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Abstract: In this contribution we present a generic mechanism to transform an oscillator into an adaptive frequency 

oscillator, which can then dynamically adapt its parameters to learn the frequency of any periodic driving signal. 

Adaptation is done in a dynamic way: it is part of the dynamical system and not an offline process. This mechanism goes 

beyond entrainment since it works for any initial frequencies and the learned frequency stays encoded in the system even 

if the driving signal disappears. Interestingly, this mechanism can easily be applied to a large class of oscillators from 

harmonic oscillators to relaxation types and strange attractors. Several practical applications of this mechanism are then 

presented, ranging from adaptive control of compliant robots to frequency analysis of signals and construction of limit 

cycles of arbitrary shape. 

I. INTRODUCTION 

 Nonlinear oscillators are very important modeling tools 

in biological and physical sciences, and these models have 

received particular attention in many engineering fields over 

the last few decades. The models are interesting because of 

their capability to synchronize with other oscillators or with 

external driving signals. However, these synchronization 

capabilities are limited, and it is not always an easy task to 

correctly choose the model parameters to ensure proper 

synchronization with the external driving signals. Indeed, an 

oscillator has a finite entrainment region which depends on 

many parameters, such as the coupling strength and the 

frequency difference between the oscillator and the driving 

signal. 

 Recent work, however, has shown that it is possible to 

modify nonlinear oscillators so that they can overcome the 

limitations above, by adding dynamics to the parameters of 

an individual oscillator, allowing it to learn the frequency of 

an input signal. These attempts are often limited to simple 

classes of oscillators, equivalent to phase oscillators [1, 2] or 

to simple classes of driving signal (pulses) [3]. 

 Recently we designed a learning mechanism for 

oscillators, which adapts the oscillator frequency to the 

frequency of any periodic input signal [4, 5]. The parameter 

with the strongest influence on the frequency of the 

oscillator is turned into a new state variable for the system. 

Interestingly, this mechanism appears to be generic enough 

to be applied to many different types of oscillators, from 

phase oscillators to relaxation types, and to strange 

attractors. The frequency adaptation process goes beyond 

mere entrainment, because, even if the input signal 

disappears, the learned frequency stays encoded in the  

 
 

*Address correspondence to this author at the School of Communication 

and Computer Science, Ecole Polytechnique Fédérale de Lausanne, 

Lausanne, CH-1015 Switzerland; E-mail: ludovic.righetti@a3.epfl.ch 

oscillator. Moreover, it is independent of the initial conditions, 

thus working beyond entrainment basins (i.e. it has an infinite 

basin of attraction). We call this adaptation mechanism dynamic 

Hebbian learning because it shares similarities with correlation-

based learning observed in neural networks [6]. 

 In this contribution, we present our generic adaptation 

mechanism. Then we demonstrate several applications, 

ranging from adaptive control of legged robots with passive 

dynamics [4, 7], where the adaptive oscillators find the 

resonant frequency of the robot, to frequency analysis with 

systems of coupled adaptive oscillators [8], and finally to 

construction of limit cycles with arbitrary shape [9]. 

II. ADAPTIVE FREQUENCY OSCILLATORS 

A. A generic Rule for Frequency Adaptation 

 We consider general equations for an oscillator perturbed 

by a periodic driving signal 

 

x = fx (x, y, ) + KF(t)

y = fy (x, y, )
 

where fx and fy  are functions of the state variables that 

produce a structurally stable limit cycle, and of a parameter 

 that has a monotonic relation with the frequency of the 

oscillator when unperturbed, K = 0 (we do not require this 

relation to be linear). F(t) is a time periodic perturbation and 

K >  0 the coupling strength. 

 In order to enable the oscillator to learn the frequency of 

F(t) , we transform the  parameter into a new state 

variable, with its own dynamics. The generic rule that allows 

us to transform the basic oscillator into an adaptive 

frequency oscillator is as follows: 

 

= ±KF(t)
y

x2 + y2
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where the sign depends on the direction of rotation of the 

limit cycle in the y) (x, plane. 

B. Properties of the Adaptation Mechanism 

 We proved in [5] that the adaptation mechanism causes 

an oscillator’s frequency to converge to the frequency of any 

periodic input signal, for phase and Hopf oscillators. In the 

case where there are several frequencies in the spectrum of 

)(tF , the oscillator converges to one input frequency 

component, depending on the initial frequency of the 

oscillator. 

 Further, the higher the coupling strength K, the faster 

convergence occurs. It can be shown that for suitable 

coupling strength, the convergence is exponential (of order 

e t
) [10]. Examples of frequency adaptation for the Hopf 

oscillator, with several different inputs, are shown in Fig. 

(1). The corresponding equations for the adaptive Hopf 

oscillator are: 

 

x = (μ x2 y2 )x y + KF(t)

y = (μ x2 y2 )y + x

= KF(t)
y

x2 + y2

 

 We can note from Fig. (1d) that the adaptation mechanism 

works for time-varying signals (i.e. with time-varying 

frequencies). The tracking ability is limited, however, by the 

exponential convergence rate of the adaptation mechanism. 

