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Abstract. A .simple multi-affine model for the velocity distribution in fully developed 
turbulent flows is introduced to capture the essential features of the underlying geometry 
of the velocity field. We showthat in this model the various relevant quantities characterizing 
different aspects of turbulence can be readily calculated. A simultaneous good agreement 
is found with the available experimental data for the velocity structure functions, the 0, 
spectra obtained from studies of the velocity derivatives, and the exponent describing the 
scaling of the spectrum of the kinetic energy fluctuations. Our results are obtained analyti- 
cally assuming a single free parameter. The fractal dimension of the region where the 
dominating contribution to dissipation comes from is estimated to be D=2.88. 

Recent studies of the highly complex nature of fully developed turbulence have revealed 
that the scaling properties of fluid flows at large Reynolds numbers can successfully 
be described in terms of fractal geometry and multifractal distributions [l-121. The 
multifractal description of the singular behaviour of the velocity structure functions 
and the dissipation field represents the most general approach to turbulence and the 
existing models can be looked at as various realizations of the associated formalism. 
In this picture, places with a given singularity are distributed on fractal subsets of 
dimension depending on the strength of the singularity. In this respect the K41 theory 
[13] leading to the E ( k )  - k?” law for the wavenumber power spectrum of the kinetic 
energy corresponds to a homogeneously (non-fractally) distributed dissipation field, 
while in the more recent theories the intermittent nature of turbulence is taken into 
account through fractal geometry. 

Since the direct solution of the Navier-Stokes equations is not feasible for the full 
velocity field, a traditional and useful way of gaining insight into the geometry of 
turbulent flows has been the construction of models making analytic treatment possible. 
In the so-called f3 model [ 5 ]  (stimulated partly by the ideas of Mandelbrot on the 
fractal aspects of turbulence [3]) the kinetic energy is transferred only to a fraction of 
the smaller eddies in a fractally homogeneous manner, and the dissipation is entirely 
confined to a fractal support with a dimension D less than 3. However, the experimental 
results are much more consistent with the recent multifractal models: the random /3 
model [ 11 is in good agreement with the measurements of higher-order velocity structure 
functions, while the multifractal spectra derived from the p model [2] are in accord 
with the experimental results for the generalized dimensions [6] determined from 
measurements of the dissipation field [23. In addition, very recent results for the power 
spectrum of the temperature fluctuations have also indicated that the experimental 
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data could be better fitted using a multifractal analysis [ll]. In the random fi  model 
the fractal dimension of the set of points in which the velocity has a given type of 
singularity is considered, while the p model describes the cascade of kinetic energy in 
the inertial range down to the dissipation level. The central quantities on which the 
formalism is based in these approaches are nowhere continuous fractal measures related 
to the velocity distribution or to the concentration of passive scalars. On the other 
hand, these latter, directly observable physical quantities are much better behaving 
continuous functions. 

Here we propose a simple approach in which the full velocity distribution is directly 
modelled by a continuous multi-affine function and, in this way, a complete picture 
capturing the essential features of the geometry underlying turbulent flows is provided. 
It will be shown that in this approach the relevant quantities can be readily calculated 
and comparisons can be made with the available experimental data on fully developed 
turbulence. In particular, we find good agreement with the measured velocity structure 
functions, the D(q)  spectra obtained from studies of the velocity derivatives, and the 
exponent describing the scaling of the spectrum of the kinetic energy fluctuations. 
From the fit to the experimental data we obtain an estimate D -2.88 for the fractal 
dimension of the region where the dominating contribution to dissipation comes from. 

As the Navier-Stokes equations in the small viscosity limit ( v + O )  are invariant 
under the scaling transformations r+ Ar, U + AHv( f -f A'-Ht,  A > 0 )  we are led to assume 
that the velocity distribution satisfies the usual criterion of self-affinity [4] u ( x ) -  
K H u ( A x ) ,  where in the last expression we only considered the behaviour of the x 
component of the velocity vector. This expression is equivalent to the scaling of the 
velocitydifferences ofthe form ( l u ( x + A x )  - u(x) l ) -AxH.  According to themultifractal 
picture of turbulent flows the scaling exponent H depends continuously on the position 
in space [ 11. This is the property which we call multi-affinity, since it corresponds to 
an invariance under affine transformations with an infinite hierarchy of rescaling factors 
depending on the local value of H. 

