

Using KML files as encoding standard to explore locations, access and

display data in Google Earth

A Technical Paper

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

F.H. Abdulrahman

The Ohio State University

2008

Master’s Examination Committee: Approved by

DR. Rongxing Li _____________________________

Dr. Toni Schenk Advisor:

 Graduate Program in Geodetic Science

ii

ABSTRACT

If you want to use an earth browser, such as Google Earth or Google Maps to

mark your favorite spots, define unique views for each of your favorite features, and

share them with others; you need Keyhole Markup Language (KML) files. These files are

XML-based scripting files; require the use of an extremely verbose tag-based language.

These files can be created in the Google Earth, an XML editor or simple text editor;

letting users load their own customized geo-coded data directly onto the earth browsers

and display them as an additional layers. In some cases these files must be hosted on a

websites and paste the URL of the file into the search box, to overlay the file on the top

of the browser. The purpose of this paper is to provide a fundamental background of

Google Earth’s KML and its tremendous capabilities that follow the philosophy of

keeping things as simple as possible; allows not only experts but also beginner users to

integrate, explore, mange, and display geospatial data on Google Earth and Google Maps.

iii

ACKNOWLEDGMENTS

Foremost, I would like to acknowledge Dr. Rongxing Li, for his enthusiastic support of

my efforts and helping me develop the general idea of the topic and collect relevant data

to complete this paper.

I would like to acknowledge the faculty, staff and students at The Ohio State University -

Department of Civil and Environmental Engineering and Geodetic Science - Geodetic

Science Program, for listening, sharing their time, creating and promoting a unique

atmosphere of academic excellence.

iv

LIST OF ACRONYMS USED THROUGHOUT THE PAPER

2D Two Dimensional

3D Three Dimensional

GE Google Earth

KML Keyhole Markup Language

HTML Hypertext Markup Language

XML Extensible Markup Language

URL Uniform Resource Locator

SGML Standardized General Markup Language

DTD Document Type Definition

OSU The Ohio State University

API Application Programming Interface

OGC Open Geospatial Consortium

1

INTRODUCTION

In the world of markup languages, there are many powerful tools that realize data

managing, modeling, storing and displaying. Keyhole Markup language (KML) is one of

those tools that realizes these services and allows users to get results in Google Earth

(GE) based on selected geographic features. Google Earth is a 3D interface to the

geography of the planet Earth, a browser with tremendous capabilities that allows users to

view and navigate all kinds of data that can be represented on a map such as 2D or 3D

models. Many of these capabilities are beyond the reach of most users, as they require a

licensed version of the GE browser.

This paper introduces a number of topics related to basic KML information

including a brief overview to a Markup Language, hypertext markup language (HTML),

and extensible markup language (XML). All these things very similar in their structure

and share some common characteristics and features together with keyhole markup

language, with the exception that they were designed with different goals. The hypertext

markup language was designed to format and display data rather than the structure of data

indented for human consumption with a focus on how data looks, and the extensible

markup language was designed to structure, transport, process and store data by a

program with a focus on what data is. I followed with basic KML information and

elements, including an introduction to KML files and elements used to create datasets in

GE, basic KML elements, advance KML elements, KML on Google Maps. Finally, I

wrap up with an example illustrating the power of Google Earth’s KML in integrating

data for visualization on the Google Earth browser.

2

1. KML GENERAL

1.1 Markup language

Generally, markup is a process of taking an ordinary text or word processing file

and adding a sequence of characters or extra symbols using markup indicators (i.e. tags)

to indicate how the file should look when it is printed or displayed, or to describe the

document’s logical structure. Therefore, markup languages are sets of words and symbols

for describing the identity of pieces of a document, how it is to be structured, laid out or

formatted (e.g. this is a heading, this is a paragraph, this is a list, this is a caption of this

figure, etc). Programs can use these languages with a style-sheet to create output for

screen, print, audio, video, etc [21]. Many markup languages have a common feature, that

they intermix the text of a document with markup instructions in the same data file.

Markup language are often divided in to three classes: Presentational markup,

which is an attempt to infer document structure from cues in the encoding, Procedural

markup, which is focused on the presentation of text, and Descriptive or semantic

markup, which applies labels to fragments of text and facilitates the simpler task of

reformatting a document as needed [20, 22]. These classes of markup usually co-occur in

any given system; therefore, there is an increases usage of markup languages in many

fields, such as vector graphics, web services, content syndication, and user interfaces.

The most powerful markup languages that are well known and widely used for

communicating data between applications are Hypertext Markup Language (HTML),

Extensible Markup Language (XML), and Keyhole Markup Language (KML). Table (1)

in the appendix is a sample of text markup, in which the codes enclosed in angle-brackets

3

like this “< - >” are markup instructions known as tags, and the text between these

instructions is the actual text of the document. The codes <h1>, <p>, and are

examples of structural markup, which describe the intended purpose or meaning of the

text they include, for instance <h1> means this is a first-level heading, <p> means this is

a paragraph, means this is an emphasized word and the <i> instruction is an

example of presentational markup which specifies the exact appearance of the text

without specifying the reason for that appearance.

1.2 Hypertext Markup Language

HTML stands for Hypertext Markup Language, which is a structured markup

language based on SGML. HTML defines the structure and layout of Web document

using a variety of tags and attributes, and it consists of a collection of “Markup” symbols

or text codes. This collection includes elements, attributes, data types, and character

references, inserted in a file intended for display on a World Wide Web browser or a

creation of web pages. Hypertext is an ordinary text that has been dressed up with extra

features, such as formatting, images, multimedia and links to other documents or text

files. The markup language is a notation for writing text markup tags that define the

structural elements of a page of the text and tell the Web browser how to display a Web

page’s text, images, sound and video files for the user [23, 24]. HTML documents are

plaintext documents that use the following file extension: .html or .htm, and they can be

created with any word processor, Windows Notepad, TextEditor, HTML Editors, and

Web development applications, such as Microsoft FrontPage or Macromedia

4

Dreamweaver.

