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INTRODUCTION

More than 40 years ago, in front of a crowded audi-
ence of MIT undergrad students, Jerry Lettvin told the 
fictitious story of Akakhi Akakhievitch, a brilliant 
though unknown Russian neurosurgeon, who com-
pletely erased the concept of “mother” from a subject’s 
brain by ablating each and every single of the several 
thousand neurons representing it (Barlow 1994, Gross 
2002). However, after a first moment of exultation, 
Akakhievitch reasoned that the concept of “mother” 
was too subjective and prone to critics among his 
peers. He then though that grandmothers are more 
ambiguous and formless and, a patient man, he decided 
to go for grandmother cells… Hence the name that 
became popular among neuroscientists for the concep-
tion that single neurons can encode concepts like 
“grandmother”, “cat”, or “Luke Skywalker”. 

Lettvin’s story ended up triggering a hot debate in 
neuroscience, but the idea of grandmother cells goes a 
long way back to the late XIX century. In his acclaimed 
“Principles of Psychology” (James 1890), William 
James set the ground of modern psychology and with 
notable insight described some of the main principles 
that rule neuroscience nowadays. Among these vision-
ary ideas, and following the principles of “Monadology” 
by Gottfried Leibniz (according to Leibniz monads are 
entities that cannot be divided into parts), James won-

dered how units of thoughts, that are formed of parts, 
are represented in the brain (James 1890). He specu-
lated that (vol. 1, p. 179): 

“(…) among the cells there may be a central or pon-
tifical one to which our consciousness is attached. But 
the events of all the other cells physically influence 
this arch-cell; and through producing their joint effects 
on it, these other cells may be said to ‘combine’(…). 
The physical modifications of the arch-cell thus form a 
sequence of results (…) the conscious correlates to 
these physical modifications form a sequence of 
thoughts or feelings (…)”

Nowadays, the thought of a single “pontifical” neu-
ron as the locus of our consciousness is generally 
agreed to be blatantly wrong, but James should be 
given credit for conceiving the idea of a hierarchical 
representation of brain cells encoding both the whole 
and the particulars of thoughts, notably, even before 
Cajal neuron’s doctrine. Not least surprising is the fact 
that shortly after James, Sigmund Freud, most known 
for his theories that gave rise to psychoanalysis, con-
ceived the idea of “Psy” and “Phi” cells, correlating to 
perception and memory, respectively (Freud 1953). 
Cajal himself also saw pyramidal cells in neocortex as 
the substrate of high level mental functions and called 
them “psychic cells” (DeFelipe and Jones 1988). 

Departing from Cartesian dualism and the division 
of mind and body, after Cajal’s breakthroughs there is 
no dispute among scientists that behavior is the result 
of the activity of neurons; but how many are involved 
in the awareness of a certain concept? James idea of 
pontifical neurons remained unnoticed but was retak-
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en, to be demolished, in 1940 by Nobel laureate Sir 
Charles Sherrington (Sherrington 1940). Sherrington 
wondered whether the convergence of sensory inputs 
may end up in pontifical nerve-cells, but quickly dis-
missed this conception and argued instead for a mil-
lion-fold democracy, or what in our days we know as 
coarse population coding. 

KONORSKI’S VIEWS

The idea of pontifical cells, completely dismissed by 
Sherrington, was, however, taken very seriously by 
Polish neurophysiologist Jerzy Konorski in the 1960’s, 
just before the time of Lettvin’s famous parable 
(Konorski 1967). These were quite exciting days in 
neuroscience, after Hubel and Wiesel’s discovery of 
neurons in primary cortical visual cortex (V1) that fire 
to local orientations (Hubel and Wiesel 1959) – for 
example one such neuron would fire to a line at a given 
orientation in some particular location– and their pro-
posal of a hierarchical organization of visual process-
ing (Hubel and Wiesel 1962, 1965, 1968): neurons in 
the retina fire to local pixel intensity and connect 
through the lateral geniculate nucleus of the thalamus 
to neurons in V1 that fire to oriented lines and these, 
in turn, connect to neurons in higher visual areas that 
fire to conjoint features. 