Let us consider the iterative process shown in figure 1 which is perhaps the simplest 
realization of a self-affine function satisfying the above outlined criteria. This procedure 
represents a generalization of the construction proposed by Mandelbrot [14] and 
recently developed further by us [15, 161 to incorporate multiscaling. In each step of 
the recursion the intervals obtained in the previous step are replaced with the properly 
rescaled version of the generator which has the form of an asymmetrical z made of 
three intervals (figure l(a)). During the procedure every interval which is to be replaced 
is regarded as a diagonal of a rectangle becoming more and more elongated as the 
number of iterations k increases. 

When going to the next level, one can rescale either (a )  the generator shown in 
figure 1 or ( b )  its image inverted around the centre of the rectangle. Then the stochastic 
nature of the turbulent signals can be taken into account by randomly choosing between 
the possibilities ( a )  and ( b ) .  The function u ( x )  generated in this way becomes multi- 
affine in the k + m  limit. Our main statement is that the behaviour (geometry) of the 
one-dimensional projection of the velocity field in the inertial range can be well 
described by such a multi-affine function. The visual appearance of our model after 
k = 5 iterations is compared in figure 2 with a measured time series of the velocity in 
a turbulent pipe flow behind a grid. 

Using the above described velocity distribution we can explicitly calculate for our 
model the standard quantities used to characterize fully developed turbulent flows. In 
such flows the qth-order longitudinal velocity structure function C,(x) is expected to 
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Figore 1. The generators of the multi-affine model 
shown in figure 2. In each step of the recursion one 
of the asymmetrical z shaped generaton made of 

domly and used to  replace the single intervals 
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Flgure 2. The geometry ofthe multi-affine model ( k  = 5 )  forthe one.dimcnsional projection 
of the velocity field. This figure is for the case a =0.67. The inset shows a typical velocity 
signal observed in a turbulent pipe Row behind a grid (courtesy of W Goldburg). The 
equivalence of the spatial and temporal dependences is assumed in accord with the Taylor 
hypothesis (see e.g. [ Z O ] ) .  
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scale as 

C,(X) =(lu(x'+x)-u(x')I~)-x"~ (1) 
where the exponent qH, = 5, is one of the major quantities studied in the theory of 
turbulence. There is a firm theoretical result [17] C3(r ) -  r from which H3 = f  follows. 
We calculate C,(x) for our model assuming that the scaling properties are entirely 
determined by the jumps Au of the function over intervals of length Ax, = 3-*. Thus, 

Since (2) can be writtenas C , ( x k ) = [ a 9 + ( a - b ) 9 + ( l - b ) q ] k / 3 k  we have 

ln[(a9 + [ a  - b(a)I9 +[l- b(a)I9)/3] 
Inf 5, = qH, = (3) 

In (3) we used b ( a )  to express the fact that the condition H,=f has to he satisfied 
and this, through the corresponding equality a3+[a-b(a)13+[l- b(n)13=1, reduces 
the number of independent parameters to one. 

The experimental values of Anselmet er al [18] for 5, can be used to find the best 
value for the parameter a. Figure 3 demonstrates that the prediction of (3) for a =0.67 
provides a good fit to the experimental results. At this point our multi-affine model 
has become completely determined and the next important step is to check whether 
the model provides such a good agreement when other quantities determined in 
independent experiments are considered. 

Thus, we turn to calculating the generalized dimensions D, associated with the qth 
moment of the normalized distribution of various quantities related to the nth power 
of the velocity differences between close points. The motivation for this is that, for 
example, the energy transfer or dissipation rate on scale I is widely accepted to he 
proportional to ( A u ) ~ / ~ ,  while the local viscous dissipation rate can be shown to be 
proportional to (JU/JX)'= (Au)~/(Ax)' .  The fractal measure is constructed for our 

Figure 3. Campan,on of the exprnmcntally dctcrmmcd values of the cxponcnl 6- = q H ,  
uxh the predmon of our modcl for o = 0 61 (conunuour h e )  The expenmental data are 
from [ 111 
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model by defining the normalized distribution pi=(Aui)"/Z (Aui)", where pi is the 
'probability' or weight associated with the ith interval of length Ax. Then the qth 
moment of the measure is expected to scale as [6] 