However, these documents are structured into two major parts: the “head” and the

“body”, where the head contains general information, or meta-information about the

document such as title of the page which will not be displayed, and the body element

contains all the actual content of the document and various markup elements which will

be displayed in the browser window. A sample of minimal HTML document is presented

in table (2) in the appendix, where the HTML tags are all items enclosed in angle

brackets (< and >), and there is an opening tag denoted by < -- >, and a closing tag

denoted by </ -- >. For instance, to boldface some text, the tag must be inserted at

the beginning of the text and the tag at the end of the text [25, 26, and 27]. The

content between <HTML> and </HTML> contains information about the document that

does not display in the body of the text beside a hyperlink that follows “A HREF,” and

the information that falls between <BODY> and </BODY> tags are the texts of the page

that the end-user sees in a Web browser.

1.3 Extensible Markup Language

The Extensible Markup language (XML) is a general purpose markup language

for documents containing structured information primarily used to facilitate the sharing

of structured data across different information systems, particularly via the internet. XML

is written in SGML and its specification defines a standard way to add markup to

documents. XML is extensible because it is not a fixed format like HTML, which is a

single, predefined markup language. Instead, XML is actually a meta-language; it is a

5

language for describing other languages, which lets users design their own markup

languages for limitless different types of documents [28, 29]. In the case of Google Earth,

KML is a type of XML used to define geographic data that is displayed in the 3D viewer,

where some other characteristics of XML include case sensitivity and extensibility, which

allows users to define their own tags as Google has done in the creation of KML.

XML documents are composed of markups and contents, of which there are six

kinds of markup that can occur in an XML document. These include elements, attributes,

comments, entity references, processing instructions, marked sections, and document

type declarations. Among these, elements and attributes comprise the most common form

of XML markup [30]. Elements in particular form the basis of the data that is described

within an XML file and they are delineated by angle brackets and identify the nature of

the surrounding content and they can contain child elements. For instance, the

<Placemark> XML element is used to describe a point on the Google Earth viewer that

uses child elements including <name>, <description> and <point>.

In XML, attributes are name-value pairs that occur inside start-tags after the

element name used to further describe an element, and each attribute name should appear

only once in any element, however all attribute values must be quoted. For example,

<Style id=“exampleballoonStyle”> is a “Style” element with the attribute “id” having the

value “exampleballoonStyle.” Comments are used to provide a description of the data.

They can be placed between markups anywhere in the document, and are not part of the

textual content of an XML document and not read by the parser. The comment usually

begin with “<!−−” and end with “−−>”, and it can contain any data except the literal

6

string “−−” (two dashes) as “<!−− a background color for the balloon −−>”. Table (3) in

the appendix shows an example of structured XML document including XML

declaration, tags and their explanations of what the codes mean and they shows an

element with single attribute followed by its value.

All XML documents must be well-formed documents and obey all XML’s syntax

rules; therefore, a document that includes sequences of markup characters that cannot be

parsed or are invalid cannot be well-formed. For instance, if an element has an opening

tag with no closing tag and is not self closing, it is not well-formed. A well-formed

document is valid only if it contains a proper document type declaration and if the

document obeys the constraints of that declaration and conforms to certain semantic

rules. These rules are either user-defined or included as an XML schema or DTD to

define the syntax of the annotations used in the document, hence if a document contains

an undefined element, then it is not valid; a validating parser is not allowed to process it.

1.4 Keyhole Markup Language

Keyhole Markup Language (KML) is a markup language based on an XML

grammar and file format that combines texts and extra information about the texts, such

as the text’s structure and presentation, used for modeling and storing geographic features

such as points, lines, placemarks, images, polygons, 3D models, and textual descriptions

for display in earth browsers including Google Earth (GE), Google Maps and Google

Maps for Mobile. Moreover, it is also partially supported by other virtual Globe programs

(e.g. NASA WorldWind, ESRI ArcGIS Explorer), Adobe PhotoShop, AutoCAD, and

7

Yahoo! Pipes. Like HTML, KML file has a tag-based structure with nested elements and

attributes to specify a set of geographic features for specific display purposes, which used

by Google Earth and other browsers as a means for allowing developers to extend the

number of layers that can be displayed by Google Earth [1,4,31].

1.4.1 KML File Structure

KML files are text based documents that contains all data to be displayed in

Google Earth except the actual image files. However, they can contain links to images

online and often carry a large amount of text to describe data features and their related

image links, which makes the files very large. Therefore, KML files and their related

image links (if any) can be compressed into KMZ archives using the ZIP format to

decrease the size of these files. Moreover, images in placemarks and overlays can be

included in the KMZ file, but cannot be included in KML files. Google Earth can process

both KML or KMZ files in a similar way that web browsers process HTML and XML

files [4]. KML files use the file extension or suffix .kml or .kmz.

KML files can be built with the Google Earth user interface, to create simple

KML files that contain data such as placemarks, polygons, paths and image overlays, or

by other software packages that can help put the data into KML. For more advanced

KML elements an XML editor or simple text editor such as Notepad is required to start

from scratch and code the file one line at a time.

To get a general idea of how a KML files looks and how KML files display data

within the Google Earth, Table (4) in the appendix shows a brief example of a KML file

8

that defines a placemark on Google Earth (figure 1). While it looks similar to HTML, it

follows XML standards. All KML files must start with the following two standard header

lines (an XML header and a KML namespace declaration):

 <?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.2">

and must end with the KML closing tag (</kml>) which denotes the end of the KML

document file. The information that falls between the two header lines and the KML

closing tag contains one or more KML elements that relate to various features and

functionality that can be created, and must be valid and well-formed KML document. For

instance, the placemark object “<Placemark>” in the above example contains three

elements-- “name, description, and point”—where “<name>OSU,Bolz Hall BO</name>”

is the placemark’s name, “<description>OSU Department of Geodetic

Science</description>” is the placemark’s description, and “<coordinates>-

83.01516843174427,40.00296266461893,0</coordinates>” is the placemark’s position

on the earth’s surface. Here, the “<coordinates>” defines the exact coordinates of the

point in longitude, latitude, and altitude, in that precise order, and their values are

separated by commas. Moreover, latitude and longitude measurements use standard

Lat/long projection with the WGS84 datum, and their values are expressed in decimal

degrees and meters above sea level. GE uses simple cylindrical projection or Plate Carée,

where meridians and parallels are equidistant, straight parallel lines, with the two sets

crossing at right angles [3, 4,13].