Konorski reasoned that this hierarchy of visual pro-
cessing could carry on to more complex shapes in 
higher areas, culminating in cells that could represent 
unitary perceptions, what he called “gnostic neurons” 
(from the Greek gnosis, meaning knowledge) (Konorski 
1967). He argued that (p. 74):

“We perceive people, human faces, animals, small 
objects from nearby, large objects from afar (…). 
However, neither humans nor animal notice lines, 
edges, corners, “tongues”, or “rods,” which were the 
adequate stimuli for the units so far investigated.”

“Having at our disposal the recent data derived from 
Hubel and Wiesel’s experiments, we can extrapolate 
their findings and explain the origin of perceptions 
according to the same principles which were found to 
operate on the lower levels of the afferent systems. In 
other words, we can assume that perception experi-
enced in humans’ and animals’ lives, are represented 
not by the assemblies of units buy by single units in the 
highest levels of particular analyzers. We shall call 
these levels gnostic areas and the units responsible for 
particular perceptions, gnostic units.” 

Konorski’s reasoning was far from a wild guess. It 
was not only based on an extrapolation of Hubel and 
Wiesel’s hierarchical processing idea, but also on evi-
dence of specific dysfunctions generated by lesion 
studies in animals and agnosias in humans, which he 
postulated were generated by lesions or pathologies in 
the “gnostic area” – i.e. the area in which the Gnostic 
neurons corresponding to the impaired function reside. 
He even postulated the existence of neurons in high 
visual areas that could respond to faces and limbs, 
which, following his premonition, were found a few 
years later in the monkey infero-temporal cortex by 
Charles Gross and colleagues (Gross et al. 1969, Bruce 
et al. 1981, Gross 2002, 2008). 

Face cells in monkeys were indeed taken by Konorski 
as gnostic neurons (Gross 2002), or in Lettvin’s terms, 
a grandmother cell representation. Moreover, single 
neurons in the frog retina that acted as feature detec-
tors (which are used by the animal to detect bugs) were 
previously described by Horace Barlow and Lettvin 
himself in the 1950’s (Barlow 1953, Lettvin et al. 1959, 
Gross 2002). In the early 70’s, Barlow revisited 
Sherrington’s views and offered a more refined version 
of James’ pontifical cells (but far from Sherrington’s 
million-fold democracy), arguing that rather than a 
single pontifical neuron the brain may use a “college of 
cardinals” (Barlow 1972) – i.e. a few “cardinal neu-
rons”, but not just one – to code for different percepts, 
what in our days we call a sparse representation 
(Olshausen and Field 2004) (actually, though seldom 
recognized, Lettvin and Konorski’s conceptions of 
grandmother or gnostic cells were not that far from 
Barlow’s, as they also explicitly argued that there 
should be more than 1 such neuron per concept). 

Following the discovery of face cells in IT, the 
challenge was out there; now the quest was to find 
the gnostic or grandmother cells. Face cells were 
indeed a good start, but since we can distinguish 
between different faces that in fact correspond to 
different people or concepts, now the goal was to 
find neurons that fire selectively to a particular face, 
no matter how it is presented. In other words, a 
grandmother neuron should fire to grandma – seen 
in front view, in profile, wearing a red hat or weav-
ing a scarf – and not to other people or objects. This 
quest proved to be unsuccessful and it became gen-
erally accepted that face cells fire to several differ-
ent faces (Gross 1992, 2008, Rolls 1992, Young and 
Yamane 1992). Furthermore, although it remained 
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unaltered by simple image transformations (e.g. a 
change in scale or position of the image), their firing 
changed dramatically when using different views or 
3D rotations of the same face (Logothetis and 
Sheinberg 1996, Tanaka 1996). It is possible though 
to distinguish different faces from the activity of a 
population of these cells (Hung et al. 2005, Kreiman 
et al. 2006) (e.g. if cell 1 fires to face A and B but not 
C, and cell 2 fires to B and C but not A, analyzing 
the firing of both cells together can tell us which 
face it is) but each individual cell cannot tell on its 
own which face is presented. The representation is 
given by the million-fold democracy, it is a coarse 
population code. 

