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Abstract: Circulating tumor cells (CTCs) provide an accessible tool for investigating tumor hetero-
geneity and cell populations with metastatic potential. Although an in-depth molecular investigation
is limited by the extremely low CTC count in circulation, significant progress has been made re-
cently in single-cell analytical processes. Indeed, CTC monitoring through molecular and functional
characterization may provide an understanding of genomic instability (GI) molecular mechanisms,
which contribute to tumor evolution and emergence of resistant clones. In this review, we discuss the
sources and consequences of GI seen through single-cell analysis of CTCs in different types of tumors.
We present a detailed overview of chromosomal instability (CIN) in CTCs assessed by fluorescence
in situ hybridization (FISH), and we reveal utility of CTC single-cell sequencing in identifying copy
number alterations (CNA) oncogenic drivers. We highlight the role of CIN in CTC-driven metastatic
progression and acquired resistance, and we comment on the technical obstacles and challenges
encountered during single CTC analysis. We focus on the DNA damage response and depict DNA-
repair-related dynamic biomarkers reported to date in CTCs and their role in predicting response
to genotoxic treatment. In summary, the suggested relationship between genomic aberrations in
CTCs and prognosis strongly supports the potential utility of GI monitoring in CTCs in clinical risk
assessment and therapeutic choice.

Keywords: circulating tumor cells; genomic instability; chromosomal instability; DNA-repair;
tumor genetic heterogeneity

1. Introduction

Circulating tumor cells (CTC), present in peripheral blood of patients with cancers,
are released from spatially distinct metastatic sites and primary tumor and thus may pro-
vide a comprehensive genomic picture of tumor content. The number of CTCs consists an
independent prognostic factor and can be used to monitor treatment efficacy [1,2]. Along-
side technological advances, CTCs have attracted clinical interest as a liquid biopsy to
detect predictive biomarkers of sensitivity and resistance for therapy selection. Moreover,
recent data on single CTC genomic analysis revealed the wide heterogeneity of CTCs,
emphasizing the potential clinical utility of single CTC sequencing in identifying resis-
tant clones that are arguably an important subset of cancer cells to target and eradicate.
Indeed, growing evidence shows that CTCs may represent tumor phenotypic, genomic
and transcriptomic heterogeneity and hence constitute a valuable sample to investigate
tumor vulnerabilities. The phenotypes associated with tumor resistance and metastases
require a complex pattern of cooperating processes among which genomic instability (GI) is
a major actor. Oncogenic mutations as well as large-scale genomic alterations, copy number
changes, DNA damage repair deficiencies or cell cycle perturbations may serve as an origin
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of GI and subsequent tumor heterogeneity. By offering real-time monitoring of a constantly
evolving disease and by examining tumor GI through simple blood draws, CTCs may be
of great utility to monitor patient response to treatment and precision medicine. Moreover,
CTC-derived models have recently emerged as tractable platforms to explore functional
capacities of CTCs.

In this review, we discuss different sources of GI and their impact on potential ther-
apeutic solutions. We explore CTC genomic heterogeneity through fluorescence in situ
hybridization (FISH) and single-cell sequencing and discuss how profiling of CTCs can
be used to trace GI of tumors. We emphasize the importance of GI characterization in the
context of tumor evolution and therapeutic choice. We outline the availability and utility
of CDX models in functional characterization of tumor-adapted GI mechanisms. Finally,
we highlight the dynamic changes of DNA-repair-related protein expression as functional
biomarkers of GI and/or response to genotoxic treatment.

2. Genomic Instability, More Than a Hallmark of Cancer

Over the past few years, genomic studies have demonstrated the complex and hetero-
geneous landscape of cancer and its potential impact on treatment resistance and metastasis
development. GI is a driving force promoting continuous modification of tumor genomes
and leading to clonal evolution and tumor genomic heterogeneity. Alterations in the DNA
damage response (DDR), endogenous and oncogene-induced replication stress or cell
division deregulation promote GI in cancer (Figure 1).

Figure 1. Concept diagram representing mechanisms of genome instability implicated in tumor
evolution, including CTC contribution and their potential exploitation as biomarkers.

