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Optimal Bang-Bang Trajectories

in Sub-Finsler Problems on the Engel Group
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The Engel group is the four-dimensional nilpotent Lie group of step 3, with 2 generators.
We consider a one-parameter family of left-invariant rank 2 sub-Finsler problems on the Engel
group with the set of control parameters given by a square centered at the origin and rotated
by an arbitrary angle. We adopt the viewpoint of time-optimal control theory. By Pontryagin’s
maximum principle, all sub-Finsler length minimizers belong to one of the following types:
abnormal, bang-bang, singular, and mixed. Bang-bang controls are piecewise controls with
values in the vertices of the set of control parameters.

We describe the phase portrait for bang-bang extremals.
In previous work, it was shown that bang-bang trajectories with low values of the energy

integral are optimal for arbitrarily large times. For optimal bang-bang trajectories with high
values of the energy integral, a general upper bound on the number of switchings was obtained.

In this paper we improve the bounds on the number of switchings on optimal bang-bang tra-
jectories via a second-order necessary optimality condition due to A. Agrachev and R. Gamkre-
lidze. This optimality condition provides a quadratic form, whose sign-definiteness is related
to optimality of bang-bang trajectories. For each pattern of these trajectories, we compute the
maximum number of switchings of optimal control. We show that optimal bang-bang controls
may have not more than 9 switchings. For particular patterns of bang-bang controls, we obtain
better bounds. In such a way we improve the bounds obtained in previous work.

On the basis of the results of this work we can start to study the cut time along bang-bang
trajectories, i.e., the time when these trajectories lose their optimality. This question will be
considered in subsequent work.
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1. Introduction

Sub-Finsler geometry is a natural generalization of the sub-Riemannian one. A sub-Rie-
mannian geometry on a smooth manifold M is given by a vector distribution Δ on M and an
inner product in Δ. A sub-Finsler structure is defined by a norm in Δ.

In recent years there has been a noticeable interest in sub-Finsler geometry in view of its
applications in geometric group theory [1], spaces with length metrics [2], and control theory [3].
An important question of both sub-Finsler and sub-Riemannian geometry is the description of
length minimizers and spheres, and the natural simplest cases here are nilpotent structures. The
left-invariant sub-Finsler problem on the Heisenberg group was studied in [7, 8]. Nilpotent l∞
sub-Finsler structures in the Martinet and Grushin cases were studied in [4]. Left-invariant
sub-Finsler problems on the Engel and Cartan groups were studied via convex trigonometry
techniques in [5]. Moreover, these techniques were applied to generalizations of a series of
classical optimization problems to the sub-Finsler case [6].

The next natural case is the Engel group, the 4-dimensional nilpotent Lie group of step 3
and rank 2. A study of a one-parameter family of sub-Finsler structures on the Engel group with
the set of control parameters given by a square was started in [9]. The sub-Finsler problems were
considered as time-optimal control problems. Pontryagin’s maximum principle was applied, and
extremal trajectories were described. Some upper bounds on the number of smooth pieces of
optimal bang-bang and mixed trajectories were presented.

In this note we continue that work. We describe the phase portrait for bang-bang extremals
and present detailed optimality conditions which improve the bounds on the number of smooth
pieces of optimal bang-bang trajectories given in [9].

2. Problem statement

The Engel algebra g is the 4-dimensional nilpotent Lie algebra with 2 generators, of step 3.
In a standard basis of the Engel algebra g = span(f1, f2, f3, f4) the product table has the form
[f1, f2] = f3, [f1, f3] = f4, ad f4 = 0. The simply connected Lie group G with the Lie algebra g
is called the Engel group. In some coordinates G ∼= R4

x,y,z,v the Engel algebra is realized by
left-invariant vector fields on G:

f1 =
∂

∂x
− y

2

∂

∂z
, f2 =

∂

∂y
+
x

2

∂

∂z
+
x2 + y2

2

∂

∂v
,

f3 =
∂

∂z
+ x

∂

∂v
, f4 =

∂

∂v
.

Define vector fields (ϕ ∈ [0, π/4])

X1 = cosϕf1 + sinϕf2, X2 = − sinϕf1 + cosϕf2, X3 = f3, X4 = f4.