9

Figure 1: GE Displayed KML file, defining location of “OSU-Bolz Hall”

2. KML ELEMENTS

KML elements are elements that describe geographic features, and are usually

placed between the header lines and the closing tag. A diagrammatic view for the correct

classification of these elements is shown in figure (2) below [3]. This diagram provides a

general overview for how data can be created as well as the relationship between the

elements. In KML, some classes are derived from a parent class; hence, the derived child

classes inherit all of the elements of their parent class and add some specific elements of

their own. As in the diagram, each element is represented either within a dotted-line

rectangular box or by a standalone name connected to other elements by lines to indicate

their relationship, such that child elements appear to the right of their parent element.

10

KML elements represented inside the dotted-line rectangular boxes are abstract elements;

these elements are not used directly in KML files, but rather they are a useful way for a

single element to serve as the programmatic foundation for multiple similarly derived

elements [4]. For instance, the Overlay abstract element is the parent element to the

ScreenOverlay and GroundOverlay; therefore, each child element contains all of the

elements that belong to the Overlay abstract element along with any other specific

elements for its geometry.

Figure 2: A schema of KML element types

11

2.1 Basic KML elements

In this part of the paper I will introduces a number of topics related to basic KML

elements, starting with a brief overview of the Object element as a class on the highest

level, followed by some basic KML elements used to create Features, Geometries and

Styles.

2.1.1 Object element

The object element is the highest level abstract base class which cannot be used

directly in a KML file. All other elements are derived from it; however, the object

element and all KML elements derived from the object have an “id” assigned to them

which serves as an attributes to uniquely identify a KML element, and a “targetId”

attributes to reference objects already loaded in Google Earth [1, 3, 4,13].

2.1.2 Feature element

The Feature element is an abstract element that cannot be used directly in a KML

file; it is inherited from the Object element and serves as a foundation element for the

Networklink, Placemark, Overlay, and Container elements [1, 3, 4,13].

2.1.2.1 Placemark elements

Placemarks are the primary means of marking a location on the earth, and are one

of the most commonly used features of Google Earth to mark a point on the earth, with an

icon, in the 3D viewer. However, a <Placemark> element is a feature with associated

geometry such as a point, line, path, polygon, or 3D shape inherited from the <Feature>

element. Placemark uses the <name> element to label the Placemark, <description> to

define the text that appears in the balloon, and a <point> element to specify the

12

geographic location of the Placemark through the use of a <coordinates> child element.

Thus, when creating a Placemark, features such as geometric shapes, location and altitude

can be used, and each Placemark includes a <point> element and a <coordinate> child

element to define its geographic location. Placemarks can be classified as a simple

Placemark, floating Placemark, or extruded Placemark. Simple Placemarks have an

altitude value of “0” to place the icon on the terrain, a floating Placemark is the same as a

simple Placemark with the exception that it has an altitude value of “relativeToGround”

to place the icon hovering above the terrain, and the extruded Placemark is the same as a

floating Placemark but it includes an additional child element <extrude> with a value of

“1” which connects the icon to the ground [1, 3, 4, 13].

Figure 3: GE displayed Extruded Placemark

13

2.1.2.2 Overlay elements

The Overlay element is an abstract element that serves as the base type for image

overlays drawn on the Google Earth surface or on the screen. The <Overlay> element is

inherited from the <Feature> element and has two child elements: <GroundOverlay> and

<ScreenOverlay>. The <Groundoverlay> element includes child elements such as

<Icon>, <LatLonBox>, <altitude>, and <altitudeMode>, and uses them to draw an image

overlay draped onto the terrain and fixed to the planet’s surface. The <Icon> element

contains a link to the image file, which can be a local link or URL, and the <LatLonBox>

child element specifies the top, bottom, right, and left sides of a bounding box for the

ground overlay. This enables Google Earth to map the image in the correct geographic

location in between the four points, stretching the image to fit. GroundOverlay supports

different image file formats such as jpeg, bmp, tga, png, and tiff. On the other hand,

screen overlays are images that appear in a fixed location in the 3D viewer above the

imagery of the Earth. As you navigate or fly across terrain, the screen overlay graphic

remains visible in the same location of your screen; therefore, users can use the screen

overlay for aesthetic purposes such as compasses, logos, displaying a legend, and a

heads-up display. The <ScreenOverlay> element is used to draw an image overlay fixed

to the screen which uses an <Icon> child element to define the image that is being

displayed; the <overlayXY> and the <screenXY> child elements specify the proper

position of the icon on the display where, at this time, only graphic images can be used.

However, ScreenOverlay cannot be added directly in Google Earth or draped across the

terrain; instead, the KML must be edited directly [1, 3, 4,13].

14

Figure 4: Visual depiction of OSU Football Stadium image as a Ground Overlay and a

 Map Logo as a Screen Overlay

2.1.2.3 Container element

The Container element is an abstract element that holds one or more Features in

the form of Folders and Documents, and allows the creation of nested hierarchies.

However, Folders are used to structure collections of features and overlay groups to

provide a uniform view for a group of placemarks and/or overlays, and Documents serves

as a container for features, styles, schemas and their children [1, 3, 4,13].

15

2.1.3 Geometry element

The <Geometry> element is an abstract element which cannot be used directly in

a KML file. It provides functionality for child elements including Point, LineString,

LinearRing, Polygon, MultiGeometry, and Model. The <Geometry> element provides a

placeholder element for all derived geometry elements including extrude, tessellate, and

altitudeMode. The <extrude> element specifies whether to connect the geometric

primitive (e.g. icon, line, and polygon) to the ground, and this extrusion occurs when it is

associated with a value of “1,” in this case the <altitudeMode> should be either

“relativeToGround” or “absolute.” The <tessellate> element specifies whether to allow

lines and path to follow the terrain and is applied only to paths and polygons that have an

<altitudeMode> of “clampToGround,” which specifies how altitude components in the

<coordinates> element are interpreted; an altitude component greater than “0” means the

element is in the air [1, 3, 4, 13].

2.1.3.1 Point element

The <Point> element is always contained within a <Placemark> element and it

specifies the geographic location, as defined by longitude, latitude, and an optional

altitude. When a point is contained within a Placemark element, it defines the position of

the Placemak’s name and icon. However, the <coordinates> element is inherited from the

Point element and is used to specify the longitude, latitude and altitude; when a Point is

extruded; it is connected to the ground with a line [1, 3, 4, 13]. Table (5) in the appendix

shows how to define a point in GE.

