Denotational Semantics of XML-Lambda

Pavel Loupal\(^1\) and Karel Richta\(^2\)

\(^1\) Department of Software Engineering, Czech Technical University, Faculty of Information Technology
Prague, Czech Republic
pavel.loupal@fit.cvut.cz

\(^2\) Department of Software Engineering, Charles University
Faculty of Mathematics and Physics
Prague, Czech Republic
richta@ksi.mff.cuni.cz

Abstract. The article deals with the denotational semantics of a special query language called XML-Lambda, which is based on the simply typed lambda calculus. Such semantics allows experimentation with a language definition, prototyping of programs, and similar experiments.

1 Introduction

In this paper, we define formally the semantics of XML-Lambda query language. From now on we will use abbreviation XML-\(\lambda\). XML-\(\lambda\) employs the functional data model for XML data elaboration. The first idea for such an attitude was published in [4, 5]. This research brought in the key idea of a functional query processing with a wide potential that was later proven by a simple prototype implementation [6].

We can imagine two scenarios for this language; firstly, the language plays a role of a full-featured query language for XML (it has both formal syntax and semantics and there is also an existing prototype that acts as a proof-of-the-concept application). In the second scenario, the language is utilized as an intermediate language for the description of XQuery semantics. In [3] we propose a novel method for XQuery evaluation based on the transformation of XQuery queries into their XML-\(\lambda\) equivalents and their subsequent evaluation. As an integral part of the work, we have designed and developed a prototype of an XML-\(\lambda\) query processor for validating the functional approach and experimenting with it.

2 XML-\(\lambda\) Query Language

In this section, we briefly describe the query language XML-\(\lambda\), that is based on the simply typed lambda calculus.

2.1 Language of Terms

Typical query expression has a query part — an expression to be evaluated over data — and a constructor part that wraps a query result and forms the output. The XML-\(\lambda\) Query Language is based on \(\lambda\)-terms defined over the type system \(T_E\) as shown later. \(\lambda\)-calculus is a formal mathematical system for investigation of function definition and application. It was introduced by Alonzo Church and has been utilized in many ways. In this work, we use a variant of this formalism, the simply-typed \(\lambda\)-calculus, as a core for the XML-\(\lambda\) Query Language. We have gathered the knowledge from [7] and [1]. Our realization is enriched by usage of tuples.

The main constructs of the language are variables, constants, tuples, projections, and \(\lambda\)-calculus operations — applications and abstractions. The syntax is similar to \(\lambda\)-calculus expressions, thus the queries are structured as nested \(\lambda\)-expressions, i.e.:

\[\lambda \ldots (\lambda \ldots (expression) \ldots) \]

In addition, there are also typical constructs such as logical connectives, constants, comparison predicates, and a set of built-in functions.

Language of terms is defined inductively as the least set containing all terms created by the application of the following rules. Let \(T,T_1,\ldots,T_n, n \geq 1\) be members of \(T_E\). Let \(F\) be a set of typed constants. Then:

1. variable: each variable of type \(T\) is a term of type \(T\)
2. constant: each constant (member of \(F\)) of type \(T\) is a term of type \(T\)
3. application: if \(M\) is a term of type \((T_1,\ldots,T_n) \rightarrow T\) and \(N_1,\ldots,N_n\) are terms of the types \(T_1,\ldots,T_n\), then \(M(N_1,\ldots,N_n)\) is a term of the type \(T\)
4. \(\lambda\)-abstraction: if \(x_1,\ldots,x_n\) are distinct variables of types \(T_1,\ldots,T_n\) and \(M\) is a term of type \(T\), then \(\lambda x_1: T_1,\ldots,x_n : T_1.(M)\) is a term of type \((T_1,\ldots,T_n) \rightarrow T\)
5. n-tuple: if \(N_1,\ldots,N_n\) are terms of types \(T_1,\ldots,T_n\), then \((N_1,\ldots,N_n)\) is a term of type \((T_1,\ldots,T_n)\)
6. projection: if \((N_1,\ldots,N_n)\) is a term of type \((T_1,\ldots,T_n)\), then \(N_1,\ldots,N_n\) are terms of types \(T_1,\ldots,T_n\)
7. tagged term: if \(N\) is a term of type \(NAMEE\) and \(M\) is a term of type \(T\) then \(N : M\) is a term of type \((E \rightarrow T)\).
The set of abstract elements E serves as a notation for abstract positions in XML trees. Terms can be interpreted in a standard way by means of an interpretation assigning to each constant from F an object of the same type, and by a semantic mapping from the language of terms to all functions and Cartesian products given by the type system T_E. Speaking briefly, an application is evaluated as an application of of the associated function to given arguments, an abstraction 'constructs' a new function of the respective type. The tuple is a member of Cartesian product of sets of typed objects. A tagged term is interpreted as a function defined only for one $e \in E$. It returns again a function.