2.1. DNA Damage Defects

The DNA damage response (DDR) is a dynamic process based on the successive
recruitments of different actors to DNA lesions. DNA damage occurs as a result of exoge-
nous events such as ionizing irradiation or intercross-link agents, or as a part of perturbed
physiological processes (see “Replicative stress” below). Resulting DNA double-strand
breaks (DSBs) are the most cytotoxic lesions. Typically, two main repair mechanisms
intervene to repair DSBs: homologous recombination (HR) and classical nonhomologous
end joining. Histone H2AX (γH2AX), Nijmegen breakage syndrome 1 (nibrin/NBS1)
and mediator of DNA damage checkpoint protein 1 (MDC1) create a signal amplifica-
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tion loop adjacent to DSBs, which engages the recruitment of DDR proteins, including
the MRN (MRE11-RAD50-NBS1) complex and breast cancer 1 (BRCA1) [3,4]. In-depth
investigation of functional, “real time” biomarkers of DDR is crucial for monitoring this
process under therapy. Phosphorylated γH2AX has emerged as a biomarker of DSBs,
allowing the monitoring of genotoxic events [5]. Its expression also correlated with sensi-
tivity to chemotherapy, radiotherapy, treatment with poly(ADP-ribose) polymerase (PARP)
inhibitors (PARPi) and chemical genotoxicity [6,7].

Tumors deficient in one DNA repair pathway often rely on a compensatory mechanism
to resolve the damage, i.e., fit their DNA-repair machinery, giving concomitantly potential
opportunities for targeted therapeutic approaches. PARPi have demonstrated synthetic
lethality in HR deficient BRCA1/BRCA2 mutant tumors, which led to their approval in
platinum-sensitive (with/without BRCA1/2 mutation) ovarian cancer and in germline
BRCA1/2 (gBRCA)-mutated metastatic breast cancer [8–10]. Germline gBRCA mutations
remain the most common clinical biomarker for PARPi therapy response because BRCA-
mutant cells show clear evidence of HR deficiency. The prevalence and clinical relevance
of somatic mutations in Fanconi anemia (FA) genes (23 FANC genes identified up to now)
have been recently reported as “BRCAness”, traits of sensitivity to PARPi treatment first
identified in breast cancer and later acknowledged in other types of cancers [11]. Indeed,
FA genes are commonly altered in several cancers. According to The Cancer Genome Atlas,
alterations in FA genes (mutations, deletions, and amplifications) were detected in 40% of
tumors [12]. The canonical function of FA proteins is to eliminate chromosome-breaking
effect of intercross-linking agents and preserve genomic integrity by stabilizing replication
forks, moderating RS and regulating mitotic division. Thus “BRCAness”-positive tumors
are also frequently sensitive to platinum salts. However, amplifications of FA genes may be
advantageous to cancer cells and contribute to resistance to chemotherapy. Deep deletions
and loss-of-function mutations in DNA-repair-related genes may confer tumor sensitivity
to DNA-repair-related targeted therapy. Recently, the potential utility of RAD51 protein,
a surrogate marker of HR functionality, has been reported [13,14]. RAD51 assay performed
in clinical practice on tumor tissue samples may improve patient selection for PARPi
therapy in non-BRCA1/2-related cancers, which likewise present HR deficiency.

2.2. Replicative Stress

Any possible obstacle that disturbs DNA replication and prevents cells from finalizing
their genome duplication before mitosis causes replicative stress (RS). It is a frequent
phenomenon among cancer cells and is usually associated with structural chromosomal
instability (CIN), which arises from prone to damage under-replicated DNA. Many cancers
harbor persistent RS due to oncogene activation or compromised DNA-repair machinery
in the absence or loss-of-function of essential that ensure protection or repair of stressed
replication forks. Indeed, constitutive activation of oncogenes such as c-MYC, HRAS and
KRAS has been shown to disturb the accurate DNA replication and has been associated
with increased GI [15–17]. Recently, Wilhelm et al. proposed a mechanism through which
RS contributed to numerical aneuploidy in both healthy and CIN+ cancer cells, by driving
chromosome mis-segregation via premature centriole disengagement [18]. This study
was concordant with previously published observations where RS increased incidence of
lagging chromosomes during cellular division [19,20]. Nonetheless, cancer cells cope with
RS through different mechanisms, such as overexpression of checkpoint mediators Claspin
and Timeless (members of ATR/CHK1 pathway), which may increase RS tolerance by
protecting replication forks [21]. Therefore, similarly to DNA-repair-deficient tumors, RS
response may also be exploited for cancer treatment.