16

2.1.3.2 LineString element

The LineString element defines a connected set of line segments and uses the

<LineStyle> child element to specify the characteristics of the line (e.g. color, color

mode, and width) and the <coordinates> child element to define a series of longitude,

latitude, and altitude values that define the path. However, the defined connected line

segments are used to create paths such as Tessellated Path, Un-tessellated Path, Absolute

Path, Absolute Extruded Path, Relative Path, and Relative Extruded Path. These types of

paths are classified as follows. The Tessellated path uses a <tessellate> child element to

specify whether to allow lines and paths to follow the terrain or not, and the tessellated

tag is always associated with a value of “1” which indicates that the path is tessellated.

Further, the <altitudeMode> child element is of the “clampToGround” type, which

instructs GE to ignore an altitude specification; hence a tessellated path follows the

contour of the terrain. The Untesselated Path is just like the Tesselated Path, with the

difference that the tessellated tag is always associated with a value of “0,” meaning that

the path does not follow the contour of the terrain. The Absolute Path uses the “absolute”

type of the <altitudeMode> child element to set the altitude of the coordinate relative to

the sea level, regardless of the actual elevation of the terrain beneath the element. The

Absolute Extruded Path extends above the surface of the terrain relative to the sea level

through the use of altitude value, forming a polygon that looks somewhat like a wall.

Absolute Extruded Path requires the associated <extrude> child element with a value of

“1” to specify that the path is connected to the ground surface, and an <altitudeMode>

child element of type “absolute”; however, the altitude component must be greater than

17

zero. The Relative Path uses <altitudeMode> child element of the “relativeToGround”

type, which sets the altitude of the coordinate relative to the actual ground elevation of

the particular location. The Relative Extruded Path extends above the actual ground

elevation of a particular location through the use of altitude value, again forming a

polygon that looks somewhat like a wall. The Relative Extruded Path requires an

associated <extrude> child element with a value of “1” to specify that the path is

connected to the actual ground surface, and an <altitudeMode> child element of type

“relativeToGround”; however, the altitude component must be greater than zero[1, 3, 4,

13]. Table (6) in the appendix is a general form of the KML code that defines a path.

2.1.3.3 LinearRing element

The LinearRing element defines a closed line strings, typically the outer and the

inner boundaries of polygons, through a series of coordinates defined by the

<coordinates> child element, such that the first and the last coordinates should be exactly

the same so that the resulting polygon will be closed. Therefore, LinearRing is mostly

used to define the structure of polygons and other elements such as buildings, land

parcels, lakes and many other LinearRing elements [1, 3, 4, 13].

2.1.3.4 Polygon element

A polygon is defined by an outer boundary <outerBoundaryIs> and zero or more

inner boundaries <innerBounderIs> and can be planar or 3D, depending upon whether the

object is extruded or not. The boundaries of a polygon are defined by a LinearRings, and

18

often LinearRings can also be used as the inner boundary of a polygon to define holes

within the polygon [1, 3, 4, 13].

Figure 5: LinearRing (outer and inner polygons) shows OSU outdoor Football Field

2.1.3.5 MultiGeometry

MultiGeometry is used to group more than one geometry element as a single

feature, such as when multiple polygons are used to define a single feature for display in

the Google Earth 3D viewer. You can define multiple geometry collections and toggled

them on or off in the places listing in the Google Earth viewer. Therefore, a

<MultiGeometry> element is commonly used as a container element for one or more

geometry primitives associated with the same feature. This process is convenient when a

19

particularly complex physically distinct features needs to be visualized on the Google

Earth browser as a single entity [1, 3, 4, 13]. Table (7) in the appendix is an example of

KML code that defines multiple polygons as a single entity.

Figure 6: Physically distinct features visualized as a single entity

2.1.4 Styles

Style elements are used to provide styling for individual elements or groups of

elements. Each style element in KML can either be defined locally within the element

being affected, or referred to by a reference “id” attribute and reused among many

elements [4, 7]. KML has a rich styling model that allows style to be applied to the lines,

lists, polygons, icons, description balloons, and labels of individual placemark elements;

20

therefore, each Placemark element can be styled directly, by specifying any of the KML

elements attributes from the style feature type, or indirectly by setting the kml-styleUrl

attribute to the kml_Style.id of a Style feature [7]. KML styles are commonly used to

define color and opacity for all elements, line width, outline and fill colors and

transparency for polygons, scales for labels and icons, balloon styles, and other aspects

through the <ColorStyle> and <StyleSelector> elements and their child elements. The

<ColorStyle> element has two child elements, <color> and <colorMode>, that can be

used to specify the color and color mode of extended style types, and the <StyleSelector>

element is the base type for its two child elements <Style> and <Stylemap>. The <Style>

element has a number of child elements including <IconStyle>, <labelStyle>,

<LineStyle>, <PolyStyle>, <BalloonStyle>, and <ListStyle> that can be used to define

the style of various data elements in Google Earth, so each <Style> tag must have an “id”

attributes assigned to it for reference purposes. The functionality of these child elements

can be described as follows. The <IconStyle> element specifies how icons for point

Placemarks are drawn in the Places panel and in the 3D viewer, and it has child elements

including <Icon>, <hotSpot>, <scale>, <color>, <colorMode>, and <heading>, where the

<Icon> element specifies the icon image and is used with <href> to define a pointer to a

custom icon. The <labelStyle> element specifies how the <name> of a feature is drawn in

the 3D viewer, and its child elements includes <color>, <colorMode>, and <scale>, used

to specify color, color mode, and scale for the label. The <LineStyle> element specifies

the drawing styles (i.e. color, color mode, and line width) for all line geometry, and how

they display in the 3D viewer. The <PolyStyle> element specifies the drawing style for

21

all polygons when drawing them in the 3D viewer, including polygon color, color mode,

fill, outline, polygon extrusion, and line extrusion. The <BalloonStyle> element specifies

how the description balloon for placemarks is drawn, and it has child elements including

<bgColor>, <textColor>, and <text>, that are used to define the background color of the

balloon, the foreground color for text, and the text displayed in the balloon. Finally, the

<ListStyle> element specifies how a feature is displayed in the list view, and its child

elements include <bgColor>, <listItemType>, and <ItemIcon>, used to define the

background color of the balloon, specify how a folder is displayed in the list view, and

reflect the state of a folder or link fetch in the list view [1, 3, 4, 13].