At about this time, very elegant distributed memo-
ry models started to emerge (the most popular being 
the Hopfield network, which, in analogy with a spin 
glass in statistical mechanics, encodes a given mem-
ory by the state of all the neurons) (Hopfield 1982), 
together with evidence for distributed representa-
tions (McClelland et al. 1986, Rumelhart et al. 1986), 
and the role of oscillations as a way of communica-
tion between areas that encode in parallel different 
aspects of percepts (Gray et al. 1989, Singer and Gray 
1995, Engel and Singer 2001). Straw man arguments, 
together with other seemingly paradoxical infer-
ences, helped to discredit the idea of gnostic or 
grandmother cells even further (Barlow 1996, Page 
2000, Bowers 2009): how can one and only one neu-
ron encode a concept and if so, how we would ever 
be able to find it? What if this neuron dies? How can 
we represent different variations of a concept? 
Moreover, we can clearly distinguish grandma from 
front view and profile, but there are not enough neu-
rons for all possible variations we can be aware of (an 
argument known as combinatorial explosion) Harris 
1980). So, in spite of descriptions of neurons with 
very specific responses in different species and areas 
(for reviews see Barlow 1972, 1994, Page 2000, 
Bowers 2009), the fate of gnostic or grandmother 
neurons seemed to be sealed. 

CONCEPT CELLS

Epileptic patients with seizures that cannot be con-
trolled with medication may be candidate to epilepsy 
surgery, a procedure aimed at removing the epileptic 
focus to cure their epilepsy. The prognosis of the surgi-
cal intervention depends on the location of the focus 

and other clinical factors, but particularly for seizures 
triggered in the hippocampus and surrounding cortex 
(what it is known as the medial temporal lobe), this 
procedure is quite successful (Wieser et al. 2001). The 
success of these surgeries clearly relies on an accurate 
delineation of the epileptic focus and in some cases, 
when the evidence about its localization is not conclu-
sive, these patients may be implanted with intracranial 
electrodes to record the brain activity during the sei-
zures and then localize the focus (Quesney and Gloor 
1985). Patients examined with intracranial recordings 
may remain in the hospital ward for about a week or 
two, until a sufficient number of seizures is recorded. 
This has provided the extraordinary opportunity to 
record directly from single neurons in the human brain 
– through electrodes developed at University of 
California Los Angeles (Fried et al. 1999, Engel et al. 
2005) – while the patients do various tasks, like watch-
ing different images in a computer screen. First studies 
showed neuronal responses to words, faces and con-
joint stimulus features, such as gender and facial 
expressions (Fried et al. 1997), and later studies 
showed responses to the category of the stimuli (ani-
mals, places, etc.) (Kreiman et al. 2000a), even when 
the subject imagined the particular stimulus that trig-
gered the cell’s responses (Kreiman et al. 2000b) (e.g. 
a single neuron fired when the subject viewed or imag-
ined the picture of a person). Several technical improve-
ments then allowed recording many more neurons 
(Quian Quiroga et al. 2005, 2007, Quian Quiroga 
2012), particularly those that are silent at baseline and 
fire very strongly when a specific stimulus is shown. 
For example, one such neuron in the hippocampus of a 
patient fired very strongly to a picture of actress 
Jennifer Aniston (Quian Quiroga et al. 2005). But was 
this neuron really firing to Jennifer Aniston or to 
something specific about the particular picture used? 
The experiment was then repeated but now using 7 
different pictures of Aniston. The result was striking: 
the neuron fired to all pictures of Jennifer Aniston and 
to none of the other 80 pictures displayed (including 
several images of other actors, celebrities, places, ani-
mals, etc.) (Quian Quiroga et al. 2005). An hippocam-
pal neuron in another patient fired to different pictures 
of actress Halle Berry and even to her name written in 
the computer screen (and did not respond to other per-
sons, objects or names); another neuron fired selec-
tively to different pictures of Oprah Winfrey and to her 
name written in the screen and also pronounced by a 
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computer synthetized voice; and yet another one fired 
to pictures of Luke Skywalker (the character of the 
movie “Star Wars”) and to his written and spoken 
name (see Fig. 1), and so on (Quian Quiroga et al. 
2009, Quian Quiroga 2012).

