
Static Analysis of Worst-Case Stack Cache
Behavior

Alexander Jordan1 Florian Brandner2

Martin Schoeberl2

Institute of Computer Languages1 Embedded Systems Engineering Section2

Compiler and Languages Group DTU Compute
Vienna University of Technology Technical University of Denmark

ajordan@complang.tuwien.ac.at {flbr,masca}@imm.dtu.dk

Introduction

Motivation
I Caches add complexity to WCET analysis
I Mitigation strategies (by design):

I Separate caches
I Adapt cache to access patterns

A Cache For Stack Data
I Suits the program’s execution stack
I Stack access (load, store) always hits the cache
I Special instructions control the stack

I May trigger load/store from/to main memory (delays)

2/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Introduction

Motivation
I Caches add complexity to WCET analysis
I Mitigation strategies (by design):

I Separate caches
I Adapt cache to access patterns

A Cache For Stack Data
I Suits the program’s execution stack
I Stack access (load, store) always hits the cache
I Special instructions control the stack

I May trigger load/store from/to main memory (delays)

2/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

Logical View
Stack cache with n blocks (2 available)

1 2 3 . . . n−2 n−1 n

lower addresses

sp

3/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Reserve
allocates k blocks in the stack cache

I spills minimal number of blocks if cache capacity exceeded

4/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Free
discards k most recently reserved blocks

4/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Ensure
if not all k blocks of the current frame are available in the cache

I fills cache with missing blocks

4/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Ensure
if not all k blocks of the current frame are available in the cache

I fills cache with missing blocks
I can prevent loading of redundant values

4/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Stack Cache Introduction

func A:

1 sres 2;

2 store #1;

3 B();

4 sens 2;

5 load #1;

6 C();

7 sens 2;

8 sfree 2;

end;

Ensure
if not all k blocks of the current frame are available in the cache

I fills cache with missing blocks
I can prevent loading of redundant values

4/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Problem

Two Problems
I Worst-case filling of ensure instructions (Ensure Analysis)
I Worst-case spilling of reserve instructions (Reserve

Analysis)

Analysis Goal
Find better bounds than arguments k

5/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Problem

Two Problems
I Worst-case filling of ensure instructions (Ensure Analysis)
I Worst-case spilling of reserve instructions (Reserve

Analysis)

Analysis Goal
Find better bounds than arguments k

5/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Foundations

Annotated Call Graph
Call graph with weights representing reserved stack space,
including an artificial source and sink nodes.

Example: Annotated CG for 3 Functions

A() B() C()
0

2

2

3

3 2

6/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Foundations

Occupancy
Fill-level of the stack cache

I Occupancy bounds (upper/lower)

Displacement
Data potentially evicted from stack cache during function call

I Minimum/maximum displacements

Context-Sensitivity
Analysis information for a program point depends on its call
nesting (hierarchy of calling functions)

7/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Foundations

Occupancy
Fill-level of the stack cache

I Occupancy bounds (upper/lower)

Displacement
Data potentially evicted from stack cache during function call

I Minimum/maximum displacements

Context-Sensitivity
Analysis information for a program point depends on its call
nesting (hierarchy of calling functions)

7/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Foundations

Occupancy
Fill-level of the stack cache

I Occupancy bounds (upper/lower)

Displacement
Data potentially evicted from stack cache during function call

I Minimum/maximum displacements

Context-Sensitivity
Analysis information for a program point depends on its call
nesting (hierarchy of calling functions)

7/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

8/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

9/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Computing Displacement

Displacement of a Call Site
Computed on the annotated call graph between call destination
and sink node

I Minimum displacement: shortest path search
I Maximum displacement: longest path search

Acyclic Call Graphs
Easy to compute with dynamic programming

Call Graphs With Recursion
Can be modeled using an ILP

I In fact: shortest (longest) tail in the call graph
I Allows (user) bounds for program’s calling behavior

10/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Computing Displacement

Displacement of a Call Site
Computed on the annotated call graph between call destination
and sink node

I Minimum displacement: shortest path search
I Maximum displacement: longest path search

Acyclic Call Graphs
Easy to compute with dynamic programming

Call Graphs With Recursion
Can be modeled using an ILP

I In fact: shortest (longest) tail in the call graph
I Allows (user) bounds for program’s calling behavior

10/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Computing Displacement

Displacement of a Call Site
Computed on the annotated call graph between call destination
and sink node

I Minimum displacement: shortest path search
I Maximum displacement: longest path search

Acyclic Call Graphs
Easy to compute with dynamic programming

Call Graphs With Recursion
Can be modeled using an ILP

I In fact: shortest (longest) tail in the call graph
I Allows (user) bounds for program’s calling behavior

10/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

11/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Ensure Analysis

Ensure Analysis

I Input: maximum displacement
I Output: worst-case filling value for every ensure
I context-insensitive result and analysis

Function-local computation
Worst-case filling only depends on

I space reserved at function entry (static)
I minimum occupancy (induced by maximum displacement)

of all paths reaching the ensure
Thus can be solved by local data flow analysis.