2.1.5 StyleMap

Stylemap elements are used by Google Earth to create mouse-over effects for

Placemark elements with point geometry. Generally this is used to change icons when a

user moves the mouse over the icon, and hide or display labels. To accomplish this, a

<StyleMap> element which has a child element <Pair> is used to provide separate normal

and highlighted styles for a placemark. The <Pair> element contains two child elements

<key> and <styleUrl>, which are used to define a key/value pair that maps a mode

(“normal or highlight”) to the predefined <styleUrl> [1, 3, 4, 13].

22

2.2 Advanced KML elements

2.2.1 Network links

Network links are one of the most powerful features in GE, providing away for

multiple users to view the same network-based KMZ data and automatically see any

changes to the content as those changes are made [1]. However, the network links

capability in GE provides a way to deliver any dynamic data that KML files can support

such as placemarks, lines, polygons, image overlays, and 3D models, to multiple GE

users. Network links can automatically refresh based on a setting within the network link

and the refresh interval can also be controlled by the content provider or the user.

Although data can only be updated by the provider at the source, as with any other GE

file format user’s can save the files to their local computers to allow them to get back

quickly to content that they like while allowing the content provider to update content at

will. This type of strategy is useful for storing and sharing data over the network with a

large number of users, which offers many advantages such as accessibility, ease of

distribution, automatic data updates, and centralized backup [1]. Figure (7) below gives a

visual depiction of the Network Links concept as compared to traditional web publishing.

23

Figure 7: Visual depiction of the Network Links concept

The Network Link element “<NetworkLink>” is inherited from the Feature

element used to references a KML/KMZ archive on a local or remote network, and has a

number of child elements including <Link>, <refreshVisibility>, and <flyToView>

which define the basic characteristics of a given network link. The <link> element with

the <href> child element specifies the location of the KML/KMZ file to load and can also

link to CGI scripts, either local or linked to a remote server. The <refreshVisibility>

24

element, which by default is set to a value of “0,” leaves the visibility of features in the

control of the GE user, and the <flyToView> element, when set to a value of “1,” causes

GE to fly to the view of the root element in the refreshed file. However, the <Link>

element is more commonly used to specify the location of KML files or scripts to be

fetched by network links when data needs to be refreshed, depending on the refresh

parameters, where <NetworkLinkControl> element controls the behavior of files fetched

by <NetworkLink>. The refresh parameters are composed of two sets: time based refresh

parameters and camera view based refresh parameters. The time based parameters

“<refreshMode> and <refreshInterval>” specify that the KML file or script should be

refreshed based on some sort of time interval, and the camera view based parameters

“<viewRefreshMode> and <viewRefreshTime>”, specify two things: how the link is

refreshed when the camera is changed, and the number of seconds to wait before

refreshing the view after the camera stops [3, 13].

Google Earth provides the ability to update existing data in a Network Link. To

update data loaded over a NetworkLink, a child element <Update>, which inherits from

<NetworkLinkControl> element, is used to change, create, and delete KML data from an

existing KML file that has already been loaded. The <Update> element inherits a

number of child elements which are used to perform the editing tasks. These elements are

<Change>, <Create>, and <Delete>. The < Change> element modifies the values of a

geographic object, the <Create> element is used to add new objects, and the <Delete>

element used to delete features; however, the <targetHref> element in <Update> specifies

the KML/KMZ file containing the data to be modified or deleted [4]. Figure (8) below

25

illustrates the process of updating the network links [4], where a NetworkLink “A” loads

the original KML file into GE and NetworkLink “B” loads a second KML file containing

the updates to the KML feature/features that have already been loaded.

Figure 8: Concept of updating Network Links

Table (8) in the appendix is a KML code that contains a “Global Cloud Map ” network

link “http://bbs.keyhole.com/ubb/download.php?Number=123408”. This network link

lets the user automatically view the latest composite of satellite photos of the earth’s

clouds overlaid on the GE. This link illustrates the power of the network link: it opens in

GE and automatically updates based on the settings of the network link elements.

26

2.2.2 Regions

KML Regions are a powerful feature that allows a KML author to add very large

datasets to Google Earth without sacrificing performance, in such a way that it allows

Google Earth to stream the data in pieces instead of as a whole, where data is loaded and

displayed only when it falls within the user’s view and occupies a certain portion of the

screen [5]. However, Regions are used to supply separate levels of detail for the data,

where fine details are loaded, only when zoomed in far enough on the display.

 In the KML Object Model, features such as Placemarks, NetworkLinks, containers, and

Overlays can contain a region, mostly used to affect the visibility of Placemark’s or

Overlays. Therefore, this feature allows a user to limit the visibility of densely positioned

placemarks to low altitudes, split high resolution images and load them in increasing

levels of detail using Super Overlays, and dynamically load new KML files based on the

viewer’s location [6]. Region is specified with the <Region> element and it contains two

important child elements: the <LatLonAltBox> element and the <Lod> element. The

<LatLonAltBox> element defines the bounding box for the data that describes an area of

interest, and has a number of child elements including <north>, <south>, <east>, <west>,

<minAltitude>, and <maxAltitude> used to define the “North, South, East, and West”

boundaries of the Region and the minimum/maximum altitude [3,13]. Figure (9) below

illustrates the concept of boundaries and the altitudes [5,13].

27

Figure 9: Concept of the bounding box

The <Lod> element describes the size of the projected region on the screen that is

required in order for the region to be considered active and also specifies the size of the

pixel ramp used for fading in and fading out. It has a number of child elements including

<minLodPixels>, <maxLodPixels>, <minFadeExtent>, and <maxFadeExtent>. The

<minLodPixels> and the <maxLodPixels> elements allow the KML author to specify a

range on the screen in square pixels that determines the visibility of data within a region,

to ensure that a large amount of data is only loaded when enough pixels are available to

display the data adequately, and the other two child elements, <minFadeExtent> and

<maxFadeExtent>, are used to specify a fade extent for the region, which allows an

object to transition gracefully from transparent to opaque and back again; their values are

expressed in screen pixels [3,5,13]. Therefore a Region is considered active or visible

when the bounding box is within the user’s view and the level of detail requirements is

met.

