ON DECOMPOSITION OF FUZZY A–CONTINUITY

S. JAFARI*, K. VISWANATHAN, M. RAJAMANI and S.KRISHNAPRAKASH

* College of Vestsjaelland South
Herrestraede 11,
4200 Slagelse, Denmark.
e-mail : jafari@stofanet.dk

Department of Mathematics,
N G M College, Pollachi - 642 001,
Tamil Nadu, INDIA.
e-mail : visu_ngm@yahoo.co.in

ABSTRACT In this paper, we introduce and study the notion of fuzzy C– sets and fuzzy C–continuity. We also prove a mapping $f : X \to Y$ is fuzzy A– continuous if and only if it is both fuzzy semi-continuous and fuzzy C– continuous.

1. INTRODUCTION

In the classical paper [10] of 1965, Zadeh generalized the usual notion of a set by introducing the important and useful notion of fuzzy sets. Since then, this notion has had tremendous effect on both pure and applied mathematics in different respects. Recently El-Naschie has shown in [4] and [5] that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε^∞ theory. In 1986, Tong [7] introduced the notion of A– sets and A–continuous mappings in topological spaces and proved that a mapping is continuous if and only if it is both α–continuous and A–continuous. In 1990, Ganster [5] established a decomposition of A–continuity: A mapping $f : X \to Y$ is A–continuous if and only if it is both semi-continuous and LC-continuous. Erguang and Pengfei [4] introduced the notion of C– sets and C–continuity and obtained another decomposition of A–continuity: A mapping $f : X \to Y$ is A–continuous if and only if it is both semi-continuous and C–continuous. Recently, Rajamani and Ambika [6] introduced the notion of fuzzy A– sets and fuzzy A–continuity and obtained a decomposition of fuzzy continuity.

In this paper, we transform the notions of C–set and C–continuity to fuzzy topological settings and obtain a decomposition of fuzzy A–continuity.

02000 Mathematics Subject Classification: 54A05, 54C05.
0Keywords: fuzzy A– set, fuzzy C–set, fuzzy A–continuity and fuzzy C–continuity.
2. PRELIMINARIES

Throughout this paper, \(X \) and \(Y \) denote fuzzy topological spaces \((X, \tau)\) and \((Y, \sigma)\) respectively on which no separation axioms are assumed. Let \(\lambda \) be a fuzzy set in a fuzzy topological spaces \(X \). The fuzzy interior of \(\lambda \), fuzzy closure of \(\lambda \) and fuzzy preclosure of \(\lambda \) are denoted by \(\text{Int}(\lambda) \), \(\text{Cl}(\lambda) \) and \(\text{pcl}(\lambda) \) respectively.

Now, we recall some definitions and results which are used in this paper.

DEFINITION 2.1: A fuzzy set \(\lambda \) in a fuzzy topological space \(X \) is called

(a) fuzzy semi-open [1] if \(\lambda \leq \text{cl}(\text{int}(\lambda)) \);
(b) fuzzy pre-open [2] if \(\lambda \leq \text{int}(\text{cl}(\lambda)) \);
(c) fuzzy regular-open [1] if \(\lambda = \text{int}(\text{cl}(\lambda)) \).

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

DEFINITION 2.2: A fuzzy set \(\lambda \) in a fuzzy topological space \(X \) is called a fuzzy \(A \)-set [6] if \(\lambda = \alpha \land \beta \), where \(\alpha \) is a fuzzy open set and \(\beta \) is a fuzzy regular closed set.

DEFINITION 2.3: A map \(f : X \rightarrow Y \) is said to be

(a) fuzzy continuous [3] if \(f^{-1}(\mu) \) is fuzzy open in \(X \), for every fuzzy open set \(\mu \) in \(Y \);
(b) fuzzy semi-continuous [1] if \(f^{-1}(\mu) \) is fuzzy semi-open in \(X \), for every fuzzy open set \(\mu \) in \(Y \);
(c) fuzzy pre-continuous [2] if \(f^{-1}(\mu) \) is fuzzy pre-open in \(X \), for every fuzzy open set \(\mu \) in \(Y \).

The collection of all fuzzy \(C \)-sets and fuzzy semi-open sets in \(X \) will be denoted by \(FC(X, \tau) \) and \(FSO(X, \tau) \) respectively.

