NOTE

SOLUTION TO THE PROBLEM OF KUBESA

MARIUSZ MESZKA

Faculty of Applied Mathematics
AGH University of Science and Technology
Mickiewicza 30, 30-059, Kraków, Poland
e-mail: meszka@agh.edu.pl

Abstract

An infinite family of T-factorizations of complete graphs K_{2n}, where $2n = 56k$ and k is a positive integer, in which the set of vertices of T can be split into two subsets of the same cardinality such that degree sums of vertices in both subsets are not equal, is presented. The existence of such T-factorizations provides a negative answer to the problem posed by Kubesa.

Keywords: tree, T-factorization, degree sequence.

2000 Mathematics Subject Classification: 05C70, 05C05, 05C07.

1. Introduction

Let K_{2n} be the complete graph on $2n$ vertices and T be its spanning tree. A T-factorization of K_{2n} is a collection of edge disjoint factors T_1, T_2, \ldots, T_n of K_{2n}, each of which being isomorphic to T.

At the workshop in Krynica in 2004 D. Fronček presented the following problem originally posed by M. Kubesa [2].

Problem. Suppose that there exists a T-factorization of K_{2n}. Is it true that the vertex set of T can be split into two subsets, V_1 and V_2, such that $|V_1| = |V_2| = n$ and $\sum_{v \in V_1} \deg(v) = \sum_{v \in V_2} \deg(v)$?

Notice that there is no requirement on connectness or disconnectness of graphs induced by V_1 or V_2.

Recently, N.D. Tan [3] solved the problem in the affirmative for two narrow classes of trees.

2. Constructions

A tree which becomes a star after removal of its pendant edges is called a snowflake. Its central vertex (ie. the central vertex of a star obtained in such a way) is called a root, whilst remaining vertices of degrees greater than one are called inner vertices.

We define a family of snowflakes \tilde{T}_{2n} of order $2n = 56k$, for every positive integer k. There are 7 vertices of degrees: $28k - 18, 28k - 20, 11, 10, 8, 7, 7$, the remaining $56k - 7$ are leaves. The vertex of degree 11 is the root of \tilde{T}_{2n}.

Lemma 1. For every positive integer k, the complete graph K_{56k} has \tilde{T}_{56k}-factorization.

Proof. The snowflake \tilde{T}_{56k} is defined by listing its edges; we use the notation $u \prec u_1, u_2, \ldots, u_m$ if all the vertices u_1, u_2, \ldots, u_m are adjacent to u. Consider two cases.

Case I. $k = 1$. Let $V(K_{56}) = U \cup X \cup Y \cup Z$, where $U = \{u_0, u_1, \ldots, u_{13}\}$, $X = \{x_0, x_1, \ldots, x_{13}\}$, $Y = \{y_0, y_1, \ldots, y_{13}\}$ and $Z = \{z_0, z_1, \ldots, z_{13}\}$. Edges of K_{56} with both endvertices either in U or X or Y or Z are called pure edges; the remaining ones are mixed edges. To indicate a required \tilde{T}_{56}-factorization we prescribe 28 snowflakes split into two classes: $\{T_i : i = 0, 1, \ldots, 13\}$ and $\{T_i^* : i = 0, 1, \ldots, 13\}$, each T_i and T_i^* being isomorphic to \tilde{T}_{56}.

We construct the first class. The vertex u_{12} of degree 11 is the root of T_0 and its inner vertices: $u_0, x_1, x_2, y_0, y_1, z_7$ have degrees $8, 8, 7, 10, 7, 10$, respectively. The remaining pendant edges are: $u_{12} \prec u_1, u_2, u_4, u_7, u_{11}; u_0 \prec x_8, x_9, x_{11}, x_{12}, x_{13}, y_4, y_5; x_1 \prec u_5, u_6, u_{10}, u_{13}; y_8, y_{10}; x_2 \prec x_3, x_4, x_5, x_6, x_7, x_{10}; y_0 \prec u_6, u_8, z_0, z_1, z_2, z_6, z_9; y_1 \prec y_2, y_6, y_7, y_{11}, y_{12}, y_{13}; z_7 \prec u_3, x_0, y_9, z_5, z_8, z_{10}, z_{11}, z_{12}, z_{13}$. Snowflakes T_1, T_2, \ldots, T_{13} can be obtained from T_0 by applying the cyclic permutation $\varphi = (0, 1, \ldots, 13)$ in parallel on the indices of vertices in the sets U, X, Y and Z. One can easily check that the lengths $1, 2, 3, 4, 5, 6$ of all pure edges in K_{56} have been already covered, as well as the following lengths of mixed edges for types: UX: $2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13$; UY: $2, 3, 4, 5, 6, 8$; UZ: $4, 9$; XY: $2, 7, 9$; XZ: 7; YZ: $0, 1, 2, 3, 4, 6, 9, 12$.

