, 2, 3, and 4, respectively.
The runoff potential increases with increasing numeric des-
ignations.

The depth to the impermeable layer is not reported in
the SLC database and was estimated based on the soil lay-
ers available in the SLT. When a bedrock layer or specific
soil horizons were present (i.e., fragipan; duripan; petrocal-
cic; ortstein; petrogypsic; cemented horizon; densic material;
placic; bedrock, paralithic; bedrock, lithic; bedrock, densic;
or permafrost; USDA-NRCS, 1993), its upper depth was
used as the depth to impermeable layer. When a bedrock
layer was absent, the lower depth of the deepest mineral
soil layer was used as an alternative. The shallowest an-
nual depth to water table is also not reported and was es-
timated based on drainage class reported in the SNT. Very
poorly drained, poorly drained, imperfectly drained, moder-
ately well drained, and well drained (or better) soils were
assigned water table depths of 0, 25, 75, 100, and 125 cm, re-
spectively. The variables pertaining to hydraulic conductiv-
ity of the least conductive layer of the soil profile and depth
range of the hydraulic conductivity were both calculated us-
ing information from the SLT.

Out of the 11 838 soil records in the generated dataset,
21.3 %, 24.6 %, 39.0 %, and 15.1 % belonged to HSGs 1, 2,
3, and 4, respectively. These results suggest that more than
half of the agricultural soil records in Canada have a rela-
tively high or high runoff generation potential (i.e., HSGs 3
and 4, respectively). A spatial analysis indicated that 20.0 %,
26.8 %, 36.7 %, and 16.5 % of the areal extent of the soil

records belonged to HSGs 1, 2, 3, and 4, respectively. Many
of the soil records with higher potential for runoff genera-
tion are in the humid regions of Ontario, Quebec, and the
Maritimes (Fig. 2). Not surprisingly, this region has exten-
sively adopted measures to address excess moisture in agri-
cultural soils, such as tile drainage (Stonehouse, 1995; Ra-
souli et al., 2014). Excess moisture is also a problem in
areas of Canadian Prairies, such as the Red River Valley
in Manitoba, where surface drainage (Bower, 2007) and a
growing use of tile drainage (Cordeiro and Sri Ranjan, 2012,
2015) have been used to address this problem. Conversely,
soil records with low potential for runoff generation are lo-
cated in Saskatchewan and southeastern Alberta (along the
Saskatchewan border), which are among the most arid re-
gions in Canada (Wolfe, 1997).

The maximum rooting depth of the soil profile
(SOL_ZMX) was assumed to be the lower depth of the
deepest layer in the SLC soil profile. The fraction of soil
porosity from which anions are excluded (ANION_EXCL)
was not available in the SLC database and was set to the
default value of 0.5 in SWAT (Arnold et al., 2013). This
variable affects the concentration of nitrate in the mobile
water fraction, which is directly related to nitrate leaching.
The potential of maximum crack volume of the soil profile
expressed as a fraction of the total soil volume (SOL_CRK)
can be calculated with the FLOCR model using 30-year
weather data (Bronswijk, 1989). However, due to the fact
that the model is not readily available for download and
the unreasonable time required to run the model for such
a large number of soil records, as well as the fact that
SOL_CRK is optional in SWAT, its value was set to 0.5.
In large-scale studies this value is further adjusted through
a spatially explicit calibration scheme (Whittaker et al.,
2010). The SOL_CRK variable controls the potential crack
volume for the soil profile. This value was selected based
on the fact that all of the built-in soil records in the SWAT
soils database have the SOL_CRK variable set to 0.5. The
TEXTURE variable, although not required for simulations
with the SWAT model, was estimated for reference using
the “TT.points.in.classes” function from the “soiltexture”
R package (Moeys, 2016). The Canadian soil texture
classification system was used as a reference.