Consider the following family of sub-Finsler problems on the Engel group (ϕ ∈ [0, π/4]):

q̇ = u1X1 + u2X2, q ∈ G, u ∈ U, (2.1)

U = {u ∈ R2 | ‖u‖∞ = max(|u1|, |u2|) � 1}, (2.2)

q(0) = q0 = Id, q(T ) = q1, (2.3)

T → min . (2.4)

The existence of optimal controls follows from the Rashevsky – Chow and Filippov theorems [10].
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3. Pontryagin’s maximum principle

Introduce Hamiltonians hi(λ) = 〈λ, Xi〉, λ ∈ T ∗G, i = 1, . . . , 4, and the corresponding

Hamiltonian vector fields �hi ∈ Vec(T ∗M).

Theorem 1 ([10, 11]). If a control u(t) and the corresponding trajectory q(t), t ∈ [0, T ],
are optimal, then there exist a curve λt ∈ T ∗

q(t)G and a number ν � 0 for which the following

conditions hold:

λ̇t = u1(t)�h1(λt) + u2(t)�h2(λt), (3.1)

u1(t)h1(λt) + u2(t)h2(λt) = H(λt) = (|h1| + |h2|)(λt),
λt �= 0,

H(λt) + ν ≡ 0.

The Hamiltonian system (3.1) has 3 integrals — Casimir functions on the Lie coalgebra g∗:
h4, E = h23/2 − (sinϕh1 + cosϕh2)h4, and the Hamiltonian H.

4. Abnormal trajectories

Let ν = 0.
Then the optimal abnormal controls are u(t) ≡ ±(tanϕ, 1).

5. Classes of normal extremal arcs

Let −ν = H(λt) > 0. An extremal arc λt, t ∈ I = (α, β) ⊂ [0, T ], is called:

• a bang-bang arc if card{t ∈ I | h1h2(λt) = 0} <∞,

• a singular arc if one of the following conditions holds: h1(λt) ≡ 0 or h2(λt) ≡ 0,

• a mixed arc if it consists of a finite number of bang-bang and singular arcs.

Remark 1. If hi(λt)|(α,β) �= 0, then ui(t)|(α,β) ≡ si := sgnhi(λt)|(α,β).
All singular arcs are optimal [9].

6. Bang-bang flow

If h1h2(λt)|(α,β) �= 0, then u(t)|(α,β) ≡ (s1, s2), thus bang-bang extremals satisfy the follow-

ing Hamiltonian system with the maximized Hamiltonian H = |h1| + |h2|:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ḣ1 = −s2h3,
ḣ2 = s1h3,

ḣ3 = (s1 cosϕ− s2 sinϕ)h4,

ḣ4 = 0,

q̇ = s1X1 + s2X2.

(6.1)

In view of the symmetry (λ, q) �→ (kλ, q), k > 0, we assume in the sequel that H(λt) ≡ 1.
Consider the cylinder

C = g∗ ∩ {H = 1}.
In [9] it was shown that bang-bang trajectories can be represented as images of an exponential
mapping: {q(t)} = Exp(λ, t), λ ∈ C, t > 0. The exponential mapping is single-valued for
generic λ ∈ C, and is multi-valued for certain special subsets of C.
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Let us parameterize the square {(h1, h2) | H(λ) = 1} by an angle coordinate θ ∈ R/2πZ:

h1 = sgn(cos θ) cos2 θ, h2 = sgn(sin θ) sin2 θ.

Then the vertical part of system (6.1) takes the form⎧⎪⎪⎨⎪⎪⎩
θ̇ =

h3
| sin 2θ| , θ �= πn

2
,

ḣ3 = (s1 cosϕ− s2 sinϕ)h4,

s1 = sgn cos θ, s2 = sgn sin θ.

(6.2)

System (6.2) is preserved by the group of symmetries {Id, ε1} ∼= Z2, where

ε1 : (h1, h2, h3, h4) �→ (−h1,−h2, h3,−h4),

(s1, s2) �→ (−s1,−s2).

We factorize by action of this group and reduce system (6.2) to the fundamental domain of this
group {(h1, h2, h3, h4) ∈ R4 | h4 � 0}.

7. Phase portrait of system (6.2)

We consider system (6.2) as an oscillator, with the full energy

E =
h23
2

− (sinϕh1 + cosϕh2)h4 =
h23
2

+ U(θ)

and the potential energy

U(θ) = −(sinϕh1 + cosϕh2)h4 = −(s1 sinϕ cos2 θ + s2 cosϕ sin2 θ)h4.

