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Introduction

Motivation
I Caches add complexity to WCET analysis
I Mitigation strategies (by design):

I Separate caches
I Adapt cache to access patterns

A Cache For Stack Data
I Suits the program’s execution stack
I Stack access (load, store) always hits the cache
I Special instructions control the stack

I May trigger load/store from/to main memory (delays)
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Stack Cache Introduction

Logical View
Stack cache with n blocks (2 available)

1 2 3 . . . n−2 n−1 n

lower addresses

sp
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Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Reserve
allocates k blocks in the stack cache

I spills minimal number of blocks if cache capacity exceeded
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Analysis Problem

Two Problems
I Worst-case filling of ensure instructions (Ensure Analysis)
I Worst-case spilling of reserve instructions (Reserve

Analysis)

Analysis Goal
Find better bounds than arguments k
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Analysis Foundations

Annotated Call Graph
Call graph with weights representing reserved stack space,
including an artificial source and sink nodes.

Example: Annotated CG for 3 Functions

A() B() C()
0

2

2

3

3 2
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Analysis Foundations

Occupancy
Fill-level of the stack cache

I Occupancy bounds (upper/lower)

Displacement
Data potentially evicted from stack cache during function call

I Minimum/maximum displacements

Context-Sensitivity
Analysis information for a program point depends on its call
nesting (hierarchy of calling functions)
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Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

8/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior



Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

9/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior



Computing Displacement

Displacement of a Call Site
Computed on the annotated call graph between call destination
and sink node

I Minimum displacement: shortest path search
I Maximum displacement: longest path search

Acyclic Call Graphs
Easy to compute with dynamic programming

Call Graphs With Recursion
Can be modeled using an ILP

I In fact: shortest (longest) tail in the call graph
I Allows (user) bounds for program’s calling behavior
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Ensure Analysis

Ensure Analysis

I Input: maximum displacement
I Output: worst-case filling value for every ensure
I context-insensitive result and analysis

Function-local computation
Worst-case filling only depends on

I space reserved at function entry (static)
I minimum occupancy (induced by maximum displacement)

of all paths reaching the ensure
Thus can be solved by local data flow analysis.
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Computing Occupancy Bounds

Maximum Occupancy of a Call Site
Inverse to minimum occupancy used by ensure analysis

I Solved the same way: local data-flow analysis, but
I use the minimum displacement
I assume full stack cache at function entry
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Reserve Analysis

Reserve Analysis

I Input: annotated call graph, occupancy bounds
I Output: spill cost graph (stack-context-sensitive)
I Starting with initially empty stack cache, derive new cache

contexts from the annotated call graph
I Occupancy bounds limit the number of distinct contexts

that need to be propagated
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Reserve Analysis

Example: Spill Cost Graph
A(), 0 B(), 2 C(), 4

C(), 3

C(), 2

Spill cost derived from graph: ĉs ·max(0,o + k − |SC|)

Spill Cost Graph Pruning Opportunities

I Contexts of the same function with 0 spill cost can be
merged

I Infeasible contexts (user bounds) can be pruned
I Possible trade-off: analysis precision vs. graph size
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Results

Evaluation
I Platform: Patmos (LLVM compiler)
I Benchmarks: MiBench
I Several stack cache sizes

Analysis Overhead

I Up to 94 ILPs
I 1.30s average analysis time
I Up to 53487 nodes in spill cost graph

I Reduced to 17254 by pruning
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Results

Spilling Reserves
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Conclusion

Worst-case stack cache analysis

I Efficient analysis
I Separate analysis problems
I Performed at different levels

I Computed through
I Augmented path search
I Data-flow analysis

I Analysis results
I Context-sensitive where required
I Spill-cost graph precision can be lowered on demand
I Ready for use in WCET tool
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