2.3. Cell Division Abnormality

Mitotic CIN is defined as inability to faithfully segregate equal chromosome con-
tents to two daughter cells during mitosis. Indeed, abnormal chromosome numbers or
numerical aneuploidy is a common alteration in human cancer. It may be promoted by
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mitotic checkpoint deregulation and may lead to the loss of tumor suppressors or gain
of oncogenic signals. However, the loss of key mitotic checkpoint genes is rare in clinical
samples. Whole-genome doubling (WGD) induced through cytokinesis failure is a one-off
event which may promote aneuploidy. Its prognostic utility has been first shown in early-
stage colorectal cancer and was later proposed in other cancer types [22,23]. Tumor cells
experiencing WGD have developed centrosome clustering as a mechanism to prevent lethal
mitotic spindle multipolarity, by merging multiple centrosomes into two functional spindle
poles. Interestingly, centrosome amplification stimulates cytoskeleton alterations, which
might in turn be responsible for tumor cell invasions and thus metastatic development [24].
Inhibition of centrosome clustering may represent an anti-tumor specific strategy based on
the formation of multipolar spindles and subsequent tumor cell death [25]. GI has also been
associated with epithelial-mesenchymal transition (EMT) through the activation of the cy-
tosolic DNA response pathway [26]. Indeed, altered chromosome segregation arising from
GI promotes micronuclei formation whose rupture spills DNA into the cytosol. Presence of
DNA in the cytosol induces the cGAS-STING (cyclic GMP-AMP synthase-stimulator of
interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB
signaling, thus inducing a proinflammatory response, which factors were recognized as
EMT stimulators [27]. Identification of cGAS/STING activators is an area of active research,
with several ongoing clinical trials evaluating such molecules [28,29].

Sequencing studies and mechanistic investigations have revealed alterations in GI-
related genes and events (e.g., TP53, BRCA1/2, RB1 loss, CDKN2A loss) relevant in cancer
progression [12,30]. These have important clinical implications as they may give the
possibility to better stratify the patients and help clinicians in therapy selection.

3. GI-Related Biomarkers in CTCs and Their Utility for Clinical Decision Making

In-depth assessment of GI in bulk biopsy sample is frequently incomplete due to
limited sample availability, surrounding normal tissue contamination and tumor hetero-
geneity. Additionally, serial tumor tissue biopsies are not feasible in clinical practice and
metastasis biopsies are limited to accessible sites. Blood-based liquid biopsies containing
CTCs have emerged as a noninvasive and accessible alternative enabling serial sampling.
CTC analysis is technically challenging due to their low prevalence in the bloodstream and
their phenotypic heterogeneity. Nevertheless, several groups have recently illustrated the
feasibility of single-cell profiling in CTCs, providing a spectrum of genomic alterations that
may potentially represent tumor heterogeneity and unravel aggressive subclones. CTCs
acquiring genomic alterations can initiate and drive selection of resistant clones responsible
for tumor evolution and metastatic progression [31].