The function U(θ) is C1-smooth at θ = πn
2

and analytic elsewhere.

7.1. Case 1): h4 > 0

7.1.1. Subcase 1a): ϕ = 0

The phase portrait of system (6.2) is drawn as a set of curves h3 = ±
√

2(E − U(θ)), see
Fig. 1.

Fig. 1. Phase portrait of system (6.2) in case 1a).
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We have a decomposition of a section of the cylinder C = g∗ ∩ {H = 1} into domains with
qualitatively different trajectories of system (6.2):

{λ ∈ C | h4 > 0} = ∪6
i=1Ci,

C1 = E−1(−h4), C2 = E−1(−h4, 0), C3 = E−1(0),

C4 = E−1(0, h4), C5 = E−1(h4), C6 = E−1(h4,+∞).

7.1.2. Subcase 1b): ϕ = π/4

The phase portrait of system (6.2) is shown in Fig. 2.

We have a decomposition of a section of the cylinder C = g∗ ∩ {H = 1}:

{λ ∈ C | h4 > 0} = ∪4
i=1Ci,

C1 = E−1(−h4/
√

2), C2 = E−1(−h4/
√

2, h4/
√

2),

C3 = E−1(h4/
√

2), C4 = E−1(h4/
√

2,+∞).

Fig. 2. Phase portrait of system (6.2) in case 1b).

7.1.3. Subcase 1c): ϕ ∈ (0, π/4)

The phase portrait of system (6.2) is shown in Fig. 3.

Fig. 3. Phase portrait of system (6.2) in case 1c).
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We have a decomposition of a section of the cylinder C = g∗ ∩ {H = 1}:

{λ ∈ C | h4 > 0} = ∪8
i=1C8,

C1 = E−1(−h4 cosϕ), C2 = E−1(−h4 cosϕ,−h4 sinϕ),

C3 = E−1(−h4 sinϕ), C4 = E−1(−h4 sinϕ, h4 sinϕ),

C5 = E−1(h4 sinϕ), C6 = E−1(h4 sinϕ, h4 cosϕ),

C7 = E−1(h4 cosϕ), C8 = E−1(h4 cosϕ,+∞).

7.2. Case 2): h4 = 0

In this case the phase portrait of (6.2) is shown in Fig. 4.

Fig. 4. Phase portrait of system (6.2) in case 2).

The critical level line C1 = E−1(0) consists of fixed points, and the domain of regular values
of energy is C2 = E−1(0,+∞). We have

{λ ∈ C | h4 = 0} = C1 ∪ C2.

8. Optimality of bang-bang trajectories

8.1. Bang-bang trajectories with low energy E

In [9] the following optimality result was obtained for bang-bang trajectories with low
energy E.

Theorem 2 ([9]). If a bang-bang extremal λt, t ∈ [0,+∞), satisfies the conditions

ϕ ∈ [0, π/4), −|h4| cosϕ < E � −|h4| sinϕ,

then it is optimal.

8.2. Bang-bang trajectories with high energy E

Further, in [9] the following optimality result was obtained for bang-bang trajectories with
high energy E.

Theorem 3 ([9]). If (ϕ ∈ [0, π/4) and −|h4| sinϕ < E) or ϕ = π/4, then optimal trajec-
tories have not more than 10 switchings.

The main goal of this paper is to obtain detailed optimality results for each pattern of
bang-bang trajectory and to improve Theorem 3.
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9. The Agrachev –Gamkrelidze theorem

We obtain an upper bound on the number of switchings on optimal bang-bang trajectories
via the following theorem due to A. Agrachev and R. Gamkrelidze.

Theorem 4 ([4, 12]). Let (q(·), u(·)) be an extremal pair for problem (2.1)–(2.4) and let λ·
be an extremal lift of q(·). Assume that λ· is the unique extremal lift of q(·), up to multiplication
by a positive scalar. Assume that there exist 0 = t0 < t1 < t2 < . . . < tk < τk+1 = T and
u0, . . . , uk ∈ U such that u(·) is constantly equal to uj on (τj , τj+1) for j = 0, . . . , k.

Fix j = 1, . . . , k. For i = 0, . . . , k let Yi = ui1X1 +ui2X2 and define recursively the operators

Pj = Pj−1 = Id
Vec(M)

,

Pi = Pi−1 ◦ e(ti−ti−1) adYi−1 , i = j + 1, . . . , k,

Pi = Pi+1 ◦ e−(ti+2−ti+1) adYi+1 , i = 0, . . . , j − 2.

