


cytes, SAA3 is produced by nonhepatic cells, such as macro-
phages [19] and adipocytes [20]. SAA3 functions as a chemot-
actic agent for phagocytes, and its level is up-regulated in met-
astatic lung cancer [21] and in the adipose tissue of obese
mice [20].

Adenosine is a purine nucleoside that accumulates in the
extracellular space in response to metabolic disturbances and
other types of insults, which include inflammation, physical
damage, and apoptosis [22–24]. The cellular effects of adeno-
sine are mediated by four GPCRs: the A1-, A2A-, A2B-, and
A3AR [25]. Adenosine decreases the expression of proinflam-
matory cytokines, such TNF-� and IL-12; chemokines, such as
MIP-1�; and the release of NO by classically activated or M1
macrophages [26–29]. We have shown recently that adenosine
enhances IL-4- or IL-13-induced M2a macrophage activation
[30]. However, the role of AR signaling in M2c macrophages
has not been explored. Thus, the goal of present study was to
characterize further the effect of adenosine on M2 macro-
phage polarization by examining the role of AR stimulation in
controlling IL-10-induced M2c macrophages.

MATERIALS AND METHODS

Drugs and reagents
Adenosine was purchased from Thermo Fisher Scientific (Waltham, MA,
USA). The selective A2BAR agonist BAY606583 was a kind gift from Dr.
Holger Eltzschig (University of Colorado, Denver, CO, USA). The nonse-
lective AR agonist NECA, selective A2AAR agonist CGS21680, selective
A2AAR antagonist 4-{2-[7-amino-2-(2-furyl)[1.2.4]triazolo[2.3-a][1.3.5]-tri-
azin-5-ylamino] ethyl} phenol, selective A2BAR antagonist PSB0788, and
JAK/STAT inhibitors AG490, ZM39923, and cucurbitacin were purchased
from Tocris Cookson (Ellisville, MO, USA). The p38 MAPK pathway inhibi-
tor SB203580, and PI3K inhibitor LY294002 were purchased from Calbio-

chem (San Diego, CA, USA). IL-6 and IL-10 were purchased from Pepro-
Tech (Rocky Hill, NJ, USA).

Experimental animals and cell cultures
A2AAR and A2BAR KO mice on the C57BL/6J genetic background were
bred as described previously [31]. All mice were maintained in accordance
with the recommendations of the “Guide for the Care and Use of Labora-
tory Animals”, and the experiments were approved by the Institutional Ani-
mal Care and Use Committee of the New Jersey Medical School.

BMDMs were isolated from femurs and tibias of WT, A2AAR, or A2BAR
KO mice. BMs were triturated with a 26-gauge needle and passed through
a 70-�m nylon mesh cell strainer. Cells were cultured in DMEM, supple-
mented with 10% FBS, 50 U/ml penicillin, 50 �g/ml streptomycin, and 50
ng/ml M-CSF (PeproTech) for 7 days, during which period culture me-
dium was replaced once on Day 3. BMDMs were scraped in cold 0.1%
EDTA-PBS solution, and then, the cells were counted and placed in 96-well
cell-culture plates at 2 � 105 cells/well.

Peritoneal macrophages were isolated and cultured as described previ-
ously [32]. RAW 264.7 cells (American Type Culture Collection, Manassas,
VA, USA) were cultured as described previously [32].

ELISA for determining TIMP-1 production
RAW 264.7 cells or BMDMs placed in the wells of 96-well plates were
treated with adenosine or AR agonists, followed immediately by the
addition of IL-10 (10 ng/ml) for 6 or 24 h, after which period, the super-
natants were frozen and stored. AR antagonists or inhibitors were adminis-
tered 30 min before NECA and IL-10. TIMP-1, TNF-�, or IL-12 levels in
supernatants of RAW 264.7 cells or BMDMs were determined using the
ELISA DuoSet kit (R&D Systems, Minneapolis, MN, USA).