3.1. CIN Analysis in CTCs by FISH

FISH technique has been adopted as one of the main methods for the assessment of
CIN status in tumors (reviewed by McGranahan et al. [32]). Variations in chromosome copy
number across the cell population can be quantified using fluorescently labeled DNA probes
that bind to the centromeres of specific chromosomes. In CTCs, FISH has been developed
and optimized to detect biomarkers of sensitivity to selected treatments and better stratify
the patients. However, research revealed an unforeseen aspect of chromosomal heterogeneity
across CTCs. Indeed, one of the first successful applications of the FISH assay showed impor-
tant CIN in prostate cancer (PCa) CTCs through the detection of heterogeneous chromosomal
abnormalities among patients [33]. A study in castration-resistance prostate cancer (CRPC)
showed that ERG oncogene status was maintained in CTCs, while significant genetic het-
erogeneity was observed in AR copy number gain and PTEN loss. This suggested that ERG
rearrangements might constitute an early event in prostate tumorigenesis [34]. In the multi-
centric PETRUS study of biomarker assessment, we reported phenotypic and FISH genetic
heterogeneity of metastatic tumor tissue and CTCs in patients with CRPC [35]. High concor-
dance between metastatic biopsies and CTCs for ERG-rearrangement was observed in spite of
higher heterogeneity in CTCs. Other groups have also performed FISH analysis in metastatic
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CRPC CTCs revealing amplification of the AR locus and MYC [36] as well as the presence
of PCa-specific TMPRSS2-ERG fusion [37]. The comparative detection of ALK-rearranged
CTCs in NSCLC patients and corresponding tumor tissue biopsies was also performed. In
a cohort of 87 patients with lung adenocarcinoma, positive ALK immunostaining was re-
ported in CTCs isolated from five patients, corresponding to the same patients presenting
ALK-rearranged tumors [38]. Our group reported the detection of unique ALK rearrangement
patterns in CTCs in patients with metastatic NSCLC. Notably, we noted a high concordance
in ALK rearrangement patterns between CTCs and tumor biopsies in 18 ALK-positive and 14
ALK-negative patients. Additionally, the presence of a unique ALK rearrangement pattern
and EMT features was observed in CTCs [39]. Utility of ALK FISH testing in CTCs in the
longitudinal follow-up of crizotinib resistance profiling was also demonstrated [40]. We
showed that patients monitored at the early stage of crizotinib treatment presented significant
correlation between dynamic evolution of the amount of ALK copy number gained in CTCs
and PFS, suggesting that increased CIN in CTCs may be associated with a worse outcome
in ALK-rearranged NSCLC [41]. These reports consistently demonstrate that monitoring
tumor genomic characteristics via CTCs FISH analysis may serve as a predictive biomarker of
treatment efficacy in NSCLC patients.

In 2015, we reported the detection of rearrangement in the ROS1-tyrosine kinase gene
(present in 1% of NSCLC) in CTCs from ROS1-rearranged NSCLC patients. High levels of
aneuploidy and numerical CIN have been proposed as a mechanism of genetic diversity
in CTCs of ROS1-rearranged patients. DNA content quantifications and chromosome
enumeration underscored increased CIN in CTCs [42]. Further studies based on FISH
analysis emphasized CTC genomic heterogeneity through assessment of their numerical
CIN. Another report demonstrated the assessment of MET amplification by FISH in CTCs
from EGFR-mutated NSCLC patients at progression on erlotinib. MET amplification was
detected in 3 of 39 samples but interestingly all MET-amplified CTCs were identified at
disease progression [43]. Similarly, MET amplification was detected using FISH technique
in CTCs of patients with gastric, colorectal and renal cancers following a capture of
c-MET-expressing cells [44]. This particular aberration may have prognostic importance if
confirmed, as c-MET protein overexpression increases distinctly in metastasis [45].

