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Abstract 

The block chain technology has immense potential in many different applications, including but not limited to 

cryptocurrencies, financial services, smart contracts, supply chains, healthcare services, and energy trading. Due to the 

critical nature of these applications, it is pivotal to model and evaluate dependability of the block chain-based systems, 

contributing to their reliable and robust operation. This paper models and analyzes the dependability of Bitcoin nodes 

subject to Eclipse attacks and state-dependent mitigation activities. Built upon the block chain technology, the Bitcoin is 

a peer-to-peer cryptocurrency system enabling an individual user to trade freely without the involvement of banks or any 

other types of intermediate agents. However, a node in the Bitcoin is vulnerable to the Eclipse attack, which aims to 

monopolize the information flow of the victim node. A semi-Markov process (SMP) based approach is proposed to model 

the Eclipse attack behavior and possible mitigation activities that may prevent the attack from being successful during 

the attack process. The SMP model is then evaluated to determine the steady-state dependability of the Bitcoin node. 

Numerical examples are provided to demonstrate the influence of the time to restart the Bitcoin software and time to 

detect and delete the malicious message on the Bitcoin node dependability. 

 

Keywords- Bitcoin, Block chain, Dependability, Eclipse attack, Semi-Markov process (SMP). 

 

 

 

1. Introduction 
The block chain technology has received lots of attentions from academia, governments, and 

industries in the last decade (Akbari et al., 2017; Atzei et al., 2017; Dai et al., 2019; Ferrag et al., 

2018; Kang et al., 2018; Li et al., 2020). As a revolutionary invention in computer science, it has 

immense potential in many critical applications, including for example, cryptocurrencies, financial 

services, smart contracts, supply chains, energy trading, and the Internet of Things (Frizzo-Barker 

et al., 2020; Garay et al., 2017; Xing, 2020, 2021). This paper focuses on Bitcoin (Satoshi, 2008; 
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Wingreen et al., 2020), a peer-to-peer cryptocurrency network system based on the block chain 

with a market cap of 199 billion (Rudden, 2020). Different from the fiat currency, the Bitcoin is a 

decentralized network system that enables an individual to trade freely without the involvement of 

banks. 

 

Despite being built on the secure block chain technology; the Bitcoin network has vulnerability to 

various cyberattacks or threats. For example, exploiting the open network of the Bitcoin, an attacker 

may track correspondence of IP addresses and the Bitcoin addresses to gain control of the block 

chain data (creating incorrect data or gain illegal access to the data) (Koshy et al., 2014). Further, 

the privacy of users (e.g., personal information) can be in danger as an attacker may track 

relationships between addresses based on the Bitcoin transactions (Reid and Harrigan, 2013). In 

addition, the block chain data may be tempered by an attacker through attacking the consensus 

mechanism of the block chain (Bag et al., 2016). The Bitcoin is also subject to the Crypto Locker-

based attack, where a ransomware encrypts files of a victim until a ransom can be paid (Liao et al., 

2016). The Bitcoin network is vulnerable to many other types of cyberattacks, including but not 

limited to the Eclipse attacks (Heilman et al., 2015), Sybil attacks (Zhang and Lee, 2019), mining 

pool attacks (Bahack, 2013), miner attacks (Rosenfeld, 2011), selfish mining (Eyal and Sirer, 

2014), and re-identification attacks (Meiklejohn et al., 2013). 

 

Extensive research efforts have been dedicated to defending the Bitcoin system against diverse 

security attacks. For example, Gervais et al. (2015) showed that an attacker may delay the 

propagation of a Bitcoin transaction to a specific node and proposed several countermeasures 

(dynamic timeouts, penalizing non-responding nodes, and updating block advertisements) to 

enhance the Bitcoin security. Eyal and Sirer (2014) suggested a mitigation scheme based on 

practical revision of the Bitcoin protocol to defend Bitcoin against colluding selfish mining attacks. 

Biryukov and Pustogarov (2015a, 2015b) investigated the Bitcoin over Tor system and showed that 

such a system is not effective in solving the security problem. Bamert et al. (2014) proposed a 

hardware token for securing Bitcoin transactions. Sasson et al. (2014) and Monaco (2015) 

investigated the weakness of Bitcoin in the privacy protection and suggested a decentralized 

anonymous payment mechanism to improve the privacy protection. Kroll et al. (2013) showed that 

many Nash equilibria exist for mining strategies and discussed the governance structure 

requirements. Joux (2004) showed that in multiple hash functions the difficulty of identifying 

simultaneous collisions is not higher than identifying individual ones. Bastiaan (2015) studied the 

pool mining threat and performed the stochastic analysis of the Bitcoin using Markov chains. Göbel 

et al. (2016) applied Markov Chains for detecting block-hiding attacks based on the monitoring of 

production rate of orphan blocks. 