6.3 Soil layer information

The soil profile variables are followed by 10 sets of 12 vari-
ables (i.e., columns 13 to 132) pertaining to layered soil in-
formation. The lower depth of each soil layer in the SLT
was used as the depth from soil surface to the bottom layer
(SOL_Z). The soil bulk density (SOL_BD) was extracted di-
rectly from the SLT. The available water capacity of the soil
layer (SOL_AWC) was calculated from the water retention of
the soil reported in the SLT at different matric potentials. The
water moisture content at−33 and−1500 kPa were assumed
to represent the soil moisture at field capacity (FC) and per-
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Figure 2. Spatial distribution of the hydrologic soil groups (HYDGRP) variable calculated for the Soil Landscapes of Canada (SLC) database.
HSG A= 1, HSG B= 2, HSG C= 3, and HSG D= 4 shown for the provinces of Prince Edward Island (PE), Nova Scotia (NS), New
Brunswick (NB), Quebec (QC), Ontario (ON), Manitoba (MB), Saskatchewan (SK), Alberta (AB), and British Columbia (BC). Some HSGs
could not be mapped (e.g., province of Newfoundland and Labrador (NL)) due to missing records in the PAT of the GIS layer or being part
of the soils with missing data in the SLT.

manent wilting point (PWP), respectively (Givi et al., 2004).
The SOL_AWC was calculated as the difference between FC
and PWP (Hillel, 1998). Soil moisture content at −33 kPa
was not available for 2658 layer records (i.e., 4.3 % of the
61 905 original records in the SLT table), which would result
in the variable SOL_AWC not being calculated and the loss
of more soil records from the dataset. To avoid this, the mois-
ture content at −10 kPa was used to replace that at −33 kPa.
On average, the soil moisture content in the soil profile was
around 6 mm larger at −10 kPa than that at −33 kPa (Ta-
ble 3), indicating an overestimation of SOL_AWC in these
records. Larger differences between soil moisture content at
−10 and −33 kPa in the top soil layers were likely driven by
lower bulk densities, which increase the water-holding ca-
pacity of the soil (Table 3).

The variables saturated hydraulic conductivity (SOL_K)
and soil organic carbon content (SOL_CBN), as well as the
clay (CLAY), silt (SILT), sand (SAND), and rock fragment
(ROCK) contents, were extracted directly from the SLT. The
moist soil albedo (SOL_ALB) variable was only required for
the top layer as subsequent layers were assigned a value of
zero. Since this variable is not reported in the SLC database,
it was estimated as the average (i.e., 0.10) of the range re-
ported by Maidment (1993) for moist, dark, plowed fields
(i.e., 0.05–0.15). Again, this value was selected since the

SLC version 3.2 focuses on agricultural areas, which is also
the major domain simulated by SWAT.

Another important variable for SWAT is the erodibility
factor (USLE_K), used as an input to the Universal Soil
Loss Equation (USLE). This equation is used to calculate soil
erosion, which is inherently linked to sediment and nutrient
transport (Sharpley et al., 1992, 2002; He et al., 1995; Aksoy
and Kavvas, 2005; Koiter et al., 2013) and therefore, critical
for simulations of non-point sources of pollution. The erodi-
bility factor was calculated using the method presented by
Sharpley and Williams (1990), which is based on the sand,
silt, clay, and organic carbon content of the soil (Eq. 1):

K=
(

0.2+ 0.3 · exp
[
−0.256 ·ms ·

(
1−

msilt

100

)])
·

(
msilt

mc+msilt

)0.3

·

(
1−

0.25 · orgC
orgC+ exp

[
3.72− 2.95 · orgC

])

·

(
1−

0.7 ·
(
1− ms

100

)(
1− ms

100

)
+ exp

[
−5.51+ 22.9 ·

(
1− ms

100

)]), (1)

whereK is the erodibility factor (0.01 ton ac h ac ft-ton in−1),
ms is the sand content (%), msilt is the silt content (%), mc is
the clay content (%), and orgC is the organic carbon content
(%) of the respective soil layer.
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Table 3. Average soil moisture content at matric potentials −10 and −33 kPa and average soil bulk density for discrete layers of the soil
profile. The average was calculated for all soils in the dataset. Each layer could have different depths for individual soils used in the average.

