Multidimensional Data Management
in Mobile Environments

Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Mathematik und Informatik der Freien Universität Berlin

vorgelegt von

Ilias Michalarias

im Oktober 2007

Gutachter:
Prof. Dr. Hans-J. Lenz, FU Berlin
Prof. Dr.-Ing. Jochen H. Schiller, FU Berlin
Prof. Dr. Timos Sellis, TU Athen
Abstract

Constantly growing data volumes and accelerating update speeds are fundamentally changing the role of data warehousing in modern business. Data warehousing is increasingly used not only for strategic, but for operative decision making as well. More data, coming in faster and requiring immediate conversion into decisions means that organizations are confronting the need for right-time (active) data warehousing.

In parallel, great advances, both in wireless networks and respective mobile devices functioning within their proximity, enable a wide-scale adoption of mobile information systems. Mobile devices become smaller, cheaper and more powerful, being able to run more sophisticated applications and network services. With ubiquitous data access already being success critical, integrating mobile devices in existing infrastructure is a fundamental requirement.

The research field of mobile online analytical processing (mOLAP) brings the two aforementioned research and application areas together. The term mOLAP encompasses all necessary technologies for mobile information systems that enable multidimensional data access to users carrying a mobile device.

This thesis presents FCLOS, a complete client-server architecture explicitly designed for mOLAP. FCLOS exploits derivability between multidimensional data cubes in conjunction with wireless broadcast in order to become a query efficient, self adaptive and scalable mOLAP information system.
Acknowledgements

This work was financed by the Berlin-Brandenburg Graduate School on Distributed Information Systems and carried out at the Freie Universität Berlin. Pursuing a Ph.D. in computer engineering is not a trivial task. Fortunately, during this time I had the owner and privilege to work and cooperate with some great persons.

Above all, I would like to express my gratitude to my first advisor, Professor Hans-J. Lenz. He gave me the chance to pursue my ideas in absolute freedom. His genuine interest in science has been and will be a great inspiration for me, not only for this thesis, but for the rest of my life. I also thank my fellows in the institute of Production, Information Systems and Operations Research.

I would also like to sincerely thank my second advisor, Professor Jochen Schiller. Our discussions, especially at the beginning of this work, helped me keep my feet on the ground and stay in a sound scientific direction. I also thank him for letting me participate in his research group. My fellows of the Computer Systems and Telematics group, created an entertaining working environment.

A special thanks goes to Professor Timos Sellis. The fact that he accepted to serve as an external referee of this work, especially bearing in mind his busy schedule, deeply owners me.

Furthermore, I would like to thank all professors of the Berlin-Brandenburg Graduate School on Distributed Information Systems, first for giving me the opportunity to embark on this project, and secondly for their precious feedback during our workshops. I also thank my fellows of the graduate school for our constructive discussions.

I am particularly thankful to the master thesis students Arkadiy Omelchenko and Christian Becker for their invaluable contribution to some parts of this thesis.

I would also like to thank Sarah, Nikos, the BFB and HSEC members (you know who you are) for their individual assistance.

Last but not least, I would like to express my gratitude to my parents. I would have never accomplished anything important in my life, including this thesis, without their incessant support.
Contents

1 Introduction ... 1
 1.1 Problem Statement 2
 1.2 Contribution 3
 1.3 Thesis Overview 5

I Background Technologies 7

2 Multidimensional Databases 9
 2.1 Multidimensional Space 9
 2.2 Conceptual Multidimensional Models 11
 2.3 Data Cube 12
 2.4 Aggregation Lattices 14
 2.5 Derivability - Subsumption 15
 2.6 Query Mapping to Aggregation Lattices 17
 2.7 Querying Multidimensional Data 18
 2.8 Summary 19

3 Data Management in Mobile Environments 21
 3.1 Limitations 21
 3.2 Wireless Information Broadcast 22
 3.2.1 Broadcast Structure 23
 3.2.2 Broadcast Architectures 24
 3.3 Mobile Databases 26
 3.3.1 Transaction Processing 26
 3.3.2 Query Processing 27
 3.3.3 Caching 27
 3.3.4 Replication 27
 3.4 Summary 28