3. FUZZY \(C \)-SETS

DEFINITION 3.1: A fuzzy set \(\lambda \) in a fuzzy topological space \(X \) is called a fuzzy \(C \)-set if \(\lambda = \alpha \land \beta \), where \(\alpha \) is fuzzy open and \(\beta \) is fuzzy pre-closed in \(X \).

PROPOSITION 3.2: Every fuzzy \(A \)-set is a fuzzy \(C \)-set.

REMARK 3.3: The converse of the Proposition 3.2. need not be true as seen from the following example.

EXAMPLE 3.4: Let \(X = \{a, b, c\} \), Define \(\alpha_1, \alpha_2, \alpha_3 : X \rightarrow [0, 1] \) by
\[
\begin{align*}
\alpha_1(a) &= 0.3 & \alpha_2(a) &= 0.4 & \alpha_3(a) &= 0.7 \\
\alpha_1(b) &= 0.4 & \alpha_2(b) &= 0.5 & \alpha_3(b) &= 0.6 \\
\alpha_1(c) &= 0.4 & \alpha_2(c) &= 0.5 & \alpha_3(c) &= 0.6
\end{align*}
\]
Let \(\tau = \{0, 1, \alpha_1, \alpha_2\} \). Then \((X, \tau)\) is a fuzzy topological space. Now, \(\alpha_3 \) is a fuzzy \(C \)-set but not a fuzzy \(A \)-set.

REMARK 3.5: The concepts of fuzzy \(C \)-sets and fuzzy semi-open sets are independent as shown by the following examples.
EXAMPLE 3.6: Let $X = \{a, b, c\}$, Define $\alpha_1, \alpha_2, \alpha_3 : X \rightarrow [0, 1]$ by

- $\alpha_1(a) = 0.2 \quad \alpha_2(a) = 0.3 \quad \alpha_3(a) = 0.3$
- $\alpha_1(b) = 0.3 \quad \alpha_2(b) = 0.3 \quad \alpha_3(b) = 0.3$
- $\alpha_1(c) = 0.3 \quad \alpha_2(c) = 0.4 \quad \alpha_3(c) = 0.3$

Let $\tau = \{0, 1, \alpha_1, \alpha_3\}$. Then (X, τ) is a fuzzy topological space. Now, α_3 is a fuzzy semi-open set but not a fuzzy $C-$ set.

EXAMPLE 3.7: Let $X = \{a, b, c\}$, Define $\alpha_1, \alpha_2, \alpha_3 : X \rightarrow [0, 1]$ by

- $\alpha_1(a) = 0.4 \quad \alpha_2(a) = 0.6 \quad \alpha_3(a) = 0.5$
- $\alpha_1(b) = 0.5 \quad \alpha_2(b) = 0.7 \quad \alpha_3(b) = 0.6$
- $\alpha_1(c) = 0.6 \quad \alpha_2(c) = 0.8 \quad \alpha_3(c) = 0.7$

Let $\tau = \{0, 1, \alpha_1, \alpha_2\}$. Then (X, τ) is a fuzzy topological space. Now, α_3 is a fuzzy $C-$ set but not a fuzzy semi-open set.

LEMMA 3.8: Let α be a fuzzy set in a fuzzy topological space X. Then $\alpha \in FC(X, \tau)$ if and only if $\alpha = \lambda \wedge pcl(\alpha)$ for some fuzzy open set λ.

Proof: Let $\alpha \in FC(X, \tau)$. Then $\alpha = \lambda \wedge \mu$ where λ is fuzzy open and μ is fuzzy pre-closed. Now, $\alpha \leq \lambda$ and $\alpha \leq \mu$, we have $pcl(\lambda) \leq pcl(\mu) = \mu$, since μ is fuzzy pre-closed in X. Thus $pcl(\alpha) \leq \mu$.

Therefore $\lambda \wedge pcl(\alpha) \leq (\lambda \wedge \mu) = \alpha \leq \lambda \wedge pcl(\alpha)$. (i.e.,) $\lambda \wedge pcl(\alpha) = \alpha$.

Converse part is obvious.

THEOREM 3.9: Let α be a fuzzy set in a fuzzy topological space X. Then $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ if and only if $\alpha \in FC(X, \tau) \wedge FSO(X, \tau)$.