28

3. KML APPLICATIONS ON GOOGLE MAPS

Google Maps is a free web mapping service application and technology provided

by Google that powers many map-based services, including the Google Maps website,

Google ride finder, and embedded maps on third-party websites via the Google Maps API

[10]. Following Google’s key mission, Google Maps can be combined with some new

features such as KML for Google Maps to enables the display of KML on Google Maps.

This innovation enables data created in Google Earth to be viewed in a web browser and

makes the sharing of geographic information easier, requiring no computer programming

expertise. Generally, a KML file can move from Google Maps to Google Earth as well,

but Google Maps doesn’t support as many features of KML as Google Earth; therefore

some of the information, such as 3D models, won’t be imported into Google Maps [8].

Google Maps currently supports KML/KMZ files with points, lines, polygons, styles,

icons, network links, ground overlays, screen overlays, folders, and visibility [9]. These

files can be displayed in Google Maps by entering the URL for the KML/KMZ files in

the Google Maps search box and click “Search”, keeping in mind that these files must be

hosted on a website in order to be displayed. Figure [10] below shows an example of this,

where the Eiffel Tower database is at the following URL:

http://services.google.com/earth/kmz/EiffelTower.kmz.

29

Figure 10: Google Map displayed information about Eiffel Tower

4. DATA INTEGRATION AND VISUALIZATION ON GOOGLE EARTH

Google Earth has been used in many scientific studies such as those on climate

changes, weather forecasting, natural disasters, geography, etc.; it provides a very

convenient platform for scientists and the general public to compare or integrate

geospatial products or research results of interest, one where scientists can present their

scientific results in a way that allows users to easily tie to other data sources and interact

with them in real 3D [36, 33]. These types of studies or applications are mainly involved

with flat geospatial data, especially satellite imageries, so the process of integrating these

Put the URL for
KML file

Google Map to GE
Copy this link to
share the map

30

data for visualization on the virtual globe requires the use of Keyhole Markup Language

(KML). Here, an example of data integration and visualization is presented to illustrate

the power of KML as a powerful visualization tool for integrating and visualizing vertical

clouds and their interaction with water vapor data through GE such that scientists can

study and evaluate their characteristics as related to the Earth. Hence, KML was used to

integrate CloudSat Satellite images and GMS-6 Water Vapor Satellite images for

visualization on GE. The data are first downloaded from official websites, then,

preprocessed to generate KML files for visualization on GE.

4.1 CloudSat Image Processing and Visualization:

The CloudSat Satellite mission was launched on April 28th 2006 under

supervision of NASA’s Jet Propulsion Laboratory, and the Science leadership is provided

by the CloudSat Science team of Colorado State University, USA. Currently, it is

providing, from space, a direct measurement of the vertical profile of clouds, includes

cloud bases and the elusive “hidden layers,” where the profile gives a 3D view of the

vertical structure of clouds [35]. These new vertical geospatial data, which reflect the

characteristics of the clouds used for weather forecasting, have not previously been

visualized as they are in real word on the virtual globe. CloudSat images used in this

study were downloaded from the CloudSat data processing center website (Figure 11 and

figure 12) [33]. These images were composed of three parts: the bottom part shows the

image data bar that includes when and where the image was taken, product type, and

image number; the middle part shows the topography terrain where CloudSat passed; and

31

the upper part represents radar data including clouds within 30 km above mean sea level

(Figure 13) [33].

Figure11: CloudSat image on 29 July 2007; Lat.28.6 – 17.1o N and log. 138.6 – 141.4o E

Figure 12: CloudSat image on 29 July 2007; Lat.17.1 – 5.5o N and log. 141.4 – 143.9o E

Figure 13: Sample quicklook image and image feature

32

The upper part of CloudSat images, where a cloud was present, was being

preprocessed, such that no cloud pixels were deleted and where the cloud was present

their pixel values and positions on the images were measured. Then, the preprocessed 2D

images were transformed into 3D polygons composed of points with three components X,

Y, and Z, to achieve 3D images. These three components (i.e. X, Y, and Z) are the

latitude, the longitude, and the elevation of pixels, and they were calculated from the

latitude and the longitude shown at the bottom of the images using an interpolation

function created for this purpose. Thereafter, the latitude, the longitude and the elevation

of pixels were used to generate a KML file for visualization on GE (Table 9 in the

appendix).

4.2 Water Vapor Image Processing and Visualization

The GMS-6 satellite is a Geostationary Meteorological Satellite operated by the

Japan Meteorological Agency used for the World Weather Watch Program; it provides a

two-dimensional imagery of water vapor in the atmosphere and can be used to predict

flash flooding [37]. GMS-6 satellite images used in this study were taken at Latitude 5° S

to 45° N and Longitude 90° E to 190° E, and they shows the amount of water vapor in the

atmosphere, with, thicker clouds and larger droplets shown in yellow/red tones and

thinner clouds shown in blue (Figure 14) [32].

33

Figure 14: Original GMS-6 image

These images are 2D nonlinear images and before being overlaid on GE, they are

rescaled into linear images by applying interpolation functions created from a pixel

position, latitude and longitude of the reference line in the images (Figure 15).

 Figure 15: Rescaled GMS-6 image

The latitude and the longitude of GMS-6 images were used to create KML file, then, the

rescaled images were overlaid on GE as ground overlay (Table 10 in the appendix).

34

A web service for GMS-6 satellite image and CloudSat images visualization was

created using webMathematica so that scientists and the general public can upload their

satellite images and data to generate KML files and the rescaled images. The generated

KML files were used to overlay GMS-6 rescaled images and the preprocessed 2D

CloudSat images on GE, to evaluate the visualization of CloudSat images as compared

with GMS-6 satellite images and the shoreline in GMS-6 images as compared with the

shoreline in LandSat images from Google Earth (Figure 16) [32].

 Figure 16: Cloudsat and GMS-6 satellite images visualized on GE

Using this type of data integration and visualization tools, led by Google Earth’s

KML, facilitates the way in which scientists and the general public can compare

CloudSat data with water vapor images, LandSat images, and images from 3D Digital

elevation model. Moreover, they can locate CloudSat study sites, calculate directions of

CloudSat paths, and visualize CloudSat images with the 3D interactive functions on

Google Earth.