To construct the second class we need the snowflak T_0'. Let the vertex v_7 of degree 11 be the root and $x_0, x_7, y_2, y_3, z_0, z_1$ be the inner vertices of degrees 8, 7, 6, respectively. The remaining pendant edges are: $u_6 \prec v_2, z_3, z_4, z_5, z_6, y_0 \prec x_7, y_0, y_1, y_2, y_3, x_1 \prec z_2, z_8, z_9, z_{10}, z_{11}, z_{12}, z_{13}, y_2 \prec x_1, x_{10}, x_{11}, x_{12}, x_{13}, y_3 \prec u_2, u_3, u_4, u_5, u_6, u_{10}; z_0 \prec u_8, u_9, u_{11}, u_{12}, u_{13}, y_1, y_6, y_7, z_7; z_1 \prec u_1, x_2, x_3, x_4, x_5, x_6, x_9, y_4, y_5$. Six snowflakes T_i', for $i = 2, 4, \ldots, 12$, can be obtained from T_0' by applying ith power of φ in parallel on the sets U, X, Y and Z. Thus the length 7 of all pure edges is covered completely and still remaining lengths of mixed edges, except the lengths 0 of type UX and 5 of type YZ, are covered in a half. Seven remaining snowflakes T_j' for $j = 1, 3, \ldots, 13$ are obtained from T_0' by replacing the edges $u_0 u_7, x_0 x_7, y_2 y_9$ and $z_0 z_7$ with the edges $u_0 x_0, u_7 x_7, y_2 z_7$ and $y_9 z_0$, respectively, and then by applying the permutation $(\varphi)^j$ in parallel on the sets U, X, Y and Z. Notice that such a replacement does not result in changing the structure of snowflake, i.e., all T_j' are isomorphic to T_0'. In this way we cover all remaining lengths of mixed edges.

Case II. $k \geq 2$. Let $V(K_{56k}) = \bigcup_{l=1}^k (U^l \cup X^l \cup Y^l \cup Z^l)$, where $U^l = \{u_0^l, u_1^l, \ldots, u_{13}^l\}$, $X = \{x_0, x_1, \ldots, x_{13}\}$, $Y = \{y_0^l, y_1^l, \ldots, y_{13}^l\}$ and $Z = \{z_0^l, z_1^l, \ldots, z_{13}^l\}$, $l = 1, 2, \ldots, k$. In what follows subscripts should be read modulo 14.

In order to construct $28k$ factors, each isomorphic to T_{56k}, we proceed in the following way. First, for every snowflake T_i, $i = 0, 1, \ldots, 13$, in the T_{56k}-factorization of K_{56} constructed in Case I we make k copies T_i^l, $l = 1, 2, \ldots, k$, by copying every edge $s t$ of T_i into k edges $s^l t^l$, each being an edge of appropriate T_i^l, where $s, t \in U \cup X \cup Y \cup Z$. Moreover, for every T_i^l among $14k$ trees obtained in this way, where $i = 0, 1, \ldots, 13$ and $l = 1, 2, \ldots, k$, we add $56(k-1)$ edges: $u_i^l \prec u_j^p, x_j^p, y_j^p, z_j^p, y_i^s \prec u_j^p, x_j^p, y_j^p, z_j^p$, where $l < p \leq k$, $1 \leq r < l$, $j = 0, 1, \ldots, 13$. Thus every T_i^l is a snowflake with the root u_{12+i}^l of degree 11, and six inner vertices $x_{1+i}^l, x_{2+i}^l, y_i^l, y_{1+i}^l, z_{7+i}^l$ of degrees $28k - 20, 8, 7, 28k - 18, 7, 10$, respectively.

Similarly, for every snowflake T_i' constructed in Case I, $i = 0, 1, \ldots, 13$, we built k copies T_i^l', $l = 1, 2, \ldots, k$, by copying every edge $s t$ of T_i' into k edges $s^l t^l$, $s, t \in U \cup X \cup Y \cup Z$. Analogously to the above, for every T_i^l' of $14k$ trees just obtained, $i = 0, 1, \ldots, 13$ and $l = 1, 2, \ldots, k$, new $56(k-1)$ edges are added: $x_i^l \prec u_j^p, x_j^p, y_j^p, z_j^p, z_i^l \prec u_j^p, x_j^p, y_j^p, z_j^p$, where $l < p \leq k$, $1 \leq r < l$, $j = 0, 1, \ldots, 13$. Every T_i^l' obtained in this way is a snowflake.
with the root u^k_{7+i} of degree 11, and six inner vertices x^l_{7+i}, x^l_{8+i}, y^l_{2+i}, y^l_{3+i}, z^l_{i}, z^l_{1+i} of degrees $28k - 20$, 8, 7, 7, $28k - 18$, 10, respectively.

Lemma 2. For every set $V \subset V(\overline{T}_{56k}) = V(K_{56k})$ such that $|V| = 28k$, $\sum_{v \in V} \deg(v) \neq 56k - 1$.

Proof. One can check that there are only four sequences of length $28k$ whose terms are degrees of \overline{T}_{56k} and whose sum of terms is $56k - 1$:

1. $28k - 18$, 10, 10, 1, 1, \ldots, 1,
2. $28k - 18$, 7, 7, 7, 1, 1, \ldots, 1,
3. $28k - 20$, 11, 11, 1, 1, \ldots, 1,
4. $28k - 20$, 8, 8, 7, 1, 1, \ldots, 1.

None of these sequences is a subsequence of degree sequence of \overline{T}_{56k}. Thus the assertion holds.

Notice that every of the sequences (1)–(4) indeed appears as a set of degrees for some vertex in factors of \overline{T}_{56k}-factorization of K_{56k}. It is easily seen that all terms of (1) are degrees of the vertex z^k_i in \overline{T}_{56k}-factorization, similarly (2) is a set of degrees for y^k_i, (3) for u^k_i and (4) for x^k_i, $i = 0, 1, \ldots, 13$, $l = 1, 2, \ldots, k$.

It is still possible that a similar example for the order $2n < 56$ exists. Nevertheless, a computer was used to check that in that case $2n$ cannot be smaller than 38.

Acknowledgment

Several helpful discussions with D. Fronček and T. Kovářová [1] concerning the Problem are gratefully acknowledged.

References