Layer θ at −10 kPa at −33 kPa Difference (mm) Average soil bulk density (g cm−3)

1 36.8 29.67 7.13 1.13
2 33.65 26.72 6.93 1.27
3 31.99 25.36 6.63 1.38
4 29.48 23.32 6.16 1.47
5 28.1 22.17 5.93 1.50
6 27.26 21.53 5.73 1.52
7 27.03 21.42 5.61 1.54
8 26.98 21.17 5.81 1.54
9 25.05 18.86 6.19 1.55

Average 29.59 23.36 6.24 1.43

θ is the average soil moisture content (mm).

As for SOL_ALB, USLE_K is only required for the top
layer and subsequent layers were also assigned a value of
zero. When converted from imperial to SI units (Foster et
al., 1981), the range of calculated values (Table 4) gener-
ally agrees with the ranges reported for Canada (Wall et al.,
2002), taking into consideration that K values may vary,
depending on particle size distribution, organic matter, and
structure and permeability of individual soils (Wall et al.,
2002). However, the units in the dataset presented here were
kept in imperial units for consistency with the SWAT in-
put format. The spatial distribution of the erodibility factor
(Fig. 3) was anticipated to align with the HSG, which was
the case in areas of low erosion potential in Saskatchewan,
where sandy soils prevail, and in areas where runoff poten-
tial is high such as in southern Ontario. However, the spatial
distribution of USLE_K somewhat contrasted to that of the
HSG in some areas of Manitoba and British Columbia, where
low sediment transport potential was predicted in areas with
high runoff potential. This contrast was likely due to other
factors reducing the potential for sediment transport, such as
soils with high clay to silt ratios or high organic carbon con-
tents (Sharpley and Williams, 1990).

The soil electrical conductivity (SOL_EC) information
was extracted directly from the SLT. The last 20 columns
of the dataset (i.e., columns 133 to 152), which correspond
to SOL_CAL for the 10 soil layers followed by SOL_PH for
the same layers, were all populated with zeros since these
variables are not currently active in SWAT. These variables
also had values of zero for all the preexisting soil records in
the built-in database in the model.

7 Uncertainty

Soil properties are inherently uncertain due to spatial vari-
ability and precision of measurement methods (Lacasse
and Nadim, 1996). This uncertainty has direct implications
for hydrologic simulations and their interpretation (Beven,

Table 4. Comparison between the average erodibility factor (K)
calculated for each soil textural class in the SWAT dataset and val-
ues reported in the literature.

Soil textural Acronym Calculated Reported K
class average K rangea

Loam L 0.14 0.23–0.30
Heavy clay HCl 0.18 0.05–0.23
Silty clay loam SiClLo 0.22 0.30–0.38
Clay loam ClLo 0.14 0.23–0.30
Silt loam SiLo 0.22 0.30–0.38
Sand Sa 0.04 < 0.05
Sandy loam SaLo 0.11 0.05–0.23
Clay Cl 0.14 0.23–0.30
Silty clay SiCl 0.22 0.23–0.30
Loamy sand LoSa 0.07 < 0.05
Sandy clay loam SaClLo 0.10 0.23–0.30
Silt Si 0.55 0.30–0.38b

Sandy clay SaCl 0.09 0.05–0.23c

a Adapted from Wall et al. (2002). b Range not reported; value from SiLo used.
c Range not reported; value from SaLo used.

2011). The SWAT model simulations, therefore, are subject
to the uncertainty of the soil properties used as input. For ex-
ample, hydraulic conductivity is highly spatially and tempo-
rally variable (Hillel, 1998), and these uncertainties are very
difficult to be avoided. The processing applied to the original
SLC database in the present analysis did not introduce any
further uncertainty to the variables reported by SLC (e.g.,
saturated hydraulic conductivity). There is, however, some
uncertainty relating to estimated and calculated parameters.
These uncertainties are discussed in this section, although
their quantification is beyond the scope of the present work.