35

5. CONCLUSION

The utilization of KML data format as an ideal tool to model, store, integrate and

visualize geospatial data on GE to extract scientific results, appears to hold more

promises in the future, especially after been adopted by OGC as one of its standards . The

present utilization of the methodology together with GE functionalities indicates the

capability to fulfill the needs of scientists and data publishers to create innovative, useful

and intuitive geospatial data products based on selected geographic features, however

considerable advantages makes it more universal XML encoding format document used

to transfer geospatial data for visualization use over the web must be acknowledged.

First, KML provides a new way to deal with data and the presentation instruction;

it combines the encoded data and the presentation instructions in the same package. This

combination in a single package support faster display of the data than any other system

in the world of geospatial data where data and presentation instructions kept separate

such as geography markup language (GML) and the PHP- Hypertext Preprocessor

scripting language used for Web development (e.g. osu.edu campus graphic map).

Second, KML helps users to add geospatial data as additional layers in GE; it

allow for layers to be images or 2D or 3D geometric objects. This function makes KML

more universal exchange format for data visualization on GE.

Third, KML is substantially different from other software that is specialized for

the description of geospatial data contents. KML follows the philosophy of keeping

things as simple as possible; it provides an easy-to-use GIS platform that is widely

36

available, runs on inexpensive hardware platforms, and allows easy real-time sharing of

data, however, this simplicity generally allows not only experts but also beginner users to

integrate their own data with GE.

Finally, it will be necessary to consider that KML was designed for visualization

of geospatial data created elsewhere (e.g. ESRI’s ArcGIS) and it does not do any sort of

GIS data analysis and has no data management tools. Therefore, data can be analyzed

somewhere else and then GE’s KML can be used for the visualization of that analysis.

In summary, the example of data integration and visualization presented in this

paper illustrated the opportunities available in Google Earth’s KML to integrate and

visualize geospatial satellite data on GE viewer; it provides more user friendly interfaces,

easily to understand and facilitates scientific research of our planet-related phenomena.

However, converting existing satellite images data sets and creating effective KML files

to merge two or more different data sets and leverages their strength requires a through

understanding of the KML specifications as well as a programming language that is

capable of handling complex text manipulation and more.

37

LIST OF REFERENCES

1. Google Earth User Guide
 http://earth.google.com/userguide/v4/ - accessed as of 3/6/08

2. KML documentation – Developer’s Guide – Updates
 http://code.google.com/apis/kml/documentation/updates.html - accessed as of
 2/25/08

3. Open Geospatial Consortium Inc- KML 2.1 Reference – An OGC Best Practice
Reference number: OGC 07-039rl, version: 0.0.9, editor: Carl Reed

4. KML documentation- Google Earth KML 2.0 - KML 2.1 & KML 2.2 References
 http://code.google.com/apis/kml/documentation/ - accessed as of 5/3/07 & 2/5/08

5. Working with Regions

 http://code.google.com/apis/kml/documentation/regions.html - as of 3/3/08

6. GeoChalkboard – A “ Spatial” Education Blog, Advanced KML Region Concepts
http://geochalkboard.wordpress.com/ - accessed as of 3/3/08

7. KML Reader/Writer
 http://www.axmann.at/manuals/kml.pdf - accessed as of 2/20/08

8. Import your KML, KMZ, and GeoRSS files
http://google-latlong.blogspot.com/2007/11/import-your-kml-kmz-and-georss-
files.html - accessed as of 1/15/08

9. Google Maps Help Center

 http://maps.google.com/support/ - accessed as of 3/02/08

10. Google Maps– Wikipedia
 http://en.wikipedia.org/wiki/Google_Maps - accessed as of 2/20/08

11. Teaching Geoscience with Visualizations: Using Images, Animations, and Models
Effectively (Google Earth and Geoscience Education), University of Washington,
Tacoma
http://serc.carleton.edu/NAGTWorkshops/visualize04/tool_examples/google_eart
h.html - accessed as of 3/4/08

12. Google Incorporated – corporate information

http://www.google.co.za/intl/en/corporate/index.html - accessed as of 1/29/08

13. Mastering Keyhole Markup language in Google Earth
By: Geo-Spatial Training Services, LLC

38

14. Exploring the World with Google Earth

http://teachers.spart5.k12.sc.us/taylorte/googleearth/Handouts/Google%20Earth%
20Handout.pdf – accessed as of 3/30/08

15. Keyhole Markup Language (KML)
http://ge.images.alaska.edu/workshop/kml.htm - accessed as of 2/2/08

16. The “ All about Google Earth “ E-Guide
http://earth.download.googlepages.com/google-earth-guide.pdf - accessed as of
1/10/08

17. Google Earth .KML Output Files – Tutorial # 6
http://cix.perconcorp.com/tutorials/tutorialkh.pdf - accessed as of 3/25/08

18. Keyhole Markup Language – Wikipedia
http://en.wikipedia.org/wiki/Keyhole_Markup_Language - accessed as of 5/4/07
& 2/13/08

19. Google Earth – Wikipedia
http://en.wikipedia.org/wiki/Google_Earth - accessed as of 5/7/07 & 2/15/08

20. Markup language – Wikipedia
http://en.wikipedia.org/wiki/Markup_language - accessed as of 5/4/07 & 12/30/07

21. What is a markup landuage?
http://xml.silmaril.ie/basics/markup/ - accessed as of 1/22/08

22. Markup Language – by Dr. Xiangyu Wang
http://web.arch.usyd.edu.au/~rob/teaching/2006/DECO2102/DECO2102-Slides-
03.pdf - accessed as of 11/17/07

23. HTML – Wikipedia
http://en.wikipedia.org/wiki/HTML - accessed 5/4/07 and 1/25/08

24. Introduction to HTML
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/ - accessed as of1/25/08
http://www.w3schools.com/html/html_intro.asp - accessed as of 1/25/08

25. Linktionary.com – HTML (Hypertext Markup Language)
http://www.linktionary.com/h/html.html - accessed as of 1/25/08

26. What is HTML?
http://www.slac.stanford.edu/~kelsey/what_is_html.html - accessed as of 2/5/08

39

27. Hypertext Markup Language (HTML)

http://english.heinle.com/burnett/resources/exercises/pdf/htmlinst.pdf as of 2/5/08
28. XML – Wikipedia

http://en.wikipedia.org/wiki/xml- accessed as of 5/4/08 & 1/22/08

29. What is XML?
http://xml.silmaril.ie/basics/whatisxml/ - accessed as of 1/22/08
http://www.xml.com/pub/a/98/10/guide0.html?page=2 – accessed as of 1/22/08