12/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Ensure Analysis

Ensure Analysis

I Input: maximum displacement
I Output: worst-case filling value for every ensure
I context-insensitive result and analysis

Function-local computation
Worst-case filling only depends on

I space reserved at function entry (static)
I minimum occupancy (induced by maximum displacement)

of all paths reaching the ensure
Thus can be solved by local data flow analysis.

12/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

13/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Computing Occupancy Bounds

Maximum Occupancy of a Call Site
Inverse to minimum occupancy used by ensure analysis

I Solved the same way: local data-flow analysis, but
I use the minimum displacement
I assume full stack cache at function entry

14/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Analysis Algorithm

C
al

lG
ra

ph

Compute
Maximum Displacement

Compute
Minimum Displacement

Lo
ca

l

Analyze Ensures
Compute

Occupancy Bounds

G
lo

ba
l

Analyze Reserves

15/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Reserve Analysis

Reserve Analysis

I Input: annotated call graph, occupancy bounds
I Output: spill cost graph (stack-context-sensitive)
I Starting with initially empty stack cache, derive new cache

contexts from the annotated call graph
I Occupancy bounds limit the number of distinct contexts

that need to be propagated

16/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Reserve Analysis

Example: Spill Cost Graph
A(), 0 B(), 2 C(), 4

C(), 3

C(), 2

Spill cost derived from graph: ĉs ·max(0,o + k − |SC|)

Spill Cost Graph Pruning Opportunities

I Contexts of the same function with 0 spill cost can be
merged

I Infeasible contexts (user bounds) can be pruned
I Possible trade-off: analysis precision vs. graph size

17/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Reserve Analysis

Example: Spill Cost Graph
A(), 0 B(), 2 C(), 4

C(), 3

C(), 2

Spill cost derived from graph: ĉs ·max(0,o + k − |SC|)

Spill Cost Graph Pruning Opportunities

I Contexts of the same function with 0 spill cost can be
merged

I Infeasible contexts (user bounds) can be pruned
I Possible trade-off: analysis precision vs. graph size

17/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Reserve Analysis

Example: Spill Cost Graph
A(), 0 B(), 2 C(), 4

C(), 3

C(), 2

Spill cost derived from graph: ĉs ·max(0,o + k − |SC|)

Spill Cost Graph Pruning Opportunities

I Contexts of the same function with 0 spill cost can be
merged

I Infeasible contexts (user bounds) can be pruned
I Possible trade-off: analysis precision vs. graph size

17/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Results

Evaluation
I Platform: Patmos (LLVM compiler)
I Benchmarks: MiBench
I Several stack cache sizes

Analysis Overhead

I Up to 94 ILPs
I 1.30s average analysis time
I Up to 53487 nodes in spill cost graph

I Reduced to 17254 by pruning

18/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Results

Evaluation
I Platform: Patmos (LLVM compiler)
I Benchmarks: MiBench
I Several stack cache sizes

Analysis Overhead

I Up to 94 ILPs
I 1.30s average analysis time
I Up to 53487 nodes in spill cost graph

I Reduced to 17254 by pruning

18/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Results

Spilling Reserves

ff
t

su
sa

n

sa
y

jp
e
g
tr

a
n

la
m

e

ti
ff

m
e
d
ia

n

ti
ff

d
it

h
e
r

ti
ff

2
b
w

c
jp

e
g

d
jp

e
g

ti
ff

2
rg

b
a

0

100

200

300

R
e
se

rv
e

In
st

ru
c
ti

o
n
s

sres instructions (total) sres spilling

19/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

Conclusion

Worst-case stack cache analysis

I Efficient analysis
I Separate analysis problems
I Performed at different levels

I Computed through
I Augmented path search
I Data-flow analysis

I Analysis results
I Context-sensitive where required
I Spill-cost graph precision can be lowered on demand
I Ready for use in WCET tool

20/20 Alexander Jordan, Florian Brandner, Martin Schoeberl Static Analysis of Worst-Case Stack Cache Behavior