~ ~ ( h x ) = ~ p ~ - A x ' ~ - ' ' ~ ~  (4) 
N 

where the summation is taken over N = l/Ax intervals of length Ax. Equation (4) can 
be evaluated by noting that the sums of the form 1/N X N  ( A U ; ) " ~  behave as the 
nqth-order structure functions. Thus, 
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The special case of this expression for n = 3 was obtained in [19] using different 
arguments. Here we followed the technique developed in 1161. The predictions of 
expression (6) can be compared with the experimental results of Meneveau and 
Sreenivasan [2] for the energy dissipation rate. Assuming that (Au)'//l describes the 
dissipation rate down to the level dominated by the viscous forces [5], we obtain the 
Dq spectrum of the dissipation rate from (6). Inserting n = 3  and the corresponding 
H,9 and H, values calculated for a =0.67 giving the best fit to the structure function 
data we find excellent agreement for q > -2 (deviations no more than a few per cent). 
The difference is ahout 4-6% in the region where the experimental uncertainties are 
larger so that our results are within the error bars. If we use the square of the first 
derivative in the expression for the dissipation rate, a very good agreement is found 
as well (figure 4) for Hzq and H2 values corresponding to a = 0.6. This value is somewhat 
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smaller than the one which was used to find the best fit to the other experiment. On 
the other hand, the agreement is still good, but less pronounced (deviations are on 
the order of 10-20%) when U =0.67, is used (the same as for figure 3). 

From the Dq spectrum we can obtain an estimate for the fractal dimension D of 
the set of points at which the essential part of the dissipation takes place in a 
three-dimensional turbulent flow. According to the standard formalism of multifractals 
[7-91 we assume that the dominant contribution to the total dissipation ,y,(x) comes 
from a fractal subset of dimension f, of regions of size Sx in which the dissipation is 
proportional to (Sx)".. Then from the well known relation ( q  - l)Dq = qn, -f, it follows 
that f, = D,, and using (3) and (6) we obtain the estimate 

D = 2+ D, = 2.88 (7) 
where we have taken into account that the fractal dimension of a one-dimensional cut 
of a D-dimensional object embedded into three dimensions is equal to D -2. This is 
consistent with the related earlier theoretical considerations [l]  and the experimental 
results of [ 101 which gave estimates close to D = 2.9. 

The spectrum of the energy fluctuations can readily be obtained in our model as 
well, assuming that the kinetic energy of an eddy of radius x is proportional to [Au(x)]'. 
Then the average energy of eddies of size x can be expressed as 

After Fourier transformation we get 

E ( k )  = xZHz eik dx  = constant x k-('i2Hl) (9) J 
where the constant is a k-independent integral remaining after the change of variables 
kx = z. Since for a = 0.67, H2 = 0.35 our estimate for the exponent is -1.7 which should 
be compared with the K41 value -f. The difference S -0.033 is consistent with several 
model dependent predictions [ZO] which relate this quantity to the experimentally 
determined exponent p describing the correlations of the energy dissipation or to the 
information dimension D, of the dissipation field [5]. 

Finally, we would like to draw attention to the behaviour of the U,, spectrum close 
to the region q =O. It is easy to show that in our approach (and in models where the 
turbulent activity is space filling) U,,,, = constant, while in models with a fractal support 
(such as the p and the random p models) H,,,+,+m. This observation may provide 
a basis for the investigations aimed at clarifying which is the more appropriate way 
of taking into account the intermittent nature of turbulence. 

In spirit, our approach can be considered as a combination of the random p and 
the p models, since our assumptions are for the velocity field ( p ) ,  but the proposed 
structure fills the space (p). We have used the simplest multi-affine function to simulate 
the space (or time) dependence of the velocity and found good agreement with the 
experimental results concerning various aspects of fully developed turbulent flows. 
This analytically treatable model allows the calculation of many more quantities, 
including the scaling functions entering the spectra of such quantities as the energy, 
the thermal or the velocity fluctuations. Through this, together with the previous and 
very recently proposed [21, 221 models it may provide further insight into the mechan- 
isms indicating multifractal behaviour in recent experiments [ll,  121. 
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