 

As exemplified above, existing works have mostly focused on detecting potential threats and 

investigating impacts from the malicious behavior. Only little work has been expended in the 

dependability modeling and analysis of Bitcoin. Particularly in Zhou et al. (2020), a continuous-

time Markov chain-based method was proposed to assess the dependability of a Bitcoin node and 

effects of several parameters relevant to a miner’s habits were examined. However, the model of 

Zhou et al. (2020) is limited to the exponential state transition time distribution; it is not applicable 

to the practical cases with other distribution types, where the memoryless property (the past history 

has no influence on the system’s future behavior) does not hold. 

 

In this paper we make advancement in the state of the art by proposing a semi-Markov process 

(SMP)-based method to model and analyze the dependability of Bitcoin nodes subject to the Eclipse 
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attack. The attack aims to control the information flow (including reception and transmission) of a 

victim node so that the node loses its connection with other legitimate nodes in the Bitcoin network. 

Possible mitigation activities that may prevent the attack from being successful during the attack 

process are considered. The transition time between different states appearing during the attack 

process can follow any arbitrary type of distributions. Influences of several parameters (related to 

the time to restart the Bitcoin software and time to detect and delete malicious messages containing 

forged IP addresses) on the Bitcoin node dependability are examined using examples. 

 

The remainder of the paper is structured as follows: Section 2 presents how an Eclipse attack works 

and the state transition diagram in the SMP-based method modeling the attack behavior and the 

possible mitigation activities that may be conducted under each state.  Section 3 presents the SMP-

based method to evaluate the dependability of Bitcoin nodes. Section 4 investigates impacts of 

several parameters on the Bitcoin node dependability. Section 5 concludes our study and points out 

future research directions. 

 

2. Modeling the Eclipse Attack 
To launch an Eclipse attack, an attacker node floods the victim node with its own IP address to 

which the victim node will likely connect when restarting the Bitcoin software. In other words, the 

attacker node tries to fill the routing table of the victim node before the victim node restarts its 

software. The restart can be forced to happen, or the attacker node can just wait for the restart to 

happen. Once the restart happens, the victim node builds an outgoing connection with the attacker’s 

IP address in the routing table. At the same time, the attacker node continuously builds an incoming 

connection to the victim node. Consequently, the victim node’s information flow channel is 

controlled or monopolized by the malicious node; the victim node can be fed incorrect or fake data 

by the attacker node (Heilman et al., 2015). 

 

In the case of the attacker node being able to implement the Eclipse attack to more nodes, 

information flows of more nearby nodes may be controlled, and gradually the block chain network 

may be compromised. Therefore, a successful Eclipse attack may lead to other more sever 

cyberattacks like selfish mining, double-spending, and block withholding (Heilman et al., 2015). 

 

To model the dependability of a Bitcoin node, we build a state transition diagram as shown in 

Figure 1. During the Eclipse attack process five major states can be differentiated, which are the 

initial good state 0, state 1 where the routing table has been hacked, state 2 where the node has 

restarted its software, state 3 where the node is connected to the attacker node, and state 4 where 

the node is monopolized by the attacker node. Mitigation actions under some states may be 

performed to prevent or alleviate the consequence of the Eclipse attack. 

 

 
 

Figure 1. State transition diagram of a Bitcoin node under the Eclipse attack. 
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Specifically, under the initial state 0, the Bitcoin node operates correctly without being 

compromised by any attack. During this state 0, a malicious attacker node sends mmessages 

containing many forged IP addresses, which may gradually overwrite all the legal IP addresses in 

the routing table of the node causing the transition from state 0 to state 1. Under state 1, if the victim 

node executes the restart, then the node transits its state to state 2; if the suspicious message 

containing the forged IP addresses is detected and deleted by the user, then the node transits its 

state back to the initial good state 0. Under state 2, if the victim node is connected to the attacker’s 

IP address, then the node transits to state 3; if the user cleans the routing table of the victim node 

with a certain tool, then the node transits back to state 1. Under state 3, if the victim node selects 

an IP address from the hacked routing table and establishes an outgoing connection, then the node 

transits to state 4; if the user restores the healthy connection through a certain maintenance action 

successfully, then the node transits back to state 0. Under state 4, the attacker node establishes and 

controls all the incoming connections to the victim node, fully monopolizing the information flow 

(incoming and outgoing) of the victim node, i.e., the Eclipse attack is successful. Under state 4, if 

the user detects the malicious connection from the attacker node and re-establishes connections 

with legitimate nodes, then the node transits its state back to state 3. 
 