RNA extraction, cDNA synthesis, and real-time PCR
Total RNA was prepared from cells using the RNeasy Mini Kit, according
to the manufacturer’s protocol (Qiagen, Valencia, CA, USA). RT and real-
time PCR were performed as described previously [30]. The following
primers were used: TIMP-1 5=-TCCTCTTGTTGCTATCACTGATAGCTT-3=

Figure 1. Effect of AR agonists and IL-10 on TIMP-1 production by macrophages. TIMP-1 production
by RAW 264.7 cells treated with 100 �M adenosine (ado; A), 0.1 �M NECA, CGS21680, or BAY606583
(B), and/or 10 ng/ml IL-10 for 24 h. *P � 0.05, **P � 0.01 versus vehicle #P � 0.05; ###P � 0.001
versus IL-10. ve, Vehicle. (C) TIMP-1 production by BMDMs isolated from WT, A2AAR, or A2BAR KO
mice and treated with 1 �M NECA and/or 10 ng/ml IL-10 for 6 h. *P � 0.05, ***P � 0.001. (D)
TIMP-1 production by RAW 264.7 cells treated with increasing concentrations of PSB0788, 30 min be-
fore treatment with 1 �M NECA and 10 ng/ml IL-10 for 24 h. ###P � 0.001 versus vehicle (NECA�IL-
10). All results (mean�sem) are representative of at least three independent experiments (n�5 in each
experiment).
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(forward), 5=-CGCTGGTATAAGGTGGTCTCGTT-3= (reverse); arginase-1
5=-CAGAAGAATGGAAGAGTCAG-3= (forward), 5=-CAGATATGCAGGGAGT-
CACC-3= (reverse); SAA3 5=-TGCCATCATTCTTTGCATCTTGA-3= (for-
ward), 5=-CCGTGAACTTCTGAACAGCCT-3= (reverse); SOCS-3 5=-AGCTC-
CAAAAGCGAGTACCA-3= (forward), 5=-TGACGCTCAACGTGAAGAAG-3=
(reverse); BCL-3 5=-GACCTGGAGGTTCGCAATTA-3= (forward), 5=-CAC-
CATGTTCAGGCTGTTGT-3= (reverse); 18S 5=-GTAACCCGTTGAAC-
CCCATT-3= (forward), 5=-CCATCCAATCGGTAGTAGCG-3= (reverse).

Gene silencing using siRNA
RAW 264.7 cells were transfected with STAT3-specific and NT siRNA using
the Amaxa Nucleofector (Lonza, Basel, Switzerland), as described in the
manufacturer’s protocol, and the cells were incubated for 24 h. ON-
TARGETplus SMARTpool STAT3 siRNA and ON-TARGETplus NT pool
were purchased from Dharmacon (Lafayette, CO, USA).

Western blot
Protein isolation from RAW 264.7 cells and Western blotting was per-
formed, as described previously [33]. The membranes were probed with
rabbit anti-mouse primary mAb raised against STAT3, phospho-STAT3,
JAK1, phospho-JAK-1, JAK2, phospho-JAK2, JAK3, or phospho-JAK3 (Cell
Signaling Technology, Danvers, MA, USA). Thereafter, the membranes
were incubated with a secondary HRP-conjugated goat anti-rabbit antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). HRP-conjugated poly-
clonal goat anti-�-actin antibody, to assess equal loading, was used from
Santa Cruz Biotechnology. Bands were detected using chemiluminescent
HRP detection reagent (Denville Scientific, South Plainfield, NJ, USA). X-
ray films were exposed for 1–15 min.

Statistical analysis
Values in the figures are expressed as mean � the sem of the indicated
number of observations. Statistical analyses of the data were performed us-
ing Student’s t-test or one-way ANOVA, followed by Dunnett’s test, as ap-
propriate.

RESULTS

Adenosine augments TIMP-1 production by M2c
macrophages through an A2BAR-mediated process
To assess the effect of adenosine on M2c macrophages, we
treated RAW 264.7 macrophages with adenosine and/or IL-10
and determined TIMP-1 concentrations from the supernatants
using ELISA. Our results showed that whereas adenosine and
IL-10 alone augmented basal TIMP-1 production slightly, the
combination of adenosine and IL-10 induced a synergistic and
marked augmentation of TIMP-1 production (Fig. 1A). To deter-
mine which AR is responsible for this effect, we next treated
RAW 264.7 cells with NECA, CGS21680, or BAY606583, together
with IL-10. We found that NECA and BAY606583 were more effi-
cacious than CGS21680 in augmenting TIMP-1 production in
conjunction with IL-10 (Fig. 1B). To further study the role of A2

receptors, we treated BMDMs isolated from WT, A2AAR, or
A2BAR KO mice with NECA or NECA and IL-10. NECA and
IL-10 markedly augmented TIMP-1 production by macrophages

