Autonomous Robots
From Biological Inspiration to Implementation and Control

George A. Bekey

The MIT Press
Cambridge, Massachusetts
London, England
Contents

Preface iii

1 **Autonomy and Control in Animals and Robots** 1
 1.1 What Is Autonomy? 1
 1.2 What Is a Robot? 2
 1.3 Problems of Robot Control 2
 1.4 Biologically Inspired Robot Control 7
 1.5 Sensors 10
 1.6 Actuators 12
 1.7 Intelligence 12
 1.8 A Brief Survey of Current Robots and Associated Control Issues 13
 1.9 Concluding Remarks and Organization of the Book 25

2 **Control and Regulation in Biological Systems** 27
 2.1 Homeostasis 27
 2.2 Engineering and Biological Control Systems 29
 2.3 Multiple Levels of Control: Control Architecture 33
 2.4 Other Biological Control Systems 34
 2.5 Nonlinearities in Biological Control Systems 38
 2.6 Cost Functions 42
 2.7 Control of Functional Motions in Humans 43
 2.8 Relevance to Robot Control 43
 2.9 Historical Background 44

3 **Fundamental Structural Elements** 45
 3.1 The Structural Elements 45
 3.2 Actuators for Robots 47
 3.3 Sensors for Robots 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Localization</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>Computation and Communication</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Low-Level Robot Control</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Engineering Control: An Intuitive Introduction to Its Advantages and Limitations</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Robot Controller Design Principles</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>Control of Multilink Structures</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>State Space Approach: Theory, Advantages, and Limitations</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Nonlinear Robot Control</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>Adaptive Control and Other Approaches</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Model-Free Approaches to Control</td>
<td>91</td>
</tr>
<tr>
<td>4.8</td>
<td>Uncertainty in Control System Design</td>
<td>92</td>
</tr>
<tr>
<td>4.9</td>
<td>Biologically Inspired Control: Basic Principles</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>Software Architectures for Autonomous Robots</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>What Is a Robot Architecture?</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Where Does Control Fit into Robot Software?</td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>A Brief History</td>
<td>99</td>
</tr>
<tr>
<td>5.4</td>
<td>Hierarchical and Deliberative Architectures</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Reactive and Behavior-Based Architectures</td>
<td>104</td>
</tr>
<tr>
<td>5.6</td>
<td>Hybrid Reactive-Deliberative Architectures</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Major Features of Hybrid Architectures</td>
<td>110</td>
</tr>
<tr>
<td>5.8</td>
<td>Case Study 5.1: The Tropism-Based Architecture</td>
<td>113</td>
</tr>
<tr>
<td>5.9</td>
<td>Case Study 5.2: The USC AVATAR Architecture for Autonomous Helicopter Control</td>
<td>117</td>
</tr>
<tr>
<td>5.10</td>
<td>Open Architectures in Robotics</td>
<td>121</td>
</tr>
<tr>
<td>5.11</td>
<td>Concluding Remarks</td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>Robot Learning</td>
<td>125</td>
</tr>
<tr>
<td>6.1</td>
<td>The Nature of Robot Learning</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>Learning and Control</td>
<td>126</td>
</tr>
<tr>
<td>6.3</td>
<td>General Issues in Learning by Robotic Systems</td>
<td>128</td>
</tr>
<tr>
<td>6.4</td>
<td>Reinforcement Learning</td>
<td>129</td>
</tr>
<tr>
<td>6.5</td>
<td>Q-Learning</td>
<td>134</td>
</tr>
<tr>
<td>6.6</td>
<td>Case Study 6.1: Learning to Avoid Obstacles Using Reinforcement Learning</td>
<td>135</td>
</tr>
<tr>
<td>6.7</td>
<td>Learning Using Neural Networks</td>
<td>140</td>
</tr>
<tr>
<td>6.8</td>
<td>Case Study 6.2: Learning to Grasp Objects of Different Shapes</td>
<td>149</td>
</tr>
</tbody>
</table>
6.9 Evolutionary Algorithms 153
6.10 Case Study 6.3: Learning to Walk Using Genetic Algorithms 156
6.11 Case Study 6.4: Learning in the Tropism Architecture 165
6.12 Learning by Imitation 175
6.13 Whither Robot Learning? 184

7 Robot Locomotion: An Overview 185
7.1 Animal Locomotion 185
7.2 Wheeled Vehicles 186
7.3 Tracked Vehicles 197
7.4 Legged Robots 199
7.5 Hopping Robots 200
7.6 Serpentine (Snake) Robots 203
7.7 Underwater Robotic Vehicles 209
7.8 Biologically Inspired Underwater Robots 217
7.9 Climbing and Other Unusual Locomotion Methods 225
7.10 Flying Robots 232
7.11 Self-Reconfigurable Robots 245
7.12 Concluding Remarks 251

8 Biped Locomotion 253
8.1 Standing and Walking on Two Legs 253
8.2 The Nature of Human Walking 254
8.3 Musculoskeletal Dynamics 256
8.4 Control of Human Locomotion 258
8.5 Robotic Models of Biped Locomotion 262
8.6 Some Biped Robots 263
8.7 Mathematical Models of Biped Kinematics and Dynamics 274
8.8 Modeling Compensatory Trunk Movements While Walking 276
8.9 Mechanical Aids to Human Walking 277
8.10 Concluding Remarks 283

9 Locomotion in Animals and Robots with Four, Six, and Eight Legs 285
9.1 Introduction to Legged Locomotion in Animals 285
9.2 Neural Control of Locomotion 286
9.3 Walking Multilegged Robots 287
9.4 Six-Legged Walking Machines 289
9.5 Locomotion in Four-Legged Animals 303
9.6 Four-Legged Walking Machines 304
Contents

12.12 Task Assignment 431
12.13 Design Issues in Multiple-Robot Systems 435
12.14 Conclusions 439

13 Humanoid Robots 441
13.1 Introduction: Why Humanoids? 441
13.2 Historical Background 444
13.3 Full-Body Humanoids 448
13.4 Interaction with Humans 457
13.5 Special-Purpose Humanoids 463
13.6 Trends in Humanoid Research 471

14 Localization, Navigation, and Mapping 473
14.1 Overview 473
14.2 Biological Inspiration 475
14.3 Robot Navigation 478
14.4 Mapping 483
14.5 Case Study 14.1: Incremental Topological Mapping 488
14.6 Localization 494
14.7 Simultaneous Localization and Mapping 504
14.8 Multirobot Localization 504
14.9 Concluding Remarks 507

15 The Future of Autonomous Robots 509
15.1 Introduction 509
15.2 Current Trends in Robotics 510
15.3 Human-Robot Cooperation and Interaction 512
15.4 Multirobot Systems 513
15.5 Micro- and Nanorobots 513
15.6 Reconfigurability 514
15.7 The Implications of Computer Power 514
15.8 Self-Organization, Self-Repair, Autonomous Evolution, and Self-Replication 515
15.9 The Potential Dangers of Robotics 516
15.10 Concluding Remarks 518

Appendix: Introduction to Linear Feedback Control Systems 519
A.1 Linear Control Systems in the Frequency Domain 519
A.2 The Transfer Function 522
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3 Stability</td>
<td>526</td>
</tr>
<tr>
<td>A.4 Control System Design</td>
<td>529</td>
</tr>
<tr>
<td>References</td>
<td>531</td>
</tr>
<tr>
<td>Author Index</td>
<td>557</td>
</tr>
<tr>
<td>Subject Index</td>
<td>563</td>
</tr>
</tbody>
</table>