Define the vector fields
Zi = Pi(Yi), i = 0, . . . , k.

Let Q be the quadratic form

Q(α) =
∑

0�i<l�k

αiαl〈λtj , [Zi, Zl](q(tj))〉,

defined on the space

W =

{
α = (α0, . . . , αk) ∈ Rk+1 |

k∑
i=0

αi = 0,

k∑
i=0

αiZi(q(tj)) = 0

}
.

If Q is not negative-semidefinite, then q(·) is not optimal.

We will check the sign of the quadratic form Q|W via the following test.
Consider a quadratic form

A(x) =

n∑
i,j=1

aijxixj, aij = aji, xi ∈ R.

Denote a minor

A

(
i1 i2 . . . ip

i1 i2 . . . ip

)
=

∣∣∣∣∣∣∣∣∣∣
ai1i1 ai1i2 . . . ai1ip

ai2i1 ai2i2 . . . ai2ip

. . . . . . . . . . . . . . . . . . .

aipi1 aipi2 . . . aipip

∣∣∣∣∣∣∣∣∣∣
.

Theorem 5 ([13]). A quadratic form A(x) is negative-semidefinite iff the following in-
equalities hold:

(−1)pA

(
i1 i2 . . . ip

i1 i2 . . . ip

)
� 0, 1 � i1 < i2 < . . . < ip � n, p = 1, 2, . . . , n.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2020, 16(2), 355–367



362 Yu. Sachkov

10. Bounds on the number of switchings on optimal bang-bang
trajectories

We apply necessary optimality conditions for bang-bang trajectories of A. A. Agrachev and
R. V. Gamkrelidze given by Theorem 4 and improve the bound of Theorem 3.

10.1. Case 1a): h4 > 0, ϕ = 0

Theorem 6. Let h4 > 0, ϕ = 0, and λ ∈ ∪3
i=1Ci. Then the bang-bang trajectory Exp(λ, t)

is optimal.

Proof. Apply Theorem 2. �

Theorem 7. Let h4 > 0, ϕ = 0, and λ ∈ ∪6
i=4Ci. Then the bang-bang trajectory Exp(λ, t)

with k switchings is not optimal, where k is given by the following tables:

• λ ∈ C4 ⇒ Table 1,

• λ ∈ C5 ⇒ Table 2,

• λ ∈ C6 ⇒ Table 3.

Table 1. λ ∈ C4

Start (+,+)+ (−,+)+ (−,−) (−,+)− (+,+)− (+,−)

k 8 9 7 7 9 7

Table 2. λ ∈ C5

Start (−,+)+ (+,+)+ (+,−)+ (−,−)+ (−,−)− (−,+)− (+,+)− (+,−)−

− − 7 8 7 7 6 5 8 7

− + 8 8 7 7 6 5 8 8

+ − 8 5 6 8 7 8 8 8

+ + 8 5 6 7 7 8 8 7

Table 3. λ ∈ C6

Start (+,−) (+,+) (−,+) (−,−)

k 6 5 6 5

Remark 2. We explain now how Tables 1–3 should be read. Consider Table 1. The first line —
Start — gives the values of (u1(0), u2(0)) = (sgnh1(0), sgnh2(0)). For example, the first column of
Table 1 corresponds to

(u1(0), u2(0)) = (sgnh1(0), sgnh2(0)) = (+1,+1).

The second column of Table 1 corresponds to the initial values (u1(0), u2(0)) = (sgnh1(0), sgnh2(0)) =
= (−1,+1). The lower index ± near (±,±) indicates the value of sgnh3(0).

The same agreement on reading similar tables is used in subsequent subsections.
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We prove Theorem 7.

Proof. Let λ ∈ C4, the cases λ ∈ C5 and λ ∈ C6 are considered similarly. Then system (6.2)
has the phase portrait shown in Fig. 1.