In breast cancer, assessment of HER2 status is considered as standard practice for
therapy selection [46]. Interestingly, assessment of HER2 amplification using FISH in CTCs
has been reported by several groups and may be used to stratify patients eligible to HER2-
targeted therapy [47–49]. PTEN gene loss may drive tumor progression through activation
of PI3K/AKT pathway and occurs frequently in CRPC. PTEN gene status was assessed
in CTCs using the Epic Sciences platform, which identifies CTCs through an algorithm-
based image analysis followed by FISH [50,51]. PTEN losses determined by FISH in CTCs
correlated with PTEN expression loss measured by IHC in corresponding tumors biopsies.
They were also associated with worse prognosis in CRPC patients [50]. These FISH studies
highlight the importance of serial CTC genomic analysis for the identification of biomarkers
predictive of therapeutic efficacy in different cancer types. The data also emphasize
heterogeneous CIN as a characteristic feature of CTCs from different tumor types and show
the importance of single-cell analysis to evaluate CNA changes as possible mechanisms
of resistance and/or tumor evolution. FISH analysis of tumor samples is in most cases
still manually performed and is particularly laborious given the important number of
hematopoietic cells still retained in enriched CTC fractions. Nevertheless, technological
advancements in the field led to the development of semi-automated microscopy method
that allows the identification of filtration-enriched CTCs from NSCLC and PCa patients
and the detection of ALK, ROS1 and ERG gains and rearrangements in these cells, as we
reported (Figure 2) [52]. Moreover, integrated subtraction enrichment and immunostaining
FISH (SE-iFISH) was used to characterize CTCs of patients with malignancies such as
nasopharyngeal carcinoma or esophageal cancer. Notably, CTC karyotyping allowed the
assessment of chromosome 8 aneuploidy, which strongly associated with chemotherapy
efficacy and prognosis [53,54]. Aforementioned studies show that although FISH has been
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developed to detect biomarkers of sensitivity to different selected treatments, it constitutes
a valuable tool for the assessment of CIN across CTCs.