3 Abstract Syntax

As for evaluation of a query, we do not need its complete derivation tree; such information is too complex and superfluous. Therefore, in order to diminish the domain that needs to be described without any loss of precision, we employ the abstract syntax. With the abstract syntax, we break up the query into logical pieces that forming an abstract syntax tree carrying all original information constitute an internal representation suitable for query evaluation. We introduce syntactic domains for the language, i.e., logical blocks a query may consist of. Subsequently, we list all production rules. These definitions are later utilized in Section 4 within the denotational semantics.

3.1 Syntactic Domains

By the term syntactic domain, we understand a logical part of a language. In Table 1, we list all syntactic domains of the XML-λ Query Language with their informal meaning. Notation $Q : Query$ stands for the symbol Q representing a member of the Query domain.

3.2 Abstract Production Rules

The abstract production rules listed in Table 2 (written using EBNF) connect the terms of syntactic domains from the previous section into logical parts with suitable level of details for further processing. On the basis of these rules, we will construct the denotational semantics of the language.

4 Denotational Semantics

For description the meaning of each XML-λ query, we use denotational semantics. The approach is based on the idea that for each correct syntactic construct of the language we can define a respective meaning of it

<table>
<thead>
<tr>
<th>Q : Query</th>
<th>XML-λ queries,</th>
</tr>
</thead>
<tbody>
<tr>
<td>O : Option</td>
<td>XML input attachments,</td>
</tr>
<tr>
<td>C : Constructor</td>
<td>constructors of output results,</td>
</tr>
<tr>
<td>E : Expression</td>
<td>general expressions,</td>
</tr>
<tr>
<td>T : Term</td>
<td>sort of expression,</td>
</tr>
<tr>
<td>F : Fragment</td>
<td>sub-parts of a Term,</td>
</tr>
<tr>
<td>BinOp : BinOperator</td>
<td>binary logical operators,</td>
</tr>
<tr>
<td>RelOp : RelOperator</td>
<td>binary relational operators,</td>
</tr>
<tr>
<td>N : Numeral</td>
<td>numbers,</td>
</tr>
<tr>
<td>S : String</td>
<td>character strings,</td>
</tr>
<tr>
<td>Id : Identifier</td>
<td>strings conforming to the Name syntactic rule in [2],</td>
</tr>
<tr>
<td>NF : Nullary</td>
<td>identifiers of nullary functions (subset of Identifier),</td>
</tr>
<tr>
<td>Proj : Projection</td>
<td>identifiers for projections (subset of Identifier).</td>
</tr>
</tbody>
</table>

Table 1. Syntactic domains of the XML-λ Query Language

as a formal expression in another, well-known, notation. We can say that the program is the denotation of its meaning. The validity of the whole approach is based on structural induction; i.e., that the meaning of more complex expressions is defined on the basis of their simpler parts. As the notation we employ the simply typed lambda calculus. It is a well-known and formally verified tool for such a purpose.

4.1 Prerequisites

The denotational semantics utilizes a set of functions for the definition of the language meaning. For this purpose, we formulate all necessary mathematical definitions. We start with the data types and specification of the evaluation context followed by the outline of bindings to the T_E type system. Then, all auxiliary and denotation functions are introduced.

Data Types. Each value computed during the process of the query evaluation is of a type from $Type$. Let E be a type from the type system T_E, we define $Type$ as:

```
Type ::= BaseType | SeqType
SeqType ::= ⊥ | BaseType × SeqType
BaseType ::= E | PrimitiveType
PrimitiveType ::= Boolean | String | Number
```

Primitive types, Boolean, String, and Number, are defined with their set of allowed values as usual. The type $SeqType$ is the type of all ordered sequences of elements of base types3. We do not permit sequences

3 We suppose usual functions cons, append, null, head, and tail for sequences.
of sequences. The symbol \(\perp \) stands for the empty sequence of types – represents an unknown type. More precisely, we interpret types as algebraic structures, where for each type \(\tau \in \text{Type} \) there is exactly one carrier \(V_\tau \), whose elements are the values of the respective type \(\tau \).

Variables An XML-\(\lambda \) query can use an arbitrary (countable) number of variables. We model variables as pairs \(\text{name} : \tau \), where \(\text{name} \) refers to a variable name and \(\tau \) is the data type of the variable – any member of \(\text{Type} \). Syntactically, variable name is always prepended by the dollar sign. Each expression in XML-\(\lambda \) has a recognizable type, otherwise both the type and the value are undefined.