Figure 2. AR stimulation augments the
IL-10-induced expression of TIMP-1
and arginase-1 mRNA. (A) TIMP-1
mRNA expression in RAW 264.7 cells
treated with 10 ng/ml IL-10 or 100 �M
adenosine and 10 ng/ml IL-10 for 6 h.
###P � 0.001 versus IL-10 (n�6). (B)
Arginase-1 (Arg-1) mRNA expression
of RAW 264.7 cells treated with 1 �M
NECA or 10 ng/ml IL-10 or 1 �M
NECA and 10 ng/ml IL-10 for 6 h.
*P � 0.05, versus vehicle; ##p � 0.01
versus IL-10 (n�6). (C) Arginase-1
mRNA expression of BMDMs, isolated
from WT, A2AAR, or A2BAR mice,

which were treated with 1 �M NECA and/or 10 ng/ml IL-10 for 6 h. *P � 0.05, **P � 0.01, ***P � 0.001 (n�3). (D) SOCS-3 mRNA ex-
pression of WT, A2AAR, or A2BAR KO BMDMs treated with 10 ng/ml IL-10 or 1 �M NECA and 10 ng/ml IL-10 for 6 h. **P � 0.01, ***P �
0.001 versus vehicle (n�6). Results are the summary of two independent experiments. (E) BCL-3 mRNA expression of RAW 264.7 cells
treated with IL-10 or 1 �M NECA and 10 ng/ml IL-10 for 6 h. **P � 0.01 versus vehicle (n�6). All results (mean�sem) are representative of
at least three independent experiments.

Koscsó et al. Adenosine augments STAT3 signaling in M2c macrophages

www.jleukbio.org Volume 94, December 2013 Journal of Leukocyte Biology 1311
 Vol.94,  No.6 , pp:1309-1315, November, 2017Journal of Leukocyte Biology. 54.70.40.11 to IP www.jleukbio.orgDownloaded from 

http://www.jleukbio.org/


from WT and A2AAR KO mice but failed to do so by macro-
phages obtained from A2BAR KO mice (Fig. 1C). In addition,
pretreatment of RAW 264.7 cells with PSB0788 inhibited the aug-
menting effect of NECA and IL-10 on TIMP-1 secretion (Fig.
1D), further implicating the A2B receptor. Next, we tested if IL-10
treatment had any effect on the release of proinflammatory cyto-
kines and markers of classically activated macrophages, TNF-�
and IL-12. We found that treatment with IL-10 alone or with
IL-10 and adenosine failed to induce the release of TNF-� and
IL-12 in macrophages (data not shown).

Effect of AR stimulation on gene expression in
IL-10-treated macrophages
We next assessed the effect of AR stimulation on gene expres-
sion of several M2c markers. Similar to its effect of TIMP-1
protein, adenosine augmented TIMP-1 mRNA expression in
IL-10-treated macrophages (Fig. 2A). AR stimulation also en-
hanced arginase-1 mRNA expression; the effect was enhanced
markedly in IL-10-treated cells (Fig. 2B). In addition, AR stim-
ulation augmented arginase-1 mRNA levels in WT and A2AAR
KO macrophages but failed to do so in A2BAR KO macro-
phages (Fig. 2C), again implicating the A2BAR. NECA failed to
augment significantly the expression of IL-10-induced SOCS3
in WT, A2AAR KO, or A2BAR KO macrophages (Fig. 2D) or
the expression of IL-10-induced BCL-3 (Fig. 2E), indicating
that AR stimulation does not up-regulate gene expression
globally in M2c macrophages.