Consider the first column of Table 1 — a control starting from (1, 1)+ and having k = 8
switchings (controls starting from other values are considered similarly). We apply Theorem 4
and show that such control is not optimal. We have 0 = t0 < t1 < . . . < t9 = T , where

t1 ∈ (0, τ1], t2 − t1 = t4 − t3 = t5 − t4 = t7 − t6 = t8 − t7 = τ1,

t3 − t2 = t6 − t5 = τ2, t9 − t8 ∈ (0, τ2],

and

τ1 =

√
2(E + h4) −

√
2E

h4
=

2√
2(E + h4) +

√
2E

, τ2 =
2
√

2E

h4
.

Further, we have

u|(t0,t1) = u|(t4,t5) = u|(t6,t7) = (1, 1),

u|(t1,t2) = u|(t3,t4) = u|(t7,t8) = (−1, 1),

u|(t2,t3) = u|(t8,t9) = (−1,−1), u|(t5,t6) = (1,−1),

see Fig. 1. We apply Theorem 4 in the case k = 8, j = 4. We use the basis (X+,X−,X3,X4) in
the Lie algebra g, where X+ = X1 +X2, X− = X1 −X2. Then

Y0 = −Y2 = Y4 = Y6 = −Y8 = X+,

Y1 = Y3 = −Y5 = Y7 = −X−.

Further,

P4 = P3 = Id, P5 = eτ1 adX+ ,

P6 = P5 ◦ eτ2 adX− , P7 = P6 ◦ eτ1 adX+ ,

P2 = eτ1 adX− , P1 = P2 ◦ eτ2 adX+ ,

P0 = P1 ◦ eτ1 adX− , P8 = P7 ◦ e−τ1 adX− .

Thus,

Z0 = X+ + 4τ1X3 + (4τ21 + 2τ1τ2)X4,

Z1 = −X− + 2τ2X3 + (τ22 + 2τ1τ2)X4,

Z2 = −X+ − 2τ2X3 − τ22X4,

Z3 = −X−,

Z4 = X+,

Z5 = X− − 2τ1X3 − τ21X4,

Z6 = X+ + 2τ2X3 + (τ22 + 2τ1τ2)X4,

Z7 = −X− + 4τ1X3 + (4τ21 + 2τ1τ2)X4,

Z8 = −X+ + (2τ1 − 2τ2)X3 + (3τ21 − τ22 )X4.
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Then Q(α) =
∑

0�i<l�8 σilαiαl, where

σ01 = h3 + (2τ1 + τ2)h4, σ24 = τ1h4,

σ02 = τ1h4, σ25 = h3 + 2τ1h4,

σ03 = h3 + 2τ1h4, σ26 = (τ1 − τ2)h4,

σ04 = −2τ1h4, σ27 = −h3 − 3τ1h4,

σ05 = −h3 − 3τ1h4, σ28 = (τ2 − 2τ1)h4,

σ06 = (τ2 − 2τ1)h4, σ34 = −h3,
σ07 = h3 + 4τ1h4, σ35 = τ1h4,

σ08 = (3τ1 − τ2)h4, σ36 = −h3 − τ2h4,

σ12 = h3 + (τ1 + τ2)h4, σ37 = −2τ1h4,

σ13 = τ2h4, σ38 = h3 + (τ2 − τ1)h4,

σ14 = −h3 − τ2h4, σ45 = −h3 − τ1h4,

σ15 = (τ1 − τ2)h4, σ46 = τ2h4,

σ16 = −h3 − 2τ2h4, σ47 = h3 + 2τ1h4,

σ17 = (−2τ1 + τ2)h4, σ48 = (τ1 − τ2)h4,

σ18 = h3 + (2τ2 − τ1)h4, σ56 = h3 + (τ1 + τ2)h4,

σ23 = −h3 − τ1h4, σ57 = τ1h4,

σ58 = −h3 − τ2h4, σ67 = h3 + (2τ1 + τ2)h4,

σ68 = τ1h4, σ78 = h3 + (τ1 + τ2)h4.

Further,

W =

{
(α0, . . . , α8) ∈ R9 |

8∑
i=0

αi = 0,
8∑

i=0

αiZi(q(t1)) = 0

}
= {(α0, . . . , α8) ∈ R8 | α1 = 2γα0 − α6 − 2γα7 + (1 − 2γ)α8,

α3 = 2γα0 − α2 + α6 + (2γ − 1)α7 + (2γ − 2)α8,

α4 = −α0 + α2 − α6 + α8, α5 = −α2 − α8},
γ = τ1/τ2,

Q|W = −4
√

2/a(f1 + af2 −
√
a(a+ 1)f3),

a = E/h4 ∈ (0, 1),

f1 = (α0 + α7 + α8)2,

f2 = α2
0 + α2

2 − 2α2α6 + 2α2
6 + α7(2α2 − 4α6 + 3α7)

+ (4α2 − 7α6 + 9α7)α8 + 8α2
8 + 2α0(α7 + α8),

f3 = α2
0 + α0(α2 − 2α6 + 3α7 + 5α8 + (α7 + α8)(α2 − 2α6 + 3α7 + 5α8).