30. A Technical Introduction to XML
http://xml.com/pub/a/98/10/guide0.html - accessed as of 1/22/08

31. KML – Wikipedia
http://en.wikipedia.org/wiki/KML - accessed as of 5/3/07 & 1/25/08

32. W. Scrisang, K. Jaroensutasinee, and M. Jaroensutasinee “XML Integration of
Data from CloudSat Satellite and GMS-6 Water Vapor Satellite”

33. CloudSat Data Processing Center

http://www.cloudsat.cira.colostate.edu/dpcstatusQL.php?offset=3700 – accessed
as of 3/26/08

34. Formation Flying: The Afternoon “A-Train” Satellite Constellation
http://aqua.nasa.gov/doc/pubs/A-Train_Fact_sheet.pdf - accessed as of 4/5/08

35. CLOUDSAT
http://cloudsat.atmos.colostate.edu/ - accessed as of 4/7/08

36. Visualization of and Access to CloudSat Vertical Data through Google Earth –
Centre for Spatial information Science and Systems, George Mason University –
Goddard Earth Science Data and Information Services Center (GES DISC),
NASA Goddard Space Flight Center, Greenbelt, MD, USA

37. Geostationary Meteorological Satellite Program Platform Document
http://ghrc.msfc.nasa.gov:5721/source_documents/gms_source.html#6 – accessed
as of 4/5/08

38. Google Earth home page
http://earth.google.com/ - accessed as of 4/10/08

40

APPENDIX

Table 1
Example shows a small section of text marked up in HTML

<h1> Anatidae </h1>
<p>
 The family <i>Anatidae</i> includes ducks, geese, and swans,
 but not the closely-related screamers.
</p>

Table 2
Example of HTML document showing the tags and their explanations

<HTML> Tells the browser that this is the start of
 an HTML document.
 <HEAD> Begin the document’s header
 information

 <TITLE> Document title </TITLE> The document title; display the title on
 the bar at the top of the screen
 (in browser’s caption)
 </HEAD> Ends the document’s header
 information
 <BODY> Begins the body of the document
 <H1> Heading of the document </H1> Document heading
 Text between these tags is boldfaced display the text in a bold font
 <I> Text between these tags is italics </I> Italicize the text
 Content of the document – document body – text ….
 OSU Link to the Web site
 </BODY> Ends the body of the document
</HTML> Tells the browser that this is the end of
 the HTML document

Table 3
Example of structured XML document

<?xml version=”1.0”?> XML declaration, identifies the version of
 the XML markup language used in the data.
 (it is optional)

41

<products> Start of products elements (root element)
<product> Start of first product element

<name>Monitor</name> Product description
<price currency=”US”>200</price>

</product> End of first product element
<product> Start of second product element

<name>Hard Drive</name> Product description
<price>$150</price>

</product> End of second product element
<!−− Here are some comments−−> Comments needed

</products> End of products elements (root element)

Table 4
Example of KML code that defines a point

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Placemark>

<name>OSU,Bolz Hall BO</name>
<description>OSU Department of Geodetic Science</description>
<Point>

<coordinates>-83.01516843174427,40.00296266461893,0</coordinates>
</Point>

</Placemark>
</kml>
--

Table 5
Example of KML code that define a point in GE

<Placemark>
...……
<Point>

<coordinates>
 Latitude……, longitude….. , altitude…..

..</coordinates>
</Point>

</Placemark

42

Table 6
General form of KML code that defines a path

 <?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <Document>
 <name>……..</name>
 <description>………...</description>

 .
 .

 .

 <Placemark>
 <name>……….</name>
 <description>…………</description>
 <LineString>
 <extrude>. . . </extrude>
 <tessellate>. . . .</tessellate>
 <altitudeMode>. . . .</altitudeMode>
 <coordinates>

Latitude……, longitude….. , altitude…..
.

.

.

Latitude……, longitude….. , altitude…..
 </coordinates>
 </LineString>
 </Placemark>
 </Document>
</kml>

Table 7
Example of KML code that defines multiple polygons as a single entity using
“MultiGeometry” element

<MultiGeometry>
<Polygon>

<outerBoundaryIs>
<LinearRing>

<coordinates>
Latitude……, longitude….. , altitude…..

.

.

43

Latitude……, longitude….. , altitude…..
</coordinates>

</ LinearRing>
</outerBoundaryIs>

</Polygon>
<Polygon>

<outerBoundaryIs>
<LinearRing>

<coordinates>
Latitude……, longitude….. , altitude…..

.

.

.

Latitude……, longitude….. , altitude…..
</coordinates>

</ LinearRing>
</outerBoundaryIs>

</Polygon>
</MultiGeometry>

Table 8
Example of KML code for Global Cloud Map that contain network link

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <NetworkLink>
 <name>Global Cloud Map</name>
 <description>This cloud map has transparency.</description>
 <Url>
 <href>http://bbs.keyhole.com/ubb/download.php?Number=123408</href>
 </Url>
 </NetworkLink>
</kml>

Table 9
KML code for CloudSat visualization

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <Document>
 <open>1</open>

44

 <Placemark>
 <Style>

<LineStyle><color>00000000</color></LineStyle>
<PolyStyle><color>ffffc1be</color></PolyStyle>

 </Style>
 <Polygon>
 <extrude>0</extrude>
 <altitudeMode>absolute</altitudeMode>
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>

141.425,16.9835,0.
141.425,16.9835,240.
141.427,16.9738,240.
141.427,16.9738,0.
141.425,16.9835,0.

 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </Placemark>
 </Document>
</kml>

Table 10
KML code for GMS-6 visualization

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
 <GroundOverlay>

<Icon>
<href>GMS6.jpg</href>
<viewBoundScale>0.75</viewBoundScale>

</Icon>
 <LatLonBox>

<north>45</north>
<south>-5</south>
<east>190</east>
<west>90</west>

 </LatLonBox>
 </GroundOverlay>
</kml>