GNOSTIC CELLS REVISITED

The finding of “Jennifer Aniston” neurons in the 
human hippocampus brought back to light the issue of 
gnostic cells. Were these the long awaited gnostic (or 
grandmother) cells, that means, single neurons firing 
to individual concepts? To address this question we 
should first consider possible definitions of what these 
cells are (Quian Quiroga and Kreiman 2010a,b). The 
first, extreme version of grandmother cell coding is 
that one and only one neuron encodes one and only one 
concept. But neither Konorski, Lettvin or Barlow ever 
say that it was only one neuron per concept. On the 
contrary, they explicitly said that there should be many. 
Indeed, just a bit of redundancy avoids critics as: what 
would happen if this neuron dies? (Nothing, because 
they are other neurons encoding the same concept.) In 
the case described above, if a neuron firing to Jennifer 
Aniston was found, then there had to be more because 
the chance of finding the one and only among billions 
is neglectable (Waydo et al. 2006, Quian Quiroga et al. 
2008). Discarded this extreme version, we can con-

sider a second definition, namely, that many neurons 
fire to one and only one concept. This is in principle 
possible, but very difficult (if not impossible) to prove. 
The problem is that if a neuron fires only to Jennifer 
Aniston during an experiment, we cannot rule out that 
it could have also fired to some other thing that was 
not shown in the experiment. In other words, it is not 
possible to try every possible concept to prove that the 
neuron fires to Jennifer Aniston and nothing else. In 
fact, the opposite is often the case, as some of these 
neurons tend to fire to more than one concept (Quian 
Quiroga et al. 2009, Quian Quiroga and Kreiman 
2010a, Quian Quiroga 2012). For example, in an exper-
iment performed the next day, the neuron that fired to 
Jennifer Aniston also responded to Lisa Kudrow 
(Quian Quiroga et al. 2005), a costar in the TV series 
“Friends” (that catapulted both to fame). The neuron 
that responded to Luke Skywalker also fired to Yoda, 
another Jedi from “Star Wars” (see Fig. 1); another 
neuron fired to two basketball players; another one to 
the author of this article and three other colleagues that 
interacted with the patient at UCLA, and so on (Quian 
Quiroga et al. 2009, Quian Quiroga and Kreiman 
2010a, Quian Quiroga 2012). But even then, one can 
still argue that these neurons could be taken as gnostic 
or grandmother cells. It is just that they respond to 
broader concepts, namely, the two blond girls from 
“Friends”, the Jedis from “Star Wars”, the basketball 

Fig. 1. A neuron in the entorhinal cortex of a patient that responded to different pictures of “Star Wars” character “Luke 
Skywalker” and even to his name written in a computer screen (stimulus 58) and pronounced by a male and female synthe-
tized voice (stimuli 71 and 72, respectively). Note that the neuron also responded to a picture of Yoda (stimulus 63) – the 
only picture of Yoda presented in this experiment – another character of “Star Wars”. For space reasons the largest 20 (out 
of 76) responses are shown. Vertical dotted lines mark stimulus onset and offset, 1 s apart.
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players, or the scientists doing experiments with the 
patient. However, the discussion of whether these neu-
rons should be taken as gnostic cells or not then turns 
into a semantic issue. 

So, let’s then leave aside for now Akakhievitch’s 
lore and James notion of pontifical cells, and highlight 
a few aspects of these “Jennifer Aniston neurons” or 
“concept cells”, which are key to understand their 
function. First, their responses are very selective, or in 
other words, these neurons fire to a very small propor-
tion of the presented stimuli (Quian Quiroga et al. 
2007). Second, they show invariance, in the sense that 
the neuron firing to a person or object does not fire to 
visual features of a particular picture, but to different 
pictures of the same person or object and even to its 
written or spoken name. Third, these neurons can fire 
to more than one thing, but if this is the case, these 
things are closely related (the two Jedis, the experi-
menters, etc.) (Quian Quiroga and Kreiman 2010a, 
Quian Quiroga 2012). 

FROM DISTRIBUTED TO SPARSE CODING

As we move along the pathway of brain areas that 
lead to the recognition of what is in front of us, neu-
rons tend to fire selectively to more complex features 
(Barlow 1972, Logothetis and Sheinberg 1996, Tanaka 
1996). A neuron in early visual areas fires to the local-
ized details that compose the image. This neuron does 
not know if this detail is part of a face, a cat or the 
Tower of Pisa. For this, we need to consider the activ-
ity of many of these neurons and put together the infor-
mation of many details. The information in each neu-
ron is implicit. Moreover, if we slightly change the 
picture, the local features, and therefore the firing of 
these neurons, will change. A neuron in higher visual 
areas, in turn, may fire to faces and not to local details 
(Logothetis and Sheinberg 1996, Tanaka 1996, Gross 
2008). So, this neuron will indeed tell us that we are 
seeing a face and not the Tower of Pisa. Now the infor-
mation is explicit. Moreover, if we slightly change the 
picture, we will change some local features, but these 
neurons don’t care about this and, within some limits, 
their firing will remain more or less the same 
(Logothetis and Sheinberg 1996, Tanaka 1996, Gross 
2008). Neurons in high-level visual areas send their 
information to the medial temporal lobe (the hip-
pocampus, amygdala, and the entorhinal, perirhinal 
and parahippocampal cortices) (Saleem and Tanaka 