Proof: Let $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ in X. Then $\alpha \leq cl(int(\alpha))$. So α is fuzzy semi-open in X. Let $\beta = cl(int(\alpha))$, then β is fuzzy regular closed. Since every fuzzy regular closed set is fuzzy pre-closed, β is fuzzy pre-closed which implies α is fuzzy $C-$ set. Thus $\alpha \in FC(X, \tau) \wedge FSO(X, \tau)$.

Conversely, let $\alpha \in FC(X, \tau) \wedge FSO(X, \tau)$. Then $\alpha \in FC(X, \tau)$ and $\alpha \in FSO(X, \tau)$. Since $\alpha \in FC(X, \tau), \alpha = \lambda \wedge pcl(\alpha)$, using Lemma 3.8. Thus $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ.

4. DECOMPOSITION OF FUZZY $A-$CONTINUITY

DEFINITION 4.1: A mapping $f : X \rightarrow Y$ is called fuzzy $A-$continuous [6] if $f^{-1}(\mu)$ is a fuzzy $A-$ set in X, for every fuzzy open set μ in Y.

DEFINITION 4.2: A mapping $f : X \rightarrow Y$ is called fuzzy $C-$continuous if $f^{-1}(\mu)$ is a fuzzy $C-$ set in X, for every fuzzy open set μ in Y.

PROPOSITION 4.3: Every fuzzy $A-$ continuous function is fuzzy $C-$ continuous.

REMARK 4.4: The converse of Proposition 4.3 need not be true as shown by the following example.

EXAMPLE 4.5: Let $X = \{a, b, c\}, Y = \{x, y, z\}$ and α_1, α_2 and α_3 are fuzzy sets defined as follows:

- $\alpha_1(a) = 0.3 \quad \alpha_2(a) = 0.4 \quad \alpha_3(a) = 0.7$
- $\alpha_2(b) = 0.4 \quad \alpha_2(b) = 0.5 \quad \alpha_3(b) = 0.6$
K. Jafari, K. Viswanathan, M. Rajamani and S. Krishnaprakash

\(\alpha_1(c) = 0.4 \quad \alpha_2(c) = 0.5 \quad \alpha_3(c) = 0.6 \)

Let \(\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\} \). Then the mapping \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) defined by \(f(a) = x, \quad f(b) = y \) and \(f(c) = z \) is fuzzy \(C^- \) continuous but not fuzzy \(A^- \) continuous.

REMARK 4.6: The concepts of fuzzy \(C^- \) continuity and fuzzy semi-continuity are independent as shown by the following examples.

THEOREM 4.7: Let \(X = \{a, b, c\}, Y = \{x, y, z\} \) and \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) are fuzzy sets defined as follows:

\[
\begin{align*}
\alpha_1(a) &= 0.2 \quad \alpha_2(a) = 0.3 \quad \alpha_3(a) = 0.3 \\
\alpha_1(b) &= 0.3 \quad \alpha_2(b) = 0.3 \quad \alpha_3(b) = 0.3 \\
\alpha_1(c) &= 0.3 \quad \alpha_2(c) = 0.4 \quad \alpha_3(c) = 0.3
\end{align*}
\]

Let \(\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\} \). Then the mapping \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) defined by \(f(a) = x, \quad f(b) = y \) and \(f(c) = z \) is fuzzy semi-continuous but not fuzzy \(C^- \) continuous.

EXAMPLE 4.8: Let \(X = \{a, b, c\}, Y = \{x, y, z\} \) and \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) are fuzzy sets defined as follows:

\[
\begin{align*}
\alpha_1(a) &= 0.4 \quad \alpha_2(a) = 0.6 \quad \alpha_3(a) = 0.5 \\
\alpha_1(b) &= 0.5 \quad \alpha_2(b) = 0.7 \quad \alpha_3(b) = 0.6 \\
\alpha_1(c) &= 0.6 \quad \alpha_2(c) = 0.8 \quad \alpha_3(c) = 0.7
\end{align*}
\]

Let \(\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\} \). Then the mapping \(f : (X, \tau_1) \rightarrow (Y, \tau_2) \) defined by \(f(a) = x, \quad f(b) = y \) and \(f(c) = z \) is fuzzy \(C^- \) continuous but not fuzzy semi-continuous.

THEOREM 4.9: A mapping \(f : X \rightarrow Y \) is fuzzy \(A^- \) continuous if and only if it is both fuzzy semi-continuous and fuzzy \(C^- \) continuous.

Proof: Follows from Theorem 3.9.

REFERENCES