II Related Work 29

4 Broadcast Systems 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>General Data Broadcast Systems</td>
<td>31</td>
</tr>
<tr>
<td>4.1.1</td>
<td>On-demand</td>
<td>31</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Push-based</td>
<td>34</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Hybrid</td>
<td>36</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Evaluation of Data Broadcast Modes</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Database Broadcast Systems</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Mobile OLAP Suitability</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>Distributed Multidimensional Data</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Distributed Data Warehousing</td>
<td>43</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Distributed Storage and OLAP</td>
<td>43</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Caching</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>Mobile Data Warehousing</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Mobile OLAP Architectures</td>
<td>46</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Criteria</td>
<td>46</td>
</tr>
<tr>
<td>5.3.2</td>
<td>STOBS</td>
<td>48</td>
</tr>
<tr>
<td>5.3.3</td>
<td>SBS</td>
<td>50</td>
</tr>
<tr>
<td>5.3.4</td>
<td>DV-ES</td>
<td>51</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Evaluation of mOLAP Architectures</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary</td>
<td>52</td>
</tr>
<tr>
<td>III</td>
<td>The FCLOS Architecture</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Mobile OLAP in Wireless Infrastructure Based Networks</td>
<td>57</td>
</tr>
<tr>
<td>6.1</td>
<td>Motivation</td>
<td>57</td>
</tr>
<tr>
<td>6.2</td>
<td>Requirements</td>
<td>58</td>
</tr>
<tr>
<td>6.3</td>
<td>System Architecture</td>
<td>59</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Data Model</td>
<td>60</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Server Architecture</td>
<td>60</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Client Architecture</td>
<td>63</td>
</tr>
<tr>
<td>6.4</td>
<td>The Scheduling Algorithm</td>
<td>64</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Steps</td>
<td>64</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Analysis</td>
<td>66</td>
</tr>
<tr>
<td>6.5</td>
<td>Cost Model</td>
<td>68</td>
</tr>
<tr>
<td>6.6</td>
<td>Experimental Evaluation</td>
<td>69</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Simulation Environment</td>
<td>69</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Basic Evaluation</td>
<td>72</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Further Evaluation</td>
<td>78</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary</td>
<td>81</td>
</tr>
</tbody>
</table>
7 Optimal Query Mapping

7.1 Motivation ... 83
7.2 Derivability in Aggregation Lattices .. 84
7.3 Query Mapping in mobile OLAP Architectures 84
7.4 An Analytical Model for Subsumption Probabilities 87
 7.4.1 Model .. 87
 7.4.2 Ancestor Probabilities in DCL ... 89
 7.4.3 Ancestor Probabilities in hDCL .. 91
7.5 Experimental Evaluation ... 93
 7.5.1 Exploitation of Subsumption ... 93
 7.5.2 Evaluating mOLAP Dissemination Systems 94
7.6 Summary ... 96

8 Compressed Aggregations for mobile OLAP

8.1 Motivation .. 99
8.2 Background and Related Work .. 100
 8.2.1 Data Cube Physical Structures ... 100
 8.2.2 The Dwarf Data Cube Physical Structure 101
 8.2.3 The mOLAP Tradeoff: Compression vs. Client Processing 103
 8.2.4 Coarse-grained Dwarfs ... 103
8.3 The m-Dwarf Data Cube Physical Structure 104
 8.3.1 Design ... 104
 8.3.2 Construction .. 105
 8.3.3 Evaluation ... 107
8.4 m-Dwarfs in FCLOS .. 109
8.5 Experimental Evaluation ... 111
8.6 Evaluation of examined physical structures 113
8.7 Summary ... 114

9 Ad hoc mobile OLAP

9.1 Introduction ... 115
9.2 Background ... 116
 9.2.1 Architecture .. 116
 9.2.2 Ad hoc vs. Infrastructure based ... 118
 9.2.3 Requirements ... 118
9.3 Related Work .. 118
 9.3.1 Distributed Data in MANETs .. 118
 9.3.2 Ad hoc mOLAP Suitability ... 120
9.4 Problem Formalization .. 121
 9.4.1 Generated Traffic .. 121
 9.4.2 Query Access Time ... 121
 9.4.3 Energy Consumption ... 122
9.5 Query and Disseminate under Global View 122
 9.5.1 Data Model and Query Mapping ... 122
List of Figures

