Learning Regular Sets from Queries and Counterexamples

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

IISC, 28 October 2015.

Outline

- **1** Angluin's *L*^{*} algorithm
- **2** How it works?
- **3** Flow Chart
- Constructing DFA from Observation Table: M(S,E,T)
- **5** Consistency and Closure

6 Example

Dana Angluin

Learning Regular Sets from Queries and Counterexamples, in *Information* & *Computation*, 1987.

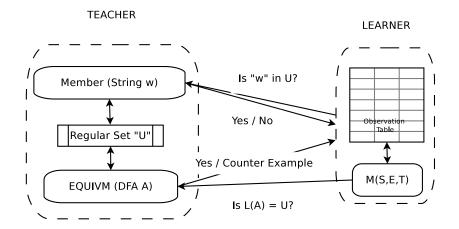
Angluin's L* algorithm

Teacher has a regular language *U* in mind. The Learner can ask two types of queries:

- Is a given string w in U? Teacher answers "Yes" or "No".
- Does a given DFA A accept the language U? Teacher answers "Yes" or gives a counterexample x.

Angluin's algorithm for the Learner finds the canonical DFA for U, in a number of steps polynomial in the number of states of the canonical DFA for U and the length of the longest counterexample returned by the teacher.

Working of L* Algorithm



Suppose the Teacher has in mind the language

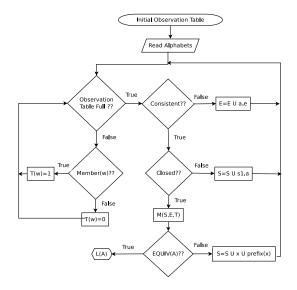
 $U = \{w \in \{a, b\}^* \mid \text{ number of } a$'s is even and number of b's is even}

The Learner asks the Teacher if ϵ , a, and b belong to U, and obtains the following Observation Table:

The set of strings S represents the states of the automaton constructed by the Learner.

Entry (s, e) of the table represents the fact that from state s the automaton accepts/rejects the string $s \cdot e$.

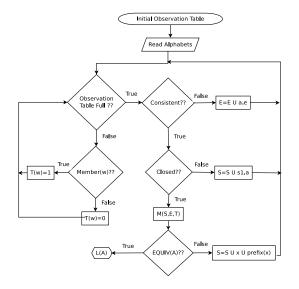
Flow Chart of L* Algorithm - 0



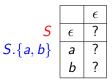
Initial OT

		ϵ
S	ϵ	?

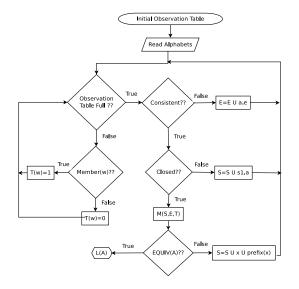
Flow Chart of L* Algorithm - 1



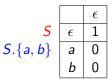
Observation Table



Flow Chart of L* Algorithm - 2



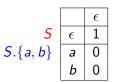
Observation Table



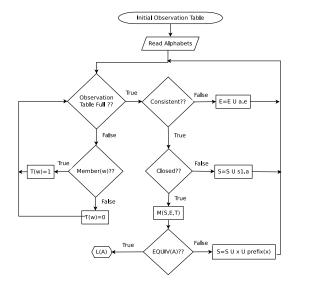
Closure

```
Closure of Observation Table:- An
observation table is called closed
provided that for each t in S.A there
exist an s in S such that row(t) =
row(s)
Not Closed means:-
There is a row(s_1 \cdot a) in S.A is
different from all s in S
To resolve this add s_1 \cdot a to S
```

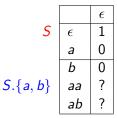
Observation Table:



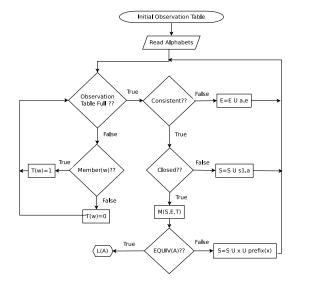
Flow Chart of L* Algorithm - 3



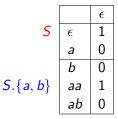
Observation Table



Flow Chart of L* Algorithm - 4



Observation Table

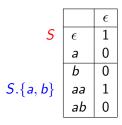


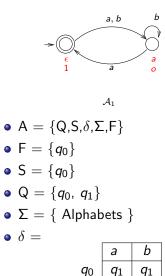
Constructing DFA from Observation Table: M(S,E,T)

Rules to construct Automata:

- $Q = \{row(s): s \in S\}$
- $q_0 = \operatorname{row}(\epsilon)$
- F = {row(s): s \in S and T(s)=1}
- $\delta(row(s), a) = row(s \cdot a)$

Observation Table:



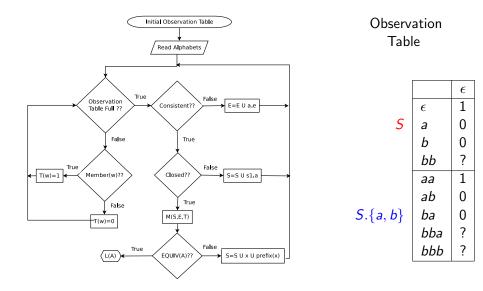


 q_1

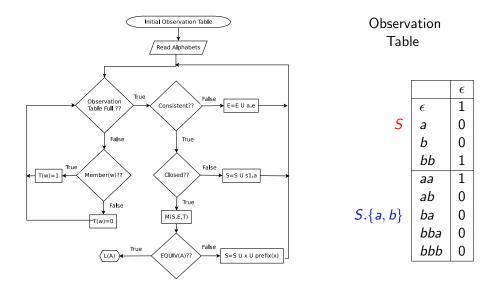
 q_0

 q_1

Flow Chart of L* Algorithm - 5



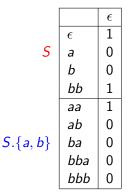
Flow Chart of L* Algorithm - 6



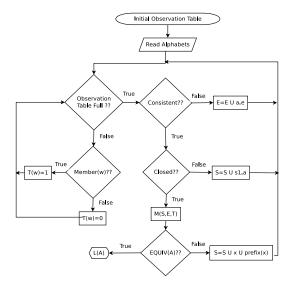
Consistency

Consistency of Observation Table:-An observation table is called consistent provided that whenever s_1 and s_2 are elements of S such that $row(s_1) = row(s_2)$ for all a in A, $row(s_1 \cdot a) = row(s_2 \cdot a)$ Not Consistent means:-There exist a certain combination of s_1 and s_2 in S, e in E, and a in A such that $row(s_1) = row(s_2)$ but $T(s_1 \cdot a \cdot e) \neq T(s_2 \cdot a \cdot e)$ To resolve this add a e to E

Observation Table:



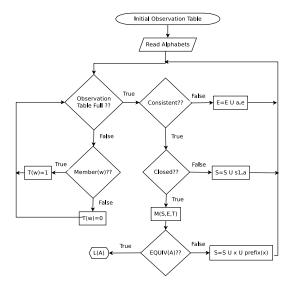
Flow Chart of L* Algorithm - 7



Observation Table

	ϵ	а
ϵ	1	?
а	0	?
b	0	?
bb	1	?
аа	1	?
ab	0	?
ba	0	?
bba	0	?
bbb	0	?
	a b bb aa ab ba bba	ϵ 1 a 0 b 0 bb 1 aa 1 ab 0 ba 0 bba 0

Flow Chart of L* Algorithm - 8



Observation Table

		ϵ	а
	ϵ	1	0
S	а	0	1
	a b	0	0
	bb	1	0
	аа	1	0
	ab	0	0
<i>S</i> .{ <i>a</i> , <i>b</i> }	ba	0	0
	bba	0	1
	bbb	0	0

Suppose the Teacher has in mind the language

 $U = \{w \in \{a, b\}^* \mid \text{ number of } a$'s is even and number of b's is even}

The Learner asks the Teacher if ϵ , a, and b belong to U, and obtains the following Observation Table:

$$\begin{array}{c|c}
S \\
\hline \epsilon \\
S.\{a,b\} \\
\hline a \\
b \\
\hline 0
\end{array}$$

The set of strings S represents the states of the automaton constructed by the Learner.

Entry (s, e) of the table represents the fact that from state s the automaton accepts/rejects the string $s \cdot e$.

Suppose the Teacher has in mind the language

 $U = \{w \in \{a, b\}^* \mid \text{ number of } a$'s is even and number of b's is even}

The Learner asks the Teacher if ϵ , a, and b belong to U, and obtains the following Observation Table:

$$\begin{array}{c|c}
S \\
\hline \epsilon \\
S.\{a,b\} \\
\hline a \\
b \\
\hline 0
\end{array}$$

The set of strings S represents the states of the automaton constructed by the Learner.

Entry (s, e) of the table represents the fact that from state s the automaton accepts/rejects the string $s \cdot e$.

This table is not "closed" as there are no states (or "rows") corresponding to $\epsilon \cdot a$ and $\epsilon \cdot b$.

Learner closes table by adding string a to S, and asking membership queries for aa and ab. He now gets the observation table:

This table is closed and consistent, and represents the DFA A_1 .

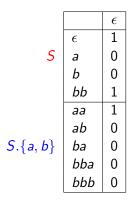
Learner closes table by adding string a to S, and asking membership queries for aa and ab. He now gets the observation table:

This table is closed and consistent, and represents the DFA A_1 . Learner now asks the Teacher if A_1 represents the language she has in mind.

Learner closes table by adding string a to S, and asking membership queries for aa and ab. He now gets the observation table:

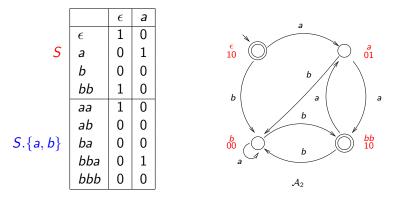
This table is closed and consistent, and represents the DFA A_1 . Learner now asks the Teacher if A_1 represents the language she has in mind. Teacher replies with counterexample *bb* which is in *U* but is not accepted by A_1 .

Learner adds bb and its prefixes to his set S, makes membership queries for ba, bba, and bbb to obtain the observation table:



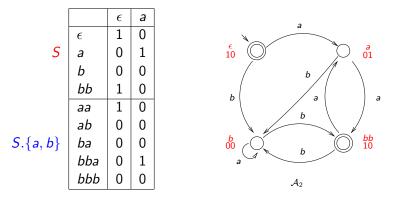
This table is closed but not consistent. The rows for *a* and *b* are identical, but *aa* and *ba* have different rows.

Learner adds $\epsilon \cdot a$ (that is, a) and its suffixes to the set E, and makes membership queries to obtain the observation table:



This table is closed and consistent. So Learner conjectures the automaton \mathcal{A}_