An example of introduced uncertainty is the moist soil
albedo in the present dataset (0.10), which is the average of
a range reported in the literature (Sect. 6.3). However, any
value selected would have some uncertainty associated with
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Figure 3. Spatial distribution of the erodibility factor (K) calculated for the Soil Landscapes of Canada (SLC) database (imperial units).
The K factor shown for the provinces of Prince Edward Island (PE), Nova Scotia (NS), New Brunswick (NB), Quebec (QC), Ontario
(ON), Manitoba (MB), Saskatchewan (SK), Alberta (AB), and British Columbia (BC). Some HSGs could not be mapped (e.g., province of
Newfoundland and Labrador (NL)) due to missing records in the PAT of the GIS layer or being part of the soils with missing data in the SLT.

it from a modeling standpoint because a single value can-
not represent the variability in moist soil albedo as the soil
dries up. This is a recognized problem when trying to rep-
resent spatially or temporally variable parameters (e.g., soil
moisture) using a point measurement or single value in hy-
drological models (Beven, 2011).

Another example of uncertainty is the HSG calculations,
which required a number of assumptions. For example, the
shallowest annual depth to water table was unavailable in the
SLC and therefore estimated based on the drainage class of
each soil record. Also, the assumption of artificial drainage
resulted in assignment of dual-class HSGs to the less restric-
tive one. An assessment of HSG in the USA indicated a stan-
dard error of about one HSG (Stewart et al., 2012), suggest-
ing that classifying soils in the neighboring groups is not un-
common and that there is some uncertainty associated with
those estimates.

The estimation of erodibility factor (K; Eq. 1) would also
be subject to uncertainty. This is illustrated by the range of
erodibility factors reported for a single soil textural class (Ta-
ble 4). This variability can arise for different reasons. One
already mentioned is the precision of the method used to
determine the textural classes. A second one is the proce-
dure used to calculate K . For example, Neitsch et al. (2005)
present an equation that requires a soil structure code used in
soil classification with many types and subtypes. Since this

soil structure code is note reported in the SLC, an alternative
relationship (Eq. 4; Sharpley and Williams, 1990) that does
not require the soil structure code was used. This relationship
was selected to avoid the added uncertainty from estimating
the soil structure code.

Finally, one last variable worthwhile discussing in term of
uncertainty is the available water capacity of the soil lay-
ers. This variable was estimated as the difference between
field capacity and permanent wilting point. The procedure
used here to estimate available water content (i.e., the dif-
ference between field capacity and permanent wilting point)
follows the same procedure used by SWAT (Neitsch et al.,
2005) and is described elsewhere in the soil physics litera-
ture (Hillel, 1998). Therefore, it would not introduce any fur-
ther uncertainty. However, using the soil moisture content at
−10 kPa to replace records with missing soil moisture con-
tent at−33 kPa (Sect. 6.3) would introduce some uncertainty
in available water capacity for the replaced records.

Overall, prediction of uncertainty in regional hydrologic
modeling and a careful input data discrimination analysis
prior to calibration is unavoidable (Faramarzi et al., 2015).
Especially in large transboundary river basins where a con-
sistent soil dataset is not available from a single source, a
careful uncertainty assessment provides information on data
and model quality. Although the authors are unaware of
SWAT hydrologic simulations in binational watersheds that
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use soil datasets from both the USA and Canada, maybe
due to lack of large-scale datasets for Canada, it is expected
that the model output is subject to the quality and quan-
tity of both datasets. Some aspects contributing to this un-
certainty are (i) possible discontinuity in the mapping units
(i.e., polygons) between the GIS layers of both datasets,
(ii) the soil record being mapped in multicomponent poly-
gons in the GIS coverage (Soil Survey Staff, 1999; Agri-
culture and Agri-Food Canada, 1998), (iii) differences in
soil taxonomy between the USA system (Soil Survey Staff,
1999) and the Canadian system (Agriculture and Agri-Food
Canada, 1998) of soil classification, (iv) the methods used to
measure/estimate the physicochemical variables, which may
differ in accuracy and precision, and (v) the natural variabil-
ity in the calculation of some variables that cannot be mea-
sured (e.g., HSG; Stewart et al., 2012). Given the number of
aspects influencing trans-boundary uncertainty and the large
spatial scale of both the USA and the dataset discussed here,
an assessment of such uncertainty is beyond the scope of
the present study. However, this assessment is suggested to
quantify the share of errors from these sources in hydrologic
model projection in both upstream and downstream tribu-
taries. These are the subjects of our continuing studies.