STAT3 activation participates in the effect of AR
stimulation on M2c polarization
We next studied the intracellular signaling pathways mediating
the up-regulation of TIMP-1 production by NECA in M2c mac-
rophages. As IL-10 is a well-known activator of STAT3 [10], we
first determined the effect of NECA on STAT3 activation, as
assessed by evaluating STAT3 phosphorylation. Treatment with
IL-10 augmented STAT3 phosphorylation in RAW 264.7 cells,
and AR stimulation with NECA increased this STAT3 phos-
phorylation further (Fig. 3A). NECA alone failed to stimulate
STAT3 phosphorylation (data not shown). We then silenced
STAT3 using transfection with specific siRNAs to study its con-
tribution to the augmenting effect of AR stimulation on
TIMP-1 expression in IL-10-treated RAW 264.7 cells (Fig. 3B).
We treated STAT3-silenced or control macrophages with
NECA or NECA and IL-10, and found that cells transfected
with a NT siRNA responded to NECA and IL-10 treatment
with significantly higher TIMP-1 release than macrophages
transfected with STAT3-specific siRNA (Fig. 3C). A pharmaco-
logical approach confirmed the role of STAT3, as the STAT3
pathway inhibitors AG490, ZM39923, or cucurbitacin all inhib-
ited the effect of NECA (Fig. 3D). To explore the role of fur-
ther signaling pathways, previously linked to IL-10 or adeno-
sine signaling, we treated RAW 264.7 cells with SB203580 or
LY294002 before treatment with NECA. Our results showed
that both inhibitors reduced the TIMP-1-inducing effect of

Figure 3. AR stimulation augments IL-10-induced STAT3 phosphorylation. (A) Phosphorylated STAT3 (pSTAT3) and actin protein expression in
RAW 264.7 cells treated with 10 ng/ml IL-10 or 1 �M NECA and 10 ng/ml IL-10 for 60 min. (B) STAT3 and actin protein expression in RAW
264.7 cells transfected with NT or STAT3-specific siRNA. (C) TIMP-1 production by RAW 264.7 cells transfected with NT or STAT3-specific siRNA
and treated with 10 ng/ml IL-10 or 1 �M NECA and 10 ng/ml IL-10 for 6 h. *P � 0.05, ***P � 0.001 (mean�sem; n�4). (D) TIMP-1 production
by RAW 264.7 cells treated with 10 �M AG490, 10 �M ZM39923, or 1 �M cucurbitacin, 30 min before treatment with 1 �M NECA and 10 ng/ml
IL-10 for 24 h. ***P � 0.001 versus vehicle (mean�sem; n�5). (E) TIMP-1 production by RAW 264.7 cells treated with 100 nM SB203580 or
LY294002, 30 min before treatment with 1 �M NECA and 10 ng/ml IL-10 for 24 h. Data are shown as percent of control (NECA�IL-10). ***P �
0.001 versus vehicle (mean�sem; n�5). Results are representative of at least three independent experiments.
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NECA/IL-10 (Fig. 3E), suggesting a role of p38 and PI3K/Akt
pathways, respectively, in the process.

AR stimulation inhibits IL-6-induced STAT3 signaling
In contrast to the augmenting effect found in IL-10-activated
cells, AR stimulation inhibited STAT3 phosphorylation in-
duced by IL-6 (Fig. 4A and B). In addition, NECA inhibited
the IL-6-induced expression of SAA3 mRNA in RAW 264.7
cells (Fig. 4C). Interestingly, NECA augmented IL-6-induced
TIMP-1 (Fig. 4D) and arginase-1 expression (Fig. 4E). In addi-
tion, NECA augmented arginase-1 mRNA only in WT and
A2AAR KO and not in A2BAR KO macrophages (Fig. 4F). Fi-
nally, we found that similar to IL-10, treatment of macro-
phages with IL-6 did not have any effect on TNF-� and IL-12
(data not shown).

DISCUSSION

Most of the effects of adenosine on M1 macrophages, includ-
ing inhibition of TNF-� [34–36] or IL-12 production [28] and
enhancement of IL-10 production [32], have been found to be
mediated by the A2AAR. However, the A2BAR can also affect
M1 macrophages; for example, it augments IL-10 production
by LPS-treated RAW 264.7 macrophages or microglia [33, 37].
We have shown recently that the A2BAR, with the A2AAR play-

ing a lesser role, augments IL-4- or IL-13-induced M2a macro-
phage activation [30]. Here, we provide evidence that A2BAR
signaling and IL-10 synergistically increase gene expression in
M2c macrophages.

STAT3 is widely appreciated as the primary transcription
factor mediating IL-10 signaling [6, 10, 38], and the role of
STAT3 in TIMP-1 induction has been explored by a number
of studies [6, 39]. Our results suggest that adenosine regulates
M2c macrophage function, at least in part, by augmenting
STAT3 activation, as AR stimulation augmented the IL-10-in-
duced phosphorylation of STAT3, and silencing STAT3 inhib-
ited the effect of AR stimulation on TIMP-1 production. In
addition, pharmacological inhibitors of the STAT3 pathway
prevented the effect of AR stimulation. As AR stimulation did
not influence the IL-10-induced phosphorylation of JAK1,
JAK2, or JAK3 (data not shown), further studies will be re-
quired to delineate how AR signaling up-regulates STAT3 acti-
vation.