3.2. Copy Number Alterations (CNA) Landscape to Describe CIN in CTCs

The rarity and biological heterogeneity of CTCs have imposed technical challenges
for their isolation and analyses at the single-cell level and impacted the success of ro-
bust processing of complex and costly downstream methodologies. The single-nucleus
next-generation sequencing relies on successful whole genome amplification (WGA) of
an individual cell to generate good-quality DNA for subsequent sequencing. All WGA
systems generate nonlinear amplification bias, which may decrease genome coverage and
thus needs to be taken into consideration during sequence analysis [55]. Reproducible
CNA patterns among single CTCs and corresponding metastatic biopsy were obtained
after multiple annealing and looping-based amplification cycles of WGA of single CTCs
from lung cancer patients [56]. Indeed, each CTC from an individual patient exhibited
reproducible CNA patterns similar to the metastatic tumor but not the primary tumor.
This report also showed that different patients with adenocarcinoma shared similar CNA
patterns, whereas patients with small-cell lung cancer (SCLC) had distinctly different CNA
patterns. CNA profiling studies in the context of GI suggested that certain genomic loci
may confer a selective advantage for metastasis through their action on different signaling
pathways. To tackle the issue of protocol speed for clinical applications, Ferrarini et al.
developed a single-tube method consisting of a single step, with ligation-mediated PCR
(LM-PCR) WGA for low-pass whole genome sequencing and CNA calling from single
cells [57]. This was adapted to analyze CTCs from patients with lung adenocarcinoma
and PCa. The Ampli1™ WGA-based low-pass workflow (Menarini Silicon Biosystems)
successfully captured substantial heterogeneity across CTCs, highlighting the utility of
single-cell profiling application for genome-informed therapeutic strategies [57]. Another
group assessed GI through genome-wide copy number profiling of CTCs from seven
metastatic CRPC patients [58]. CTCs were identified and characterized using the Epic
Sciences CTC platform and subclonal tumor suppressor loss, oncogene amplification and
GI were measured by the distribution of large-scale state transitions (LST) genome-wide
(frequency of CNV breakpoints > 10 Mb). A broad range of copy number changes in
AR and PTEN were detected in most CRPC patients accompanied by high heterogeneity
in LST distribution, highlighting important GI in CTCs at the single-cell resolution [58].
Additional CNA profiling studies in CRPC highlight high levels of genomic heterogene-
ity among CTCs [59,60]. The compound losses of three tumor suppressors (PTEN, RB1
and TP53) in PCa CTCs and the corresponding circulating tumor DNA analysis were
recently reported and linked to the aggressive trait of the tumor [61]. Moreover, gains in
PTK2 and MYC together with TP53 loss were also detected in CTCs and were strongly
associated with poor prognosis in PCa patients. Despite frequent copy number traces
that highly resembled corresponding biopsies, unique gains in MYC were revealed in
CNA profiles of CTCs captured from apheresis of PCa patients [62]. Previously, MYCN
gain and simultaneous AR loss was proposed as a possible mechanism of neuroendocrine
differentiation in PCa tumor samples [63] and was later confirmed in CTCs as part of
highly complex profile containing additional aberrations in ERG, c-MET and PI3K genes
during CRPC progression [59]. Evaluation of CNA profiles in CTCs from metastatic breast
cancer patients suggested potentially targetable alterations in PTCH1 and NOTCH1 that
were absent in baseline biopsies, indicating subclonal tumor evolution [64]. The predic-
tive value of CNA profiles of CTCs has also been recently evidenced in SCLC patients.
Characteristic CNA signature of subsequent chemosensitivity was reported with an 83.3%
accuracy to classify SCLC CTCs as chemosensitive or chemorefractory [65]. Similarly,
predictive single CTC-based CNA score in the response to first-line chemotherapy was
demonstrated in SCLC patients by Su et al. CNA profiles across CTCs of individual SCLC
patients were highly concordant with copy number losses in two frequently inactivated
genes, TP53 and RB1, found in 64.6% and 81.3% of patients respectively [66].
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Figure 2. Detection of CTCs harboring ALK and ROS-1 gene aberrations in NSCLC patients and
ERG gene alterations in metastatic CRPC patients by combined immunofluorescent staining and
filter-adapted FISH (FA-FISH). (A). (a) Example of FISH patterns in NSCLC CTCs with ALK-copy
number gain (ALK-CNG) and ALK-rearrangement. Red and green arrows correspond to ALK 3′ and
ALK 5′ probes (Vysis ALK Break Apart rearrangement Probe Kit from Abbott Molecular Inc., Chicago,
IL, USA) respectively. (b) Example of FISH patterns in NSCLC CTCs bearing ROS1-CNG and ROS1-
rearrangement. Green and red arrows correspond to 3′ and 5′ ROS1-rearrangement extremities (Vysis
6q22 ROS1 Break Apart FISH probe RUO Kit from Abbott Molecular Inc.) respectively. (c) Example
of FISH patterns in CRPC CTCs with ERG-CNG and ERG-rearrangement. Green and red arrows
correspond to 3′ and 5′ ERG gene ends (Kreatech ERG Break Apart Rearrangement Probes kit)
respectively. (B). Example of hybridized CTC using the AneuVysion Multicolor DNA Probe Kit
(Abbott Molecular Inc.). Green spots indicate hybridization of locus-specific identification (LSI) 13
probe and centromere-specific enumeration probe (CEP) X. Red spots indicate hybridization of LSI
21 probe and CEP Y. Blue spots indicate hybridization of CEP 18. (C). Example of FISH patterns in
CTCs with ALK-CNG detected by combined immunofluorescent staining and three-color FA-FISH
for ALK gene and chromosome 2 centromere detection (XCyting Centromere Enumeration Probe
XCE2 from MetaSystems GmbH), showing the existence of true gains of ALK gene in CTCs. Scale:
white bars = 10µm.
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Overall, single-cell heterogeneity revealed by CNA analysis clearly represents a chal-
lenge for CTC molecular biomarker studies. Nevertheless, in-depth analysis of a sufficient
number of CTCs may allow the profiling of characteristic CNA burden, which may be
informative for future treatment strategies.

