Authenticated Algorithm for Byzantine Agreement

By: D. Dolev and H.R. Strong

Presented by: Gunjan Khanna
Motivation

- Presentation on Monday talked about Byzantine agreement in distributed systems
- Byzantine agreement modeling is important to model insider threats
- Byzantine Agreement defined can be achieved in $(n-1)$ phases.
- No. of processors required to tolerate f failures are $3f + 1$
Byzantine Agreement is *Expensive*

- Order of Messages are $O(n^f)$ with n nodes and f failures
- $n-1$ rounds leads to a delay in agreement
- Authentication does limit the total number of processors to $f + 2$
- Total number of messages also depend upon the connectivity of graph
System Model

- Byzantine behavior for failed nodes.
 - Interactive Consistency or Unanimity
- Byzantine Agreement
 - (I) All correct processors agree on the same value
 - (II) If sender is correct, all processors agree on its value.
- Aim to prove the lower bound of $f+1$ rounds for any type of messages.
Assume a completely connected Graph
- Reliable Communication Channel

In case of an authentication algorithm
- No one can forge the signatures
- Transmitter appends the signature to the message

Lynch and Fisher provided a $t+1$ bound on the number of rounds but without any authenticated messages.
Terms used in Paper

- History
 - N processor history is a finite sequence of n node phases and a phase 0
 - A phase is a directed graph with nodes corresponding to processors and labels on edges.
 - Label is the information sent by the processor

![Diagram of a directed graph with nodes labeled p, q, r, and s and directed edges connecting them]
Formal Terms

- Subhistory
 - History seen by a processor p
 - Only incoming edges present

- Agreement Algorithm

- Class of Histories

- Correctness Rule
Byzantine Agreement

- A processor is correct at phase k according to the *correctness rule* it is correct at each of the previous phases $k-1$
 - *Correctness rule* operates on the subhistory of each process

- Byzantine Agreement can be achieved
 - (I) If for p and q correct processes $F_p H = F_q H$.
 - (II) If sender is correct and sends a value v then for a correct process $p F_p H = v$.
Theorem 1

- Byzantine agreement with authentication can be achieved for \(n \) processors with at most \(t \) faults in \(t+1 \) phases, \(n > t+1 \)

Proof:
- Each node signs the value at phase \(i \) and sends it to only the processes who have not signed it yet.
- \(F \) operates on the messages and throws all the incorrect messages.
- After \(t \) phases each message has \(t \) signatures on it.
- Hence each correct value has been seen by all the correct processes after \(t+1 \) phases.
Theorem 2

- Byzantine agreement cannot be achieved in t or lower phases with t failures.

Proof:

- Let’s assume that Byzantine agreement can be achieved in t or fewer phases.
- Let R be the correctness rule and F be the decision function. Together they achieve the Byzantine agreement.
- Critical Sequence which contains the incorrect processes.
- Faulty Processes increase serially
Proof Cnt.d

- If $FpH'=FpH$ implies equivalent histories, H and H'
- A node is hidden at phase k if there are no outedges from it in any later phases.
- Show by induction that “If a node r representing a processor at phase k of history H in C then,”
 - There is a history equivalent to H denoted by H' through phase k except for outedges of r with r correct and all other processes correct.
 - If all other processes are correct then there exist H' with outedges of r replaced, r hidden and all other processes are correct.

- Case 1 $k=t$
Proof Cnt.d

(a) If r is incorrect at phase k then we correct the outedges of r one at a time.
- For each individual change there is a processor which sees the same history as before
- Final H' will have r correct and all processes trivially correct.

(b) If r is a process and all other processes are correct then removing outedges of r will preserve the equivalence relation in H.
Proof Cnt.d

- Assume (a) and (b) to be true for all phases after k
 - (i) Let r be the incorrect edge at phase k.
 - Correct all nodes at phase k hyp. (a)
 - While the incorrect outedges remain
 - Replace the position $k+1$ in C with s which is the target of the incorrect outedge.
 - Hide s at $k+1$
 - Correct all nodes hyp. (b)
 - The final result H' will have r and all correct processes.
Proof Cnt.d

(ii) All correct nodes at phase k and r be a node

- Correct nodes at phase $k+1$ hyp. (a)
- Replace k^{th} position with label of r.
- While the outedges of r remain
 - Replace the position $k+1$ in C with s which is the target of the outedge e.
 - Hide s at $k+1$ hyb. (b)
 - remove e
 - Correct all processes after phase k hyp. (a)
- Hide r at phase $k +1$. Hence the final result will have r hidden at phase k and all other processors correct after phase k.
Algorithms using Authentication

- A label is a sequence of authentication or just a single authentication.
 - (Label a)p
- No process can alter the authentication nor can it pretend to have received an authentication.
- Main idea is to restrict the no. of messages.
Theorem 3

- Byzantine agreement can be reached with t failures within t+1 rounds with $O(e)=O(n^2)$ messages
 - Restrict the number of messages from each processor to 2.
 - Each processor orders the messages lexicographically in the order $(..(v)p_1)p_2...p_n)$
 - It relays the first two messages with distinct value
 - Only one message is relayed if values are the same
 - If two messages are relayed within t+1 phases then it decides “sender fault”
 - If no other process imports any other value then v is extracted.
Theorem 4

- Byzantine agreement can be reached for \(n \) processes using \(t+2 \) rounds and \(O(nt) \) messages when there are \(t \) failures to tolerate.
 - Chose \(t+1 \) processes to be relay processes.
 - Non relay processes send messages only to the relay processes
 - Messages = \(O(nt) \)
 - Why are \(t+2 \) phases required?
Theorem 5

- Assumptions
 - $t+1$ connected graph
 - K-Diameter of a graph is the least upper bound of the lengths of the k disjoint paths

- If d is the diameter of a $t+1$ connected graph then Byzantine agreement can be reached within $t+d$ phases.

- Proof: Trivially True from Theorem 1.
Theorem 6

Byzantine agreement can be reached in $t+1$ phases with $O(nt)$ messages in a complete network.

Proof

If $n < (2t+1)$ then it is true from Theorem 3.

Use only $2t+1$ processes as active

Correctness Rule is same as Theorem 3.

(Lexicographically correct)
Algorithm Cnt.d

- Passive processes do not send any message.
- They collect the signed messages and extract values with at least $t+1$ distinct signatures.
- If any correct active process extracts a value, then some correct active process extracts that value by phase t and then the message it will relay will have $t+1$ active signatures.
- It can be extended for the case with $t-1$ phases.
Contributions

- Proposes several efficient algorithms for reaching Byzantine agreement
 - Reduces the number of message requirement
 - Gives an important lower bound on the number of phases required
- Gives bounds on an authenticated algorithm for a $t+1$ connected graph
Conclusions

- These results still hold
- One should look in terms of Probabilistic algorithms.
 - With some probability you mark a process faulty
- Lower bound on messages is not derived