Further examples of such tracking and limitations can be 

found in [8, 10] for pools of oscillators. 

 

Fig. (1). (a) Typical convergence of an adaptive frequency Hopf oscillator driven by a harmonic signal ( (F(t) =  sin(2 t) ). The frequencies 

converge towards the frequency of the input (indicated in dashed line). After convergence the frequency oscillates with a small amplitude 
around the frequency of the input. In all figures, we plot in the main graph the time evolution of the difference between  and the input 

frequency, normalized by the input frequency. The top right panel shows the driving signals (note the different scales). (b) Square pulse 

F(t) =  rect( F t) , (c) Sawtooth, F(t) =  st( F t) , (d) Chirp F(t) =  cos( c t) , where c  = F (1+
1

2
 (

t

1000
)2 ) . (Note that the graph of the input 

signal is illustrative only since changes in frequency takes much longer than illustrated). (e) Signal with two non-commensurate frequencies 

F(t) =  
1

2
 cos( F t) +  cos(

2

2 F t)
, i.e. a representative example how the system can evolve to different frequency components of the driving signal 

depending on the initial condition d (0) =  (0)- F . (f) F(t)  is the non-periodic output of the Rössler system. The Rössler signal has a 1/f 

broad-band spectrum, yet it has a clear maximum in the frequency spectrum. In order to assess the convergence we use 
F  =  2 fmax

, where 

fmax  is found numerically by FFT. The oscillator converges to this frequency. 
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 Our extensive numerical simulations also show that this 

adaptation mechanism works for many different types of 

non-harmonic oscillators. Some examples, shown in Fig. (2), 

are an adaptive Rayleigh oscillator, an adaptive Fitzhugh-

Nagumo oscillator and a Rössler system in chaotic mode. 

For the first two cases there is no linear relation between  

and the frequency of oscillations, but the adaptive 

mechanism is able to find a suitable value for  such that 

the frequency of the oscillator is the same as the frequency 

of the input signal. For the Rössler system, the frequency of 

the system is not well defined since the system is not 

periodic, but we can define a pseudo-frequency and the 

system can then adapt it to the frequency of a periodic input. 

III. APPLICATIONS 

 We now present several applications for the adaptation 

mechanism, ranging from robot control to frequency analysis 

and automatic construction of limit cycles of arbitrary shape. 

A. Robot with Passive Dynamics 

 The adaptation mechanism can be used to find the 

resonant frequencies of legged robots with passive elements 

(i.e. springs) [4, 7, 11, 12]. A controller based on adaptive 

frequency oscillators is able to tune itself to the resonant 

frequency of the robot, via a simple feedback loop using 

sensors on-board (e.g. position or inertial sensors). 

Locomotion can therefore be made very efficient by 

exploiting the intrinsic dynamics of the robot. Another 

advantage is that one does not need to tune the controller for 

a specific robot; the controller can also track any changes in 

resonant frequency automatically, if, for example, the 

frequency changes due to a variation in mass or spring 

stiffness, or because of a gait transition (e.g. the resonant 

frequency is different if the robot is standing on two feet or 

four feet). 

B. Frequency Analysis 

 Another application is the use of a pool of adaptive 

frequency Hopf oscillators to perform frequency analysis on 

an input signal [8]. The oscillators are coupled via a negative 

mean field with the input teaching signal, as is shown in  

Fig. (3). The oscillators converge to the frequencies present 

in the spectrum of the teaching signal and due to the negative 

feedback, each time an oscillator finds a correct frequency, 

this one loses its amplitude. Thus, the other oscillators only 

feel the remaining frequencies to learn. 

 

Fig. (3). Structure of the pool of adaptive frequency oscillators that 

is able to reproduce a given teaching signal T(t). The mean field 

produced by the oscillators is fed back negatively to the oscillators. 

 The pool of oscillators is able to approximate the 

frequency spectrum of any input signal. This works for 

signals with discrete spectra, and also for those with 

continuous and time-varying spectra. The spectrum is 

approximated by the distribution of the frequencies of the 

oscillators, and so the resolution of the approximation can be 

made arbitrary good by increasing the number of oscillators 

in the pool. 

 Fig. (4) shows how the system can approximate the 

spectrum of a broad-band chaotic signal from the Rössler 

system. As can be seen, the important features of the  

 

 

   

 

x = y + KF

y = (1 qy2 )y 2x

= KF
y

x2 + y2

 

 

x = x(x a)(1 x) y + KF

y = (x by)

= KF
y

x2 + y2

 

 

x = y z + KF

y = x + ay

z = b cz + xz

= KF
y

x2 + y2

 

(a) Adaptive Rayleigh oscillator (b) Adaptive Fitzhugh-Nagumo oscillator (c) Adaptive Rössler system 

 
Fig. (2). For each oscillator,  corresponds to the adaptive parameter. Each figure is composed of 3 plots. The right plot shows the 

evolution of . The left plots are the time evolution of the oscillators (the x variable) and of the input signal F  (dashed line), before (upper 

plot) and after (lower plot) adaptation. 
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spectrum are caught by the system, especially the broad 

spectrum and the major frequency peaks. 