1996, Suzuki 1996, Lavenex and Amaral 2000), which 
develop this process even further. A neuron in the hip-
pocampus does not fire to any face, but to a particular 
person, irrespective of visual details and even to the 
person’s name (Quian Quiroga et al. 2005, 2009, Quian 
Quiroga 2012). 

As we argued above, we cannot assert that one-and-
only-one neuron fires to a particular concept. Granted, 
it is not one, but will they be dozens, thousands or 
perhaps millions? In other words, how sparse is the 
representation in the medial temporal lobe? Clearly we 
cannot measure this directly, as we don’t record from 
all neurons in this area, but using some statistical argu-
ments we can provide a good estimation (Waydo et al. 
2006). Considering that there are approximately a bil-
lion neurons in the medial temporal lobe and that in a 
given experiment we record from up to hundred, of 
which about 15 will respond to at least one of the 
approximately hundred pictures presented, it can be 
estimated that a given concept is represented by about 
a million neurons or less, maybe much less… This 
number should indeed be taken as an upper estimation 
because typically pictures of things that are very 
familiar to the patients are used, for whom there is a 
higher probability of finding responses (Viskontas et 
al. 2009) – i.e. they are represented by more neurons 
compared to non-familiar things. Moreover, the neu-
rons with the highest degree of sparseness are less 
likely to be detected (unless we happen to show the 
right stimulus). 

Let’s now get back to the problem of combinato-
rial explosion. Given the specificity of the responses 
in the medial temporal lobe, do we have enough 
neurons to represent all possible concepts and their 
variations? The key aspect here is that along the 
pathway processing visual information there is not 
only an increase of selectivity but also of invariance 
(Ison and Quian Quiroga 2008, Quian Quiroga 
2012). Neurons in the medial temporal lobe just 
don’t care about different instances of the same con-
cept, they fire to the concept no matter how it’s 
presented, being a particular picture or its name 
(Quian Quiroga et al. 2009).

Intelligence is expensive. Our brains hardly weights 
2–3% or our total body mass but use 20% of the total 
oxygen consumption and hence of body energy (Raichle 
and Gusnard 2002). It was estimated that due to these 
metabolic constrains, only less than 1% of our brain 
can be active at a given time (Lennie 2003). So, the 
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best the brain can do is to represent each concept with 
a relatively low number of neurons (Levy and Baxter 
1996, Attwell and Laughlin 2001, Olshausen and Field 
2004). However, the information about complex sen-
sory stimuli, like a face, has to be encoded in a distrib-
uted manner in early sensory areas, given the way that 
external physical stimuli impinge on sensory receptors 
(Barlow 1972, Barlow et al. 2009): the sight of the face 
triggers the firing of relatively large number of neu-
rons in the retina and early visual areas, encoding local 
details of the received information. So, the nature of 
sensory stimuli imposes a more distributed representa-
tion in early sensory areas and metabolic constrains 
push towards a sparser representation in higher areas, 
which indeed has several advantages, as we will see 
below. 

WHY DO WE HAVE CONCEPT CELLS?

We now focus on the function of concept cells and 
why they fire in such a remarkable way. Are they 
involved in visual perception; are they instead storing 
memories? Evidence from patient H.M. (Scoville and 
Milner 1957, Milner et al. 1968, Squire 2009) and lesion 
studies in animals (Squire and Zola-Morgan 1991, 
Squire et al. 2004) have clearly show that the medial 
temporal lobe is not necessary for these two functions, 
but it is rather critical for transferring short-term memo-
ries (things we remember for a few minutes) into long 
term memories (things we remember for hours, days or 
years). Therefore, concept cells give an explicit repre-
sentation of what is in our awareness –the flow of the 
present, whatever is triggered by visual perception or 
internal recall processes – to create long-term memories 
that will later consolidate into cortical areas. In particu-
lar, the Jennifer Aniston neuron found in one patient 
was not necessary to recognize her or to remember who 
she is, but it is critical to bring Jennifer Aniston into 
awareness for creating new links and memories, such as 
remembering seeing her picture in the hospital ward. 