1.1 mOLAP architecture based on FCLOS and QDGV 5
2.1 Multidimensional view of Table 2.1 .. 10
2.2 Star schema ... 12
2.3 Data cube ... 13
2.4 DCL of a 3-dimensional data cube ... 14
2.5 hDCL of a 3-dimensional data cube .. 16
3.1 Indexed broadcast composition .. 23
3.2 Index and data organization of distributed indexing 24
3.3 On-demand data dissemination .. 24
3.4 Push-based data dissemination ... 25
3.5 Hybrid data dissemination ... 26
4.1 The $R \times W$ service-queue data structures 32
4.2 Chunking model of a relation .. 39
5.1 STOBS OLAP System ... 48
5.2 STOBS: Flexibility in DCL .. 49
5.3 SBS: Flexibility in DCL ... 51
6.1 mOLAP in wireless infrastructure based networks 58
6.2 Overview of the FCLOS server architecture 60
6.3 Waiting queue before and after query mapping 61
6.4 FCLOS bucket ... 62
6.5 Steps of the FCLOS scheduling algorithm 66
6.6 Histogram of self-similar distribution 70
6.7 Mean query access time (T_{all}) ... 74
6.8 Mean query access time without offline answers 74
6.9 Percentage of T_Q, T_C and T_L to T_{all} 75
6.10 Percentage of offline and online query answers 75
6.11 Mean energy consumption overhead (E_{all}) 76
6.12 Percentage of E_Q, E_C and E_L to E_{all} 76
6.13 Mean per query generated traffic (T_{pq}) 77
6.14 Mean per broadcast generated traffic (T_{rb}) ... 77
6.15 Mean queue length and number of elements served or not per broadcast 77
6.16 Total amount of generated traffic (T_{sum}) .. 77
6.17 Mean stretch ... 78
6.18 Mean query access time (T_{all}) for different job classes ... 78
6.19 Mean query access time (T_{all}) for different values of the a-optimizer 79
6.20 Mean query access time (T_{all}) vs. dimensionality .. 79
6.21 Mean query access time (T_{all}) vs. query distribution .. 79
6.22 Mean query access time (T_{all}) vs. query rate .. 80
6.23 Generated traffic (T_{sum}) vs. query rate .. 80
6.24 Mean query access time (T_{all}) vs. bandwidth .. 81

7.1 Aggregation lattices ... 85
7.2 mOLAP dissemination system and two possible types of query mapping 86
7.3 Subsumption probabilities $P(e_a \succeq q^+ \subseteq Q)$ and $P(\exists e : e \succeq q \subseteq Q)$ 95
7.4 Mean query access time (T_{all}) ... 96
7.5 Percentage of queue elements served per broadcast ... 96
7.6 Mean per broadcast generated traffic (T_{rb}) .. 96
7.7 Mean per query generated traffic (T_{rqb}) .. 96

8.1 Dwarf of Table 8.1 .. 102
8.2 Fully coarse-grained Dwarf of Table 8.1 .. 105
8.3 m-Dwarf of Table 8.1 .. 106
8.4 An example of the temporary structure rm-Dwarf .. 107
8.5 m-Dwarf storage savings for a semi-synthetic dataset ... 110
8.6 m-Dwarf storage savings for a real dataset .. 110
8.7 Mean per query generated traffic (T_{rqb}) .. 112
8.8 Mean per broadcast generated traffic (T_{rb}) .. 112
8.9 Total amount of generated traffic (T_{sum}) ... 112
8.10 Mean query access time (T_{all}) .. 112
8.11 Percentage of T_Q, T_C and T_L to T_{all} ... 113