Then

Δ27 =

∣∣∣∣∣ a32 a25

a52 a55

∣∣∣∣∣ = 8
√

1 + a/
√
a
(

11
√
a(1 + a) − 4 − 12a

)
< 0.

By Theorem 5, the quadratic form Q|W is not negative semidefinite. By Theorem 4, the control u
is not optimal. �
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10.2. Case 1b): h4 > 0, ϕ = π/4

Theorem 8. Let h4 > 0, ϕ = π/4, and λ ∈ C1. Then the bang-bang trajectory Exp(λ, t)
is optimal.

Proof. Apply Theorem 2. �

Theorem 9. Let h4 > 0, ϕ = 0, and λ ∈ ∪4
i=2Ci. Then the bang-bang trajectory Exp(λ, t)

with k switchings is not optimal, where k is given by the following tables:

• λ ∈ C2 ⇒ Table 4,

• λ ∈ C3 ⇒ Table 5,

• λ ∈ C4 ⇒ Table 6.

Proof. Similarly to the proof of Theorem 7. �

Table 4. λ ∈ C2

Start (+,+)+ (−,+) (+,+)− (+,−)

k 7 6 5 4

Table 5. λ ∈ C3

Start (+,−) (+,+)+

k 4 5

Table 6. λ ∈ C4

Start (+,−) (+,+) (−,+) (−,−)

k 6 6 5 7

10.3. Case 1c): h4 > 0, ϕ ∈ (0, π/4)

Theorem 10. Let h4 > 0, ϕ ∈ (0, π/4), and λ ∈ ∪3
i=1Ci. Then the bang-bang trajectory

Exp(λ, t) is optimal.

Proof. Apply Theorem 2. �

Theorem 11. Let h4 > 0, ϕ ∈ (0, π/4), and λ ∈ ∪8
i=4Ci. Then the bang-bang trajectory

Exp(λ, t) with k switchings is not optimal, where k is given by the following tables:

• λ ∈ C4 ⇒ Table 7,

• λ ∈ C5 ⇒ Table 8,

• λ ∈ C6 ⇒ Table 9,

• λ ∈ C7 ⇒ Table 10,

• λ ∈ C8 ⇒ Table 11.

Proof. Similarly to the proof of Theorem 7. �
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Table 7. λ ∈ C4

Start (+,+)+ (−,+) (+,+)− (+,−)

k 7 8 8 7

Table 8. λ ∈ C5

Start (+,+)+ (−,+) (+,+)− (+,−)

k 7 8 8 7

Table 9. λ ∈ C6

Start (+,+)+ (−,+)+ (−,−) (−,+)− (+,+)− (+,−)

k 8 9 8 8 9 8

Table 10. λ ∈ C7

Start (+,+)+ (−,+)+ (−,−) (−,+)− (+,+)− (+,−)

− − 10 9 8 7 8 7

− + 8 9 7 10 9 8

+ − 10 9 8 10 9 8

+ + 8 8 7 10 9 8

Table 11. λ ∈ C8

Start (+,+) (−,+) (−,−) (+,−)

k 8 8 7 7

10.4. Case 2): h4 = 0

Theorem 12. Let h4 = 0, and λ ∈ C2. Then the bang-bang trajectory Exp(λ, t) with 7
switchings is not optimal.

Proof. Similarly to the proof of Theorem 7. �

Now Theorems 7–12 imply the following statement.

Corollary 1. If (ϕ ∈ [0, π/4) and −|h4| sinϕ < E) or ϕ = π/4, then optimal bang-bang
trajectories have not more than 9 switchings.
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11. Conclusion

Many interesting questions on the sub-Finsler problem on the Engel group considered in
this paper remain open:

• precise description of the cut time along extremal trajectories,

• optimal synthesis,

• sub-Finsler sphere and distance.

We hope to address these questions in the forthcoming works.
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