3. Evaluating Bitcoin Node Dependability 
In this section, based on the state transition diagram in Figure 1, the SMP-based method is applied 

to assess the dependability of a Bitcoin node undergoing the Eclipse attack and mitigation actions. 

Let Fij(t) represent the cumulative distribution function (CDF) of the transition time from state i to 

state j (i, j = 0, 1, 2, 3, 4). There is no limitation to the distribution type of the state transition time. 

For illustration purpose, the Weibull distribution is selected due to its flexibility in representing 

different types of transition rates (decreasing, constant, and increasing) (Trivedi, 1982; Dohi et al., 

2001; Xing and Amari, 2015; Xing et al., 2019). The CDF of the Weibull distribution is 

𝐹𝑖𝑗  (𝑡 ;  𝛼𝑖𝑗 ,  𝛽𝑖𝑗)  = 1 − 𝑒
−(

𝑡

𝛼𝑖𝑗
)
𝛽𝑖𝑗

 with (𝛼𝑖𝑗 , 𝛽𝑖𝑗 ) denoting the scale and shape parameters, 

respectively. The exponential distribution and the Rayleigh distribution are special cases of the 

Weibull distribution when the shape parameter is 1 and 2 respectively. 

 

There are two major steps in the steady state probability analysis of the SMP (Kharoufeh et al., 

2010; Kumar et al., 2013; Liu et al., 2019). 

 

(1) Evaluate the one-step transition probability matrix of the embedded Markov chain (EMC) of 

the SMP (refer to appendices (A1-A3) of Kumar et al. (2013)). 

(2) Calculate the sojourn time Ti in each state i.  

 

The steady-state probability Pi of each state i ∈ {0,1,2,3,4} can thus be evaluated using (1), where 

vi is the steady-state probability of state i in the EMC. 

 

𝑃𝑖 =
𝑣𝑖𝑇𝑖

∑ 𝑣𝑗𝑇𝑗𝑗∈{0,1,2,3,4}
.                                                                                                                                                               (1) 

 

Specifically, expression (2) presents the kernel matrix K(t) of the SMP model in Figure 1, where 

𝑘𝑖𝑗(𝑡) is the probability that the SMP has entered state i, the next state transition takes place within 

time t and the next state is state j (Kumar et al., 2013). The sum of elements on the same row of 

𝐊(𝑡) is always 1. 
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𝐊(𝑡) =

[
 
 
 
 

0 𝑘01(𝑡) 0 0 0
𝑘10(𝑡) 0 𝑘12(𝑡) 0 0

0 𝑘21(𝑡) 0 𝑘23(𝑡) 0
𝑘30(𝑡) 0 0 0 𝑘34(𝑡)

0 0 0 𝑘43(𝑡) 0 ]
 
 
 
 

                                                                               (2) 

 

In the case of the Weibull state transition time, the non-zero elements in K(t) are defined by (3)-

(10). We use MATLAB and Wolfram Mathematics to calculate the integrals involved in those 

expressions. 

 

𝑘01(𝑡) = 𝐹01(𝑡) = 1 − 𝑒
−(

𝑡

𝛼01
)𝛽01

                                                                                                      (3) 

𝑘43(𝑡) = 𝐹43(𝑡) = 1 − 𝑒
−(

𝑡

𝛼43
)𝛽43

                                                                                                     (4) 

𝑘10(𝑡) = ∫ 𝐹̅12(𝑥)𝑑𝐹10(𝑥)
𝑡

0
=

𝛽10

𝛼10
𝛽10

∫ 𝑥𝛽10−1𝑡

0
𝑒

−[(
𝑥

𝛼10
)
𝛽10

+(
𝑥

𝛼12
)
𝛽12

]
𝑑𝑥                                    (5) 

𝑘12(𝑡) = ∫ 𝐹̅10(𝑥)𝑑𝐹12(𝑥)
𝑡

0
=

𝛽12

𝛼12
𝛽12

∫ 𝑥𝛽12−1𝑡

0
𝑒

−[(
𝑥

𝛼10
)
𝛽10

+(
𝑥

𝛼12
)
𝛽12

]
𝑑𝑥                                    (6) 