Query Evaluation Context. During the process of query evaluation we need to store variables inside a working space known as a context. Formally, we denote this context as the \(\text{State} \). We usually understand a state as the set of all active objects and their values at a given instance. We denote the semantic domain \(\text{State} \) of all states as a set of all functions from the set of identifiers \(\text{Identifier} \) into their values of the type \(\tau \in \text{Type} \). Obviously, one particular state \(\sigma : \text{State} \) represents an immediate snapshot of the evaluation process; i.e., values of all variables at a given time. We denote this particular value for the variable \(x \) as \(\sigma[x] \). Simply speaking, the state is the particular valuation of variables. We use the functor \(f[x \leftarrow v] \) for the definition of a function change in one point \(x \) to the value \(v \).

4.2 Signatures of Semantic Functions

Having defined all necessary prerequisites and auxiliary functions (recalling that the \(\text{SeqType} \) represents any permitted type of value), we formalize semantic functions over semantic domains as:

\[
\begin{align*}
\text{Sem}_{\text{Query}} &: \text{Query} \rightarrow (\text{XMLDoc} \rightarrow \text{SeqType}) \\
\text{Sem}_{\text{Options}} &: \text{Options} \rightarrow (\text{State} \rightarrow \text{State}) \\
\text{Sem}_{\text{Expr}} &: \text{Expression} \rightarrow (\text{State} \rightarrow \text{SeqType}) \\
\text{Sem}_{\text{Term}} &: \text{Term} \rightarrow (\text{State} \rightarrow \text{Boolean}) \\
\text{Sem}_{\text{Filter}} &: \text{Fragment} \rightarrow (\text{State} \rightarrow \text{SeqType}) \\
\text{Sem}_{\text{RelOp}} &: \text{Fragment} \times \text{RelOp} \times \text{Fragment} \rightarrow (\text{State} \rightarrow \text{Boolean}) \\
\text{Sem}_{\text{BinOp}} &: \text{Term} \times \text{BinOp} \times \text{Term} \rightarrow (\text{State} \rightarrow \text{Boolean})
\end{align*}
\]

Table 3. Semantic functions arities

4.3 Semantic Equations

We start with the semantic equations for the expressions, then we will continue with the semantics of queries.

Terms. Terms are logical expressions.

\[
\text{Sem}_{\text{Term}} : \text{Term} \rightarrow \text{State} \rightarrow \text{Boolean}
\]

\[
\begin{align*}
\text{Sem}_{\text{Term}}[B] &= \lambda \sigma.\text{bool}[B] \\
\text{if } B \text{ is a constant of the type } \text{Boolean} \\
\text{Sem}_{\text{Term}}[F_1 \text{ RelOp } F_2] &= \lambda \sigma.\text{Sem}_{\text{RelOp}}[F_1 \text{ RelOp } F_2] \sigma \\
\text{Sem}_{\text{Term}}[\text{`not'} \ T] &= \lambda \sigma.\text{not}(\text{Sem}_{\text{Term}}[T] \sigma) \\
\text{Sem}_{\text{Term}}[T_1 \text{ BinOp } T_2] &= \lambda \sigma.\text{Sem}_{\text{BinOp}}[T_1 \text{ BinOp } T_2] \sigma
\end{align*}
\]

Table 4. Semantic equations for terms

Relational Operators. Relational operators can be applied to any two fragments and the meaning of resulting expression is the mapping from the current state to Boolean values. They serve in filters.

\[
\text{Sem}_{\text{RelOp}} : \text{Fragment} \times \text{RelOp} \times \text{Fragment} \rightarrow \text{State} \rightarrow \text{Boolean}
\]

Binary Operators. Binary operators can be applied to any two terms and the meaning of resulting expression is the mapping from the current state to Boolean values.

\[
\text{Sem}_{\text{BinOp}} : \text{Term} \times \text{BinOp} \times \text{Term} \rightarrow \text{State} \rightarrow \text{Boolean}
\]
Assignments. An assignment expression is a mandatory. Then, the evaluation process will filter results a nullary function and stores the result into a vari-
tory part of a query. It sets the initial context of the

$\text{Sem}_{\text{Assign}} : \text{Fragment} \rightarrow \text{State} \rightarrow \mathcal{V}$

Assignments. An assignment expression is a mandatory part of a query. It sets the initial context of the evaluation, more precisely, such expression evaluates a nullary function and stores the result into a vari-

$\text{Sem}_{\text{Assign}} : \text{Fragment} \times \text{Identifier} \rightarrow \text{State} \rightarrow \text{State}$

Expressions. Each expression e has a defined value $\text{Sem}_e[\sigma](\xi)$ in a state σ and in an environment ξ. The state represents the values of variables, the envi-

$\text{Sem}_{\text{Expr}} : \text{Expression} \times \text{State} \times \text{Env} \rightarrow \text{State}$
Attribute Constructors. Elements can have attributes assigned by attribute constructors

\[Sem_{AttrCons} : AttrConstr \times State \rightarrow \text{Seq}(V) \]