3.3. Using CTC-Derived Models to Investigate GI Mechanisms

Over the past decade, CTC-derived models have emerged as tractable tools to explore
metastatic disease by studying the tumorigenic capacity of CTCs in several malignan-
cies [67]. Despite technical challenges due to CTC rarity in the bloodstream, significant
efforts were provided in the establishment of CTC-derived xenografts (CDX). The first one
was generated in 2013 from breast cancer patient CTCs [68], while other groups reported
successful models in lung, melanoma and prostate cancers [69–72]. We recently reported
sequential acquisition of key genetic events promoting an aggressive neuroendocrine trans-
formation in CRPC CDX. PTEN and RB1 losses were acquired in CTCs, while TP53 loss
harbored in a subclone of the primary tumor was suggested as the driver of the metastatic
event leading to CDX development. Interestingly, co-occurring losses of tumor suppressor
genes PTEN, RB1 and TP53 were found in single CTCs characterized by extremely high CIN.
Neuroendocrine transformation was promoted by the high number of CNAs and WGD,
highlighting GI acquired during metastatic development [72]. In SCLC, single-cell analysis
of CDX revealed the existence of co-existing heterogeneous cell subpopulations that are
contributing to multiple concurrent resistance mechanism to chemotherapy [73]. Ex vivo
expansion of viable CTCs has also been described [74–78]. Transcriptomic analysis of
a CTC cell line derived from a metastatic colon cancer patient indicated altered expression
of DNA-repair-related genes compared to a primary colon cancer cell line [77,79]. Another
CTC-derived breast cancer cell line was recently established from a patient with metastatic
estrogen receptor-positive breast cancer. Its CNA profile was highly concordant with that
of patient CTCs and WES analysis deciphered alterations in common DNA damage-related
genes (e.g., ATM, CDKN1A) [78].

The current time frame required for developing CTC-derived models does not allow
for real-time monitoring of cancer patients and thus may not inform clinical decisions. How-
ever, their genomic analysis may help decipher molecular events involved in CTC-mediated
tumor progression and reveal potential CTC biomarkers relevant for clinical management.

3.4. DNA Repair-Related Protein Biomarkers in CTCs

Functional analysis of DNA-repair-related protein expression in CTCs has been used
as a pharmacodynamic biomarker for monitoring response to chemotherapy or targeted
therapy (Table 1). Expression of DSB marker γH2AX has been evaluated as a dynamic
indicator of DNA damage in CTCs from patients with advanced cancers after topotecan
treatment using immunofluorescent staining followed by FACS analysis [80]. Data showed
feasibility of monitoring dynamic changes in CTC nuclear biomarkers at response to treat-
ment. γH2AX foci were also evaluated in CTCs after CellSearch analysis performed during
radiation therapy as well as during combination treatment of low-dose of radiotherapy
combined with PARPi [81,82]. Another DSB protein, RAD50, has been sequentially moni-
tored in CTCs and its expression was estimated after radiotherapy of single side lesions in
advanced lung cancer patients. CTCs were additionally screened for the immunotherapeu-
tic target PD-L1 after enrichment with CellSieve Microfiltration Assay [83]. Results showed
that RAD50 nuclear foci formation in CTCs may serve as a noninvasive tracer in cancer
patients receiving side-directed radiotherapy independently of PD-L1 screening. ERCC
excision repair 1 (ERCC1) is required for the repair of cisplatin-induced DNA lesions and
may play the role of a biomarker for predicting response to platinum therapy. Indeed, it has
been suggested that tumor cells overexpressing ERCC1 may be characterized with an en-
hanced capacity to resolve DNA platinum-adducts and consequently bypassing platinum
cytotoxicity [84]. ERCC1 expression in CTCs was found to negatively correlate with PFS in
metastatic NSCLC patients under platinum-based chemotherapy [85] and presence of CTCs



Cells 2021, 10, 337 9 of 15

expressing ERCC1 after therapy indicated a worse outcome for breast cancer patients [86].
Another group showed that ERCC1 transcript expression in CTCs was more predictive of re-
sponse to platinum-based chemotherapy than standard ERCC1 protein expression detected
on primary tumor biopsy samples [87]. Additionally, ERCC1 transcript-positive CTCs
were used for monitoring platinum-based chemotherapy and to assess the post-therapeutic
outcome of ovarian cancer [88]. These studies suggested that CTCs may represent dynamic
intra-cellular changes in response to DNA-repair-related treatments more accurately than
tumor biopsy. Furthermore, overexpression of the DNA/RNA helicase Schlafen family
member 11 (SLFN11) has been described as an emerging biomarker of tumor cell sensitivity
to DNA-damaging agents, including platinum chemotherapy [89] and to PARPi in several
cancers [90,91]. SLFN11 protein expression was evaluated by immunofluorescent staining
in CTCs from CRPC patients treated with platinum chemotherapy. SLFN11 overexpres-
sion in CTCs was associated with longer PFS compared to patients with SLFN11-negative
CTCs [92]. Despite accumulating data, identification of CTC subpopulations expressing
DNA-repair-related markers remains complex due to the existing variations among the
technologies used to this end, as well as their low prevalence in patient blood. Therefore,
further research is required to determine the clinical relevance of such biomarkers, notably
in patients with advanced malignancies presenting significant levels of CTCs.