9.1 Extended mOLAP architecture ... 117
9.2 Elementary view for a 3-dimensional schema .. 124
9.3 Example of a QDGV client’s local data ... 125
9.4 Mean query access time (T_{all}) .. 130
9.5 Mean energy consumption overhead (E_{all}) ... 130
9.6 Query propagation traffic (T_{rQprop}) .. 131
9.7 Query propagation traffic (T_{rQprop}) with query interval ... 131
9.8 Discovery success ... 132
9.9 Mean query access time with density (T_{q}) .. 133
9.10 Mean query access time with velocity (T_{v}) .. 133
10.1 Mean query access time (T_{all}) for all approaches examined in the thesis ... 140
A.1 Parallel coordinates: FCLOS vs. STOBS optimization of mean query access time (T_{all}) ... 162
A.2 Parallel coordinates: FCLOS vs. STOBS optimization of mean energy consumption overhead (E_{all}) 163
A.3 Parallel coordinates: FCLOS vs. STOBS optimization of mean total amount of generated traffic (Tr_{sum}) 164
A.4 Parallel coordinates: FCLOS$_{mD}$ vs. STOBS optimization of mean query access time (T_{all}) 165
A.5 Parallel coordinates: FCLOS$_{mD}$ vs. STOBS optimization of mean energy consumption overhead (E_{all}) 166
A.6 Parallel coordinates: FCLOS$_{mD}$ vs. STOBS optimization of mean total amount of generated traffic (Tr_{sum}) 167
List of Tables

2.1 Fact table example ... 10
2.2 Declared hierarchies of a 3-dimensional data cube 14
2.3 Derivability for aggregate functions 17

4.1 Evaluation symbols .. 37
4.2 Evaluation of data broadcast modes 38

5.1 Evaluation of mOLAP architectures 52

6.1 FCLOS scheduler notation .. 64
6.2 A scheduling example: STOBS vs. FCLOS 67
6.3 Clusters and broadcast weights in FCLOS 68
6.4 Schedules: STOBS vs. FCLOS 68
6.5 Real data mart metadata ... 69
6.6 Semi-synthetic data mart metadata 70
6.7 Query distribution’s characteristics 71
6.8 Mobile client technical characteristics 73
6.9 Overview of simulation parameters 74

7.1 Query mapping tradeoff in mOLAP 86
7.2 Notation of the analytical framework 88
7.3 Subsumption probability $P(e_a \succeq e_b)$ 94

8.1 Base fact table ... 101
8.2 Storage size vs. # of tuples 108
8.3 Storage size vs. dimensionality 108
8.4 Storage size vs. data distribution 109
8.5 Evaluation of examined physical structures 113

9.1 Breaking Consequences ... 127
9.2 Simulation parameters .. 129

10.1 Evaluation of mOLAP architectures 139
A.1 Dimensions used for parallel coordinates 161
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACID</td>
<td>Atomicity, Consistency, Isolation, Durability</td>
<td>26</td>
</tr>
<tr>
<td>BQDA</td>
<td>Broadcast Query and Direct Answer</td>
<td>128</td>
</tr>
<tr>
<td>DCL</td>
<td>Data Cube Lattice</td>
<td>14</td>
</tr>
<tr>
<td>DW</td>
<td>Data Warehouse</td>
<td>1</td>
</tr>
<tr>
<td>fcg-Dwarf</td>
<td>fully coarse-grained Dwarf</td>
<td>104</td>
</tr>
<tr>
<td>FCLOS</td>
<td>Force Clustering OLAP Scheduler</td>
<td>3</td>
</tr>
<tr>
<td>hDCL</td>
<td>hierarchical Data Cube Lattice</td>
<td>15</td>
</tr>
<tr>
<td>m-Dwarf</td>
<td>mobile Dwarf</td>
<td>99</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
<td>23</td>
</tr>
<tr>
<td>MANET</td>
<td>Mobile ad hoc network</td>
<td>115</td>
</tr>
<tr>
<td>MDDB</td>
<td>Multidimensional Database</td>
<td>9</td>
</tr>
<tr>
<td>mOLAP</td>
<td>mobile Online Analytical Processing</td>
<td>1</td>
</tr>
<tr>
<td>P2P</td>
<td>Peer to Peer</td>
<td>44</td>
</tr>
<tr>
<td>QDGV</td>
<td>Query and Disseminate under Global View</td>
<td>4</td>
</tr>
<tr>
<td>SBS</td>
<td>Subsumption-Based Scheduler</td>
<td>50</td>
</tr>
<tr>
<td>ST</td>
<td>Summary Table</td>
<td>12</td>
</tr>
<tr>
<td>STOBS</td>
<td>Summary Tables On-Demand Broadcast Scheduler</td>
<td>48</td>
</tr>
</tbody>
</table>