Table 10. The semantic equation for attribute constructors

\[Sem_{AttrConstr}[N I]_\sigma = \text{attribute}(N, SemExpr[I]_\sigma) \]

Element Constructors. Resulting values can be created by element constructors

\[Sem_{ElemCons} : ElemConstr \times State \rightarrow \text{Seq}(V) \]

Table 11. Semantic equations for element constructors

\[Sem_{ElemConstr}[NA_1...A_n]_\sigma = \]
\[= \text{element}(N, \sigma[I], Sem_{AttrConstr}[A_1]_\sigma, ..., Sem_{AttrConstr}[A_n]_\sigma) \]
\[Sem_{ElemConstr}[NA_1...A_n,E]_\sigma = \]
\[= \text{element}(N, SemExpr[E]_\sigma, Sem_{AttrConstr}[A_1]_\sigma, ..., Sem_{AttrConstr}[A_n]_\sigma) \]
\[Sem_{ElemConstr}[N I]_\sigma = \text{element}(N, \sigma[I], \text{nil}) \]
\[Sem_{ElemConstr}[N E]_\sigma = \]
\[= \text{element}(N, SemExpr[E]_\sigma, \text{nil}) \]

Constructors. Resulting values are created by constructors. A constructor is a list of items which can be variable identifier or constructing expression.

\[Sem_{Cons} : Constructor \times State \rightarrow \text{Seq}(V) \]

Table 12. Semantic equations for constructors

\[Sem_{Cons}[E_1; E]_\sigma = \text{append}(Sem_{ElemConstr}[E_1]_\sigma, Sem_{Cons}[E]_\sigma) \]
\[Sem_{Cons}[l_1; E]_\sigma = \text{cons}(\sigma[l_1], Sem_{Cons}[E]_\sigma) \]
\[Sem_{Cons}[\text{nil}]_\sigma = \text{nil} \]

Example Let us show an example of resulting sequence for the XML-\(\lambda\) constructor

\[\text{lambda}\ \text{book\ attlist\ [\ title\ b\]\ a} \]

The result is the function

\[\lambda\sigma.\text{element}(\text{book}', \sigma[a], \text{attribute}(\text{title}', \sigma[b])) \]

returning in the given state the string

\[\text{element(book,"the value of a", attribute(title,"the value of b"))} \]

Options. The only allowed option in the language is now the specification of input XML documents.

\[Sem_{Options} : Options \times Env \rightarrow Env \]

Table 13. Semantic equations for options

\[Sem_{Options}[\text{xmldata}(X)\ Y] = \]
\[= \lambda\xi.Sem_{Options}[Y](\xi[\text{Dom}(X) \leftarrow X\#]) \]

Query. A query consists of query options, where input XML documents are bound to its formal names, the query expression to be evaluated, and the output construction commands. First, input files are elaborated, than an initial variable assignment takes place, followed by evaluation of expression. Finally, the output is constructed. The whole meaning of a query can be modeled as a mapping from the sequence of input XML documents into a sequence of output values of the type of Type.

\[Sem_{Query}[Q] : \text{Seq}(XML_{Doc}) \rightarrow \text{Seq}(V) \]

\[Sem_{Query}[OC E] : XML_{Doc} \rightarrow \text{Seq}(V) \]

5 The Example

The following example illustrates the computations performed in order to evaluate given XML-\(\lambda\) queries inside a virtual machine. It just computes a simple numerical term.
5.1 Simple Computation

Let us suppose the following simple computation in the XML-λ

\[
\text{lambda } \$v1 \text{ ($v1 = \text{plus}(3, 2))}
\]

We can compute its meaning according to our semantics

\[
\text{Sem}_{\text{Query}}(\text{lambda } \$v1 \text{ ($v1 = \text{plus}(3, 2))})(\text{nil}) = \lambda \delta. (\text{Sem}_{\text{cons}}(C)(\text{Sem}_{\text{Expr}}(E)(\text{\lambda } \cdot \text{nil})))
\]

Table 14. Semantic equations for queries

6 Conclusion

In this paper, we have presented syntax and denotational semantics of the XML-λ Query Language, a query language for XML based on simply typed lambda calculus. We use this language within the special XML-λ Framework as an intermediate form of XQuery expressions for description of its semantics. Nevertheless the language in its current version does not support all XML features, e.g. comments, processing instructions, and deals only with type information available in DTD, it can be successfully utilized for fundamental scenarios both for standalone query evaluation or as a tool for XQuery semantics description.

Acknowledgment

This work has been supported by the Ministry of Education, Youth and Sports under Research Program No. MSM 6840770014 and also by the grant project of the Czech Grant Agency No. GA201/09/0990.

References