Table 1. DNA damage repair-related biomarkers in CTCs.

DNA Repair-Related
Protein Markers in CTCs Tumor Type Treatment Key Findings Ref.

ΥH2AX (phosphorylated
Ser 139 H2AX

variant histone)

Various advanced
cancers Topotecan

- A dose-dependent increase of
ΥH2AX-positive patient CTCs

with topotecan
- Monitoring of pharmacodynamics effects
of chemotherapy via nuclear ΥH2AX levels

[80]

NSCLC Radiotherapy Elevated ΥH2AX signal in CTCs
post-radiotherapy [81]

Peritoneal cancers and
advanced solid
malignancies

Radiotherapy and PARPi
(veliparib)

- Exploratory study showing the use of
ΥH2AX in CTCs

- Increase in ΥH2AX+ CTC levels after
treatment in few patients while one patient

presented a decrease, suggestive of
treatment failure

[82]

RAD50 (double strand
break repair protein) NSCLC Radiotherapy

- RAD50 foci formation used to label and
track CTCs subjected to radiation at

primary site
- Monitoring of tumor dynamics

[83]

ERCC1
(Excision repair

cross-complementation
group 1)

NSCLC Platinum chemotherapy
Correlation between low ERCC1

expression in CTCs and progression-free
survival after platinum-based therapies

[85]

Breast cancer Neoadjuvant chemotherapy

- 72% of ERCC1-positive CTCs
after therapy

- No significant correlation between CTCs
and clinical parameters

[86]

Ovarian cancer Platinum chemotherapy
ERCC1-positive CTC at diagnosis

predictive of resistance to platinum-based
therapy

[87]

SLFN11
(DNA/RNA helicase

Schlafen family
member 11)

CRPC Platinum chemotherapy
Potential use of SLFN11 expression in

CTCs for selection of patients with better
response to platinum therapy

[92]

RAD23B
(RAD23 homolog B) Rectal cancer

Radiation and 5-FU
Or

radiation and capecitabine

Expression of thymidylate synthase
(TYMS) and RAD23B has predictive value

of nonresponse to neoadjuvant
chemoradiation

[93]



Cells 2021, 10, 337 10 of 15

4. Conclusions

The study of GI-related biomarkers in CTCs is an emerging field, and their real-time
monitoring may be useful in clinical decision making. The technical advances and robust
CTC isolation methods may now allow us to capture phenotypic and genetic heterogene-
ity and, subsequently, to reconstitute tumor characteristics. The relationship between
GI, prognosis and acquired resistance to treatment is very complex, and deciphering the
molecular mechanisms contributing to GI in CTCs remains crucial. The advancements in
FISH analysis have strongly contributed to the unveiling of increased CIN in CTCs and
its potential role in resistance mechanisms. CNAs successfully assessed via single-cell se-
quencing of CTCs indicated various sources of GI, such as oncogene-induced replicative
stress, cell-cycle-related genes alterations or WGD, suggesting a rationale for therapeutic
options. Moreover, CNA events reveal common DNA-repair-related gene alterations
detected across tumor types. Those DDR alterations increase GI and thus may constitute
novel therapeutic targets. Single CTC sequencing may therefore provide insight into the
mechanistic origins and consequences of DDR deficiency in cancer (Figure 3). Finally,
CTC-based monitoring of DDR-related biomarkers was proven to inform about therapeu-
tic progress, but it also indicates first signals of acquiring resistance. Therefore, though
investigating GI mechanisms through CTC monitoring is challenging, it is becoming
particularly useful for tracking tumor heterogeneity and may present a critical element
for precision medicine.

Figure 3. Schematic model of state-of-the-art strategies for the investigation of genome instability
in CTCs.
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