8 Importing the SLC dataset into the SWAT database

Although the SWAT database is in a proprietary format (i.e.,
Microsoft Access), the present soils dataset has been pub-
lished in a nonproprietary format (i.e., comma-separated val-
ues (CSV) file) that can be opened in a variety of software
packages. However, the dataset can be easily imported into
the SWAT soils database using an automated import routine
in Microsoft Access (Fig. 4). This import process consists
of opening the SWAT2012 database and using the “Import
Text File” tool under the “Import & Link” section of the
“External Data” tab to read the CSV file. This action will
prompt a window where the user can select the path to where
the present dataset is stored and specify how and where the
data are stored in the database. The option “Append a copy
of the record to the table” should be selected, which acti-
vates a drop-down menu from which the usersoil table should
be highlighted. Once these options have been processed, an
“Import Text Wizard” window will be prompted, where the
option “Delimited – Characters such as comma or tab sepa-
rate each field” should be selected. Processing of this selec-
tion will prompt another window where the option “comma”
should be automatically selected by the wizard. However,
the user should activate the box “First Row Contains Field
Names” since the first row of the present dataset contains the
variable labels. Confirming the processing of the next win-
dows should finalize the import process, and the data should
be ready to be used in SWAT predictions.

Figure 4. Flowchart showing the steps for importing the present
soils dataset into SWAT’s database.

9 Data availability

PANGAEA, an open access library to archive, publish, and
distribute georeferenced data, supports database-dependent
research. Therefore, the entire dataset (Cordeiro et al.,
2017) is published and archived in the PANGAEA database
(https://doi.org/10.1594/PANGAEA.877298) under Creative
Commons Attribution 3.0 Unported, where the user must
give appropriate credit, provide a link to the license, and in-
dicate if changes are made.

10 Conclusions

The soils dataset presented and discussed in this work repre-
sents an effort to facilitate hydrological simulations using the
SWAT model in Canada. The dataset consists of a compila-
tion of 11 838 different soil records from the SLC database
with all the information required by SWAT and is ready to be
imported into the model’s soils database. A two-level data
screening procedure removed 489 soil records with miss-
ing layered information (i.e., not present in the SLT), while
1736 records were removed due to the lack of critical in-
formation required by SWAT, such as soil bulk density or
saturated hydraulic conductivity. Among the major contri-
butions of this dataset, the calculation and/or estimation of
variables not reported in the SLC database are of special im-
portance. The hydrologic soil groups (HSGs) calculated from
the SLC database suggest that about half of the soil records
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in Canada belong to classes with higher potential to gener-
ate runoff (i.e., HSG classes 3 and 4). Occurrence of soils
in HSG 3 and 4 agree with management practices aimed at
addressing excess moisture conditions in agricultural fields,
such as subsurface drainage in southern Ontario and Mani-
toba. The erodibility factor, which is another important vari-
able for SWAT simulations of non-point source pollution,
suggests a relationship with runoff potential in portions of
southern Ontario and Nova Scotia. However, low erodibility
potential, likely driven by high clay to silt ratios or high or-
ganic carbon content, was found in areas with higher runoff
potential in Manitoba and British Columbia.

The Supplement related to this article is available
online at https://doi.org/10.5194/essd-10-1673-2018-
supplement.
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