Why then such a sparse and invariant representa-
tion? We tend to abstract concepts and forget 
details. We don’t need or want to remember every 
detail of whatever happens to us. If we fortuitously 
meet somebody we know in a café, weeks later we 
will likely remember this encounter but not exactly 
how this person looked like that day or what he was 
wearing. The level of abstraction is subjective and 
it depends on the relevance that the concept has and 

how we would like to store it in memory: our dog 
may be just another dog for somebody else but it is 
a specific individual for us. Not surprisingly, con-
cept cells tend to fire to familiar things (Viskontas 
et al. 2009), those that the subjects mind to store in 
memory. Surely, when we met the person we knew 
in the café we would have seen many other people, 
but we won’t remember any of them because they 
were not relevant; we didn’t have concept cells fir-
ing to them. Memories are based on creating this 
type of abstractions and links between different 
concepts. Weeks after the encounter, we will 
remember the person we met, the café, perhaps the 
topic of some conversation and few other things; a 
handful of concepts that we will link together for 
later remembering the salient facts of this encoun-
ter (Quian Quiroga 2012). 

More than a century ago, James noticed that 
memories are based on associations, links between 
concepts (James 1890). Therefore, it makes perfect 
sense that concept cells sometimes fire to associat-
ed concepts (see example in Fig. 1). These are rep-
resented by different cell assemblies, and if some 
are related, part of the neurons encoding one con-
cept may also fire to the other one, thus giving a 
neural substrate for how things can be associated 
and how we can go for one concept to the other 
(Quian Quiroga 2012). This simple mechanism 
could be the neural substrate for the creation of 
episodic memories (memories of events) or the flow 
of consciousness, going spontaneously from one 
concept to the other. A similar process may also 
create the link between aspects of the same concept 
stored in different cortical areas, bringing together 
the qualia, like the smell, shape, color and texture 
of a rose.

It is then clear the advantages of a conceptual repre-
sentation for memory functions, but why does it have 
to be sparse and explicit, so close to a grandmother cell 
coding? Modeling studies give a compelling answer. 
The general idea is quite simple. Imagine a distributed 
representation for the person we met in the café with 
neurons coding for different minute features, and 
another distributed representation for the café itself. 
Making a link between these two concepts would 
require making links between the different details rep-
resenting each concept, but without mixing them up 
with others. Creating such links with distributed repre-
sentations is very slow (it requires several presenta-
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tions of the stimuli) and leads to interference (mixing 
up memories) (Willshaw et al. 1969, Rolls and Treves 
1990, McClelland et al. 1995, McClelland 1996, 
O’Reilly and Norman 2002). Establishing such links 
with sparse networks is, on the contrary, very fast and 
easy to implement (Marr 1971, McClelland et al. 1995, 
1996, O’Reilly and Norman 2002) – as it is in real life 
– and it just requires creating a few links between the 
assemblies representing each concept, through synap-
tic plasticity (Hebb 1949).

Distributed representations are very good for fea-
ture extraction and generalization, which are key 
ingredients for visual perception. So, this may explain 
why the brain uses a distributed coding for visual per-
ception and a sparse one for memory functions 
(McClelland et al. 1995, O’Reilly and Norman 2002).

CONCLUSION

Concept cells are the link between perception and 
memory; they give an abstract and sparse representa-
tion of semantic knowledge that constitutes the build-
ing blocks for declarative memory functions (Quian 
Quiroga et al. 2008, 2013, Quian Quiroga 2012). So, 
concept cells may then be the neural base for our 
thoughts, for leaving aside countless details and 
extracting meaning, for creating new associations and 
memories. They encode what is critical to retain from 
our experiences. As Jorge Luis Borges, the acclaimed 
Argentinean writer, once said: “to think is to forget 
differences, to generalize, to abstract (…)”. (Borges 
1944). Concept cells are not quite like the gnostic cells 
that Konorski once envisioned but they may be a key 
neural substrate for the power of human reasoning.
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