Our findings, that the PI3K inhibitor LY294002 blocked the
effect of NECA and IL-10 on TIMP-1 production, are in agree-
ment with data published previously, showing a role of the
PI3K-Akt pathway in IL-10-induced gene expression [11, 38,
40] and specifically, in TIMP-1 expression [41]. The p38
MAPK has also been described to participate in TIMP-1 induc-
tion [42]. Our data support this concept, as p38 inhibition

Figure 4. AR stimulation inhibits IL-6-induced STAT3 phosphorylation. (A) pSTAT3 and actin protein expression in RAW 264.7 cells treated
with 10 ng/ml IL-6 or 1 �M NECA and 10 ng/ml IL-6 for 1 h. (B) Densitometric analysis of Western blot results. ***P � 0.001 versus vehi-
cle; ###P � 0.001 versus IL-6. SAA3 (C), TIMP-1 (D), or arginase-1 (E) mRNA expression in RAW 264.7 cells treated with 10 ng/ml IL-6 or
1 �M NECA and 10 ng/ml IL-6 for 6 h. **P � 0.01, ***P � 0.001 versus vehicle; ##P � 0.01, ###P � 0.001 versus IL-6 (mean�sem; n�6).
Results are representative of at least three independent experiments. (F) Arginase-1 mRNA expression of BMDMs, isolated from WT, A2AAR,
or A2BAR mice, which were treated with 1 �M NECA and/or 10 ng/ml IL-6 for 6 h. *P � 0.05, ***P � 0.001 (n�6). Results are a summary
of two independent experiments.
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reversed the NECA- and IL-10-induced up-regulation of
TIMP-1 release.

In addition to IL-10, IL-6 uses the STAT3 pathway for intra-
cellular signaling [43]. In contrast to IL-10-treated cells, AR
stimulation inhibited STAT3 activation in macrophages acti-
vated with IL-6. In agreement with the role of STAT3 signaling
in mediating IL-6-induced SAA3 gene expression [44], our
results showed that IL-6-induced SAA3 gene expression was
blocked by AR stimulation. Thus, AR stimulation differentially
regulates IL-10- and IL-6-induced STAT3 activation. In addi-
tion, we found that AR stimulation augments TIMP-1 and argi-
nase-1 expression in IL-6-treated macrophages. Activation of
A2BAR was responsible for the stimulatory effects of NECA on
IL-6-induced arginase-1, which is in agreement with our data
regarding the role of A2BAR in macrophages stimulated with
IL-10. However, the fact that AR stimulation inhibited STAT3
phosphorylation in macrophages treated with IL-6 makes the
role of STAT3 in this process unlikely and suggests that A2BAR
augments IL-10- and IL-6-induced arginase-1 expression
through different pathways. As ERK1/2, MAPK, and PI3K have
been linked to IL-6 signaling previously [45], these pathways
may mediate the effect of AR stimulation on IL-6-induced argi-
nase-1 expression. Thus, our results suggest, that adenosine
has STAT3-dependent, as well as independent, regulatory func-
tions on macrophages, depending on the cytokine environ-
ment during activation.

It is well-appreciated that the concentration of IL-10 is ele-
vated in tumor surroundings and that IL-10 contributes to the
polarization of tumor-associated macrophages. By acquiring an
M2-like phenotype, these tumor-associated macrophages pro-
mote tumor progression by maintaining immune tolerance
and driving metastases [2, 46–48]. As A2BAR activation has
been shown to promote tumor progression [49, 50], and
STAT3 activation and increased arginase-1 expression have
been linked to tumor progression and angiogenesis [51, 52],
our observations that AR activation increases STAT3 activation
and arginase gene expression in M2c macrophages indicate
that the stimulatory effect of AR stimulation on IL-10 induced-
STAT3 signaling in macrophages may contribute to tumor pro-
gression.

In conclusion, we have shown that adenosine differentially
regulates IL-10- and IL-6-induced STAT3 phosphorylation and
the expression of STAT3-driven genes. As STAT3 activation is
widely implicated in tumor formation and progression, our
results further underscore the therapeutic potential of target-
ing A2BARs in cancer treatment [50, 53].
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