C. Construction of Limit Cycles with Arbitrary Shape 

 The previous pool of oscillators can be extended by 

adding a weight to each oscillator in the mean field sum, and 

a coupling between oscillators, in order to ensure stability of 

the output pattern. The result is that an individual oscillator 

will be able to fully match the energy content of a frequency 

in the spectrum of the teaching signal. Moreover, the 

coupling ensures that the system exhibits a stable limit cycle. 

Here, amplitudes and phase differences become system state 

variables, in addition to frequencies. The governing 

differential equations of the system are then: 

 

xi = (μ ri
2 )xi i yi + KF(t) + sin( i

0
0 i i )

yi = (μ ri
2 )yi + i xi

i = KF(t)
yi
ri

i = xiF(t)

i = sin(
i

0
0 i i )

 

with 

ri
2
= xi

2
+ yi

2

i = sgn(xi ) cos
1(

yi
ri
)

F(t) = Pteach (t) Qlearned (t)

Qlearned (t) = i xi
i=0

N

 

 

where , K  and  are positive constants. The output of the 

system, Qlearned , is the weighted sum of the output of each 

oscillator. F(t) represents the negative feedback, which on 

average is the remainder of the teaching signal that Pteach (t)  
the network still has to learn. i  represents the amplitude 

associated with the frequency i of oscillator i. The 

evolution equation maximizes the correlation between xi  

and F(t) , which means that i  will increase only if i  has 

converged to a frequency component of )(tF  (the 

correlation will be positive on average) and will stop 

increasing when the frequency component 
i
 disappears 

from F(t)  because of the negative feedback loop. i  is the 

phase difference between oscillator i and 0. The value 

converges to the phase difference between the instantaneous 

phase of oscillator 0, 0 , scaled for frequency i , and the 

instantaneous phase of oscillator i, i . Each adaptive 

oscillator is coupled with oscillator 0, with strength , to 

maintain the correct phase relationships between oscillators. 

 Fig. (5) shows an example of the convergence of a 

network of oscillators with amplitudes and coupling, 

together with the resulting learned signal. We see that the 

individual oscillator frequencies first converge to the 

frequency components present in the teaching signal. 

Individual amplitudes increase when the associated 

frequency matches one frequency of the input signal. Finally, 

the phase differences stabilize and we see that the error is 

zero, which means that the system has perfectly 

reconstructed the teaching signal. Further, the teaching 

signal is now encoded into a structurally stable limit cycle 

and it is easy to smoothly modulate its frequency and 

amplitude by changing 
 

 and 
 

. These properties can be 

very useful, together with sensory feedback, for robotics 

control (see for example [9]). This system can be viewed as a 

dynamic Fourier series decomposition where there is no need 

of explicitly define a time window or to perform any 

preprocessing of the input signal. 

 

Fig. (4). FFT of the Rössler signal (black line) in comparison with the distribution of the frequencies of the oscillators (gray bars normalized 

to the number of oscillators, N = 10000). The spectrum of the signal has been discretized into the same bins as the statistics of the oscillators 
in order to allow for comparison with the results from the full-scale simulation. 
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IV. CONCLUSION 

 In this contribution we presented a generic mechanism 

for building adaptive frequency oscillators from a given, 

existing oscillator. We showed that our approach can be 

applied to many different types of oscillators, and that the 

resulting systems are able to learn the frequencies of any 

periodic input signal. Interestingly, there is no need to 

preprocess the signal and no external optimization  

 

procedures are required to obtain the correct frequency. All 

the learning is embedded in the dynamics of the adaptive 

oscillators. Moreover, our results go further than 

entrainment, since the learned frequency is maintained in the 

system even if the external driving oscillation disappears and 

the basin of attraction is infinite (i.e. the system can start 

from any initial frequency). Finally, we discussed some 

applications of this mechanism, ranging from adaptive 

control for compliant robots, to frequency analysis and 

construction of limit cycles of arbitrary shape. 

 

 

(a) Evolution of the state variables of the system 

 

(b) Result of learning 

 
Fig. (5). Construction of a limit cycle by learning an input signal ( cos(60t) 0.5 - sin(45t) 1.4  cos(30t)  sin(15t) 0.8  Pteach += ). Fig. (5a) 

shows the evolution of the state variables of the system during learning. The upper graph is a plot of the error ( Pteach Qlearned
). The 3 other 

graphs show the evolution of the frequencies, 
i
, the amplitudes, i  and the phases, 

i
. We clearly see that the system can learn the 

teaching signal perfectly – the frequencies, amplitudes and phase differences converge to the correct values and the error becomes zero. Fig. 

(5b) shows the result of learning (teaching signal in upper graph, output of the system in lower graph), we note the perfect reconstruction of 
the signal. 
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