𝑘21(𝑡) = ∫ 𝐹̅23(𝑥)𝑑𝐹21(𝑥)
𝑡

0
=

𝛽21

𝛼21
𝛽21

∫ 𝑥𝛽21−1𝑡

0
𝑒

−[(
𝑥

𝛼21
)
𝛽21

+(
𝑥

𝛼23
)
𝛽23

]
𝑑𝑥                                    (7) 

𝑘23(𝑡) = ∫ 𝐹̅21(𝑥)𝑑𝐹23(𝑥)
𝑡

0
=

𝛽23

𝛼23
𝛽23

∫ 𝑥𝛽23−1𝑡

0
𝑒

−[(
𝑥

𝛼21
)
𝛽21

+(
𝑥

𝛼23
)
𝛽23

]
𝑑𝑥                                    (8) 

𝑘30(𝑡) = ∫ 𝐹̅34(𝑥)𝑑𝐹30(𝑥)
𝑡

0
=

𝛽30

𝛼30
𝛽30

∫ 𝑥𝛽30−1𝑡

0
𝑒

−[(
𝑥

𝛼30
)
𝛽30

+(
𝑥

𝛼34
)
𝛽34

]
𝑑𝑥                                    (9) 

𝑘34(𝑡) = ∫ 𝐹̅30(𝑥)𝑑𝐹34(𝑥)
𝑡

0
=

𝛽34

𝛼34
𝛽34

∫ 𝑥𝛽34−1𝑡

0
𝑒

−[(
𝑥

𝛼30
)
𝛽30

+(
𝑥

𝛼34
)
𝛽34

]
𝑑𝑥                                 (10) 

 

The one-step transition probability matrix of the EMC in step (1) is thus determined as 𝐊(∞), as 

shown in (11) (Kulkarni, 2016). Since the sum of elements on the same row of 𝐊(∞) is always 1, 

𝑘01(∞) = 1 and 𝑘43(∞) = 1 (they are the only element in row 1 and row 5, respectively). 

 

  𝐊(𝑡) =

[
 
 
 
 

0 𝑘01(∞) 0 0 0
𝑘10(∞) 0 𝑘12(∞) 0 0

0 𝑘21(∞) 0 𝑘23(∞) 0
𝑘30(∞) 0 0 0 𝑘34(∞)

0 0 0 𝑘43(∞) 0 ]
 
 
 
 

                                                              (11) 

 

In this study, in order to estimate the steady-state probabilities of the EMC for the SMP, we apply 

Wolfram Mathematics to solve the EMC steady-state equations 𝐯 = 𝐯 ∙ 𝐊(∞)  and 𝐯 ∙ 𝐞𝑻 = 𝟏 , 

where row vectors 𝐯 = [ 𝑣0 𝑣1  𝑣2 𝑣3  𝑣4] and 𝐞 = [1 1 1 1 1]. 
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In step (2), based on Kumar et al. (2013) we use (12)-(16) to evaluate the sojourn time 𝑇𝑖 in each 

state i. 

 

𝑇0 =  ∫ 𝐹̅01(𝑡)
∞

0
𝑑𝑡 = ∫ 𝑒

−(
𝑡

𝛼01
)𝛽01

𝑑𝑡
∞

0
                                                                                                     (12) 

𝑇1 = ∫ 𝐹̅10𝐹̅12𝑑𝑡
∞

0
= ∫ 𝑒

−[(
𝑡

𝛼10
)
𝛽10

+(
𝑡

𝛼12
)
𝛽12

]
𝑑𝑡

∞

0
                                                                                  (13) 

𝑇2 = ∫ 𝐹̅21𝐹̅23𝑑𝑡
∞

0
= ∫ 𝑒

−[(
𝑡

𝛼21
)
𝛽21

+(
𝑡

𝛼23
)
𝛽23

]
𝑑𝑡

∞

0
                                                                                 (14) 

𝑇3 = ∫ 𝐹̅30𝐹̅34𝑑𝑡
∞

0
= ∫ 𝑒

−[(
𝑡

𝛼30
)
𝛽30

+(
𝑡

𝛼34
)
𝛽34

]
𝑑𝑡

∞

0
                                                                                 (15) 

𝑇4 =  ∫ 𝐹̅43(𝑡)
∞

0
𝑑𝑡 = ∫ 𝑒

−(
𝑡

𝛼43
)𝛽43

𝑑𝑡
∞

0
                                                                                                      (16) 

 

With vi and Ti evaluated, based on (1) the steady state probabilities 𝑃𝑖  (i =0, 1, 2, 3, 4) can be 

obtained. Further, D = P0 + P1 + P2 gives the probability that the Bitcoin node can operate correctly, 

i.e., the dependability of the Bitcoin node; 𝐷̅  = P3 + P4 gives the probability that the node is 

compromised or fully controlled by an attacker node, that is, the Bitcoin system is not dependable 

any more. 

 

4. Example Analysis and Discussions 
This section illustrates the SMP-based method for the Bitcoin node dependability analysis. We also 

examine influences of parameters modeling the time to restart and time to detect and delete the 

malicious messages on the Bitcoin node dependability by varying the Weibull distribution 

parameters of 𝐹12 and 𝐹10 in the dependability analysis. Table 1 shows the baseline parameters 

used in the numerical analysis (based on data of Thoman et al., 1969; Bailey and Dell, 1973; Kumar 

et al., 2013). 

 

 

 
Table 1. Baseline model parameters. 

 

CDF Distribution Parameter Values 

𝐹01 Weibull 𝛼01 = 6,   𝛽01=1.54 

𝐹10 Rayleigh 𝛼10 = 10,   𝛽10=2 

𝐹12 Rayleigh 𝛼12 = 12,   𝛽12=2 

𝐹21 Rayleigh 𝛼21 = 14,   𝛽21=2 

𝐹23 Rayleigh 𝛼23 = 12,   𝛽23=2 

𝐹30 Rayleigh 𝛼30 = 10,   𝛽30=2 

𝐹34 Weibull 𝛼34 = 11,   𝛽34=1.32 

𝐹43 Weibull 𝛼43 = 11,   𝛽43=0.85 

 

 

 

 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 6, No. 2, 480-492, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.2.029 

486 

4.1 Effects of Scale Parameters (α12, α10) 
We vary the value of scale parameter (α12 and α10) from 1 hour to 96 hours and collect the system 

state probabilities and the final dependability D (evaluated as P0+P1+P2) in Tables 2-3. All other 

unchanging parameters use the values from Table 1. Figures 2 and 3 show the results of the node 

dependability graphically. 

 

 
Table 2. State probabilities and dependability with changing α12. 

 

 

 

 

 

 
 

Figure 2. Steady-state probabilities and dependability with changing 𝛼12. 

 

 

 

It can be observed from Figure 2 that when 𝛼12 (reflecting the time to restart the system) varies 

from 1 hour to 96 hours, the system dependability increases. This is intuitive since as the system 

restart rate decreases, the steady-state probabilities of being in state 2 (restart), and thus the 

subsequent states 3 (connected) and 4 (monopolized) decrease (as shown in Figure 2) while the 

steady-state probability of being in state 1 (the origin of the transition) and the initial state 0 have 

an increasing trend. Overall, the system dependability that is calculated as (P0+P1+P2) shows an 

increasing trend. 

 

 

 

α12 (hour) 

 

 

 

1 6 12 24 48 96 

P0 0.129931 0.187512 0.258956 0.329244 0.361635 0.371511 

P1 0.051837 0.284053 0.423381 0.554982 0.604907 0.619781 

P2 0.396252 0.308642 0.179237 0.068325 0.019745 0.005138 

P3 0.275175 0.216571 0.124472 0.047447 0.013712 0.003568 

P4 0.146802 0.115538 0.066403 0.025312 0.007315 0.001903 

D 0.578022 0.783429 0.875532 0.952552 0.986287 0.996431 
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Table 3. State probabilities and dependability with changing α10. 
 

 

 

 

 

 
 

Figure 3. Steady-state probabilities and dependability with changing 𝛼10. 

 

 

 

Figure 3 shows that when 𝛼10 (time to detect and delete the malicious message) varies from 1 hour 

to 96 hours, the node dependability decreases. The numerical results support the intuition that the 

node is more likely to get compromised when the time of detecting the malicious message 

increases. As the detection time increases, the probabilities of being in state 1 (the origin of the 

transition), and subsequent state 2 (restart), state 3 (connected), and state 4 (monopolized) all 

increase while the steady-state probability of the initial state 0 has a decreasing trend (as shown in 

Figure 3). Overall, the node dependability shows a decreasing trend as the value of 𝛼10 increases. 

 

 

4.2 Effects of Shape Parameter (β12, β10) 

The value of β has a distinct effect on the state transition rate. Specifically, β<1corresponds to a 

decreasing transition rate, β=1 corresponds to a constant transition rate, and β>1 corresponds to an 

increasing transition rate. In order to reflect all these characteristics in this case study, we vary β 

from 0.3 to 8. Tables 4 and 5 and Figures 4 and 5 show the numerical and graphic results of the 

different state probabilities and the final node dependability, respectively. All other unchanging 

parameters use values from Table 1. 

 

 

 

α10 (hour) 

 

 

 

1 6 12 24 48 96 

P0 0.843826 0.399027 0.220021 0.130262 0.100424 0.092280 

P1 0.140724 0.404664 0.441405 0.441438 0.4383116 0.42164 

P2 0.007481 0.115855 0.199815 0.252766 0.2722216 0.277704 

P3 0.005195 0.080455 0.138762 0.175531 0.170423 0.192850 

P4 0.002771 0.042922 0.074027 0.093644 0.1008519 0.102881 

D 0.992032 0.919545 0.861241 0.824468 0.8109576 0.807149 
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Table 4. State probabilities and dependability with changing β12. 
 

 

 
 

Figure 4. Steady-state probabilities and dependability with changing 𝛽12. 

 

 

Table 5. State probabilities and dependability with changing β10. 
 

 

 
 

Figure 5. Steady-state probabilities and dependability with changing 𝛽10. 

𝜷12 0.3 0.7 1 1.5 2 5 6 8 

P0 0.259741 0.211342 0.209831 0.208039 0.207821 0.201314 0.199813 0.189987 

P1 0.171022 0.133373 0.128987 0.121131 0.121081 0.123878 0.125134 0.123413 

P2 0.151092 0.181213 0.181534 0.181721 0.182143 0.183987 0.184012 0.187234 

P3 0.217572 0.259226 0.252931 0.252707 0.241050 0.241296 0.241687 0.240535 

P4 0.200571 0.238971 0.233168 0.232961 0.228336 0.222442 0.222802 0.221740 

D 0.581855 0.525928 0.520352 0.510891 0.511045 0.509179 0.508959 0.500634 

𝜷10 0.3 0.7 1 1.5 2 5 6 8 

P0 0.264125 0.317062 0.310035 0.302540 0.30254 0.289604 0.287598 0.286883 

P1 0.157029 0.232915 0.249917 0.268048 0.268048 0.299345 0.304197 0.305928 

P2 0.153642 0.184436 0.180348 0.175988 0.175988 0.168463 0.167296 0.166880 

P3 0.221245 0.265587 0.259701 0.253422 0.253422 0.242587 0.240907 0.240307 

P4 0.203957 0.244835 0.239409 0.233621 0.233621 0.223632 0.222083 0.221531 

D 0.574797 0.734413 0.740299 0.746577 0.746577 0.758012 0.759092 0.759692 
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Figure 4 shows that as the value of 𝛽12  varies from 0.3 to 8, the overall trend of the node 

dependability decreases. This is because as the value of 𝛽12  increases, the probability of occupying 

state 2 increases and the probability of staying in state 1 decreases significantly, which further 

causes the decrease in the probability of state 0 (as demonstrated in Figure 4). Overall, the node 

dependability shows a decreasing trend. It is also intuitive that the node dependability has an overall 

increasing trend in Figure 5 as the value of 𝛽10 varies from 0.3 to 8. 

 

5. Conclusion and Future Work 
An Eclipse attack to a Bitcoin system aims to block a node’s view of the block chain so that the 

victim node is at the mercy of the attacker node. The existing model on the Bitcoin node 

dependability analysis has the limitation of the memoryless property on the state transition time 

(i.e., the exponentially-distributed transition time). This paper contributes by proposing an SMP-

based modeling method for dependability analysis of Bitcoin nodes subject to the eclipse attack 

and related mitigation actions during the attack process. The method is applicable to arbitrary types 

of state transition time distributions. Using numerical examples, we examine the influences of 

parameters modeling the miner’s habits in restart and malicious message detection on the Bitcoin 

node dependability. 

 

This work has focused on the steady-state Bitcoin node dependability analysis. In the future we 

plan to extend the SMP-based method for time-dependent dependability analysis of the Bitcoin 

node and network under the Eclipse attack. We are also interested in modeling other types of 

cyberattacks such as block withholding mining (Qin et al., 2020) and selfish mining (Yang et al., 

2020). In addition, we may investigate resilience strategies to enhance the robustness of Bitcoin 

operation and improve its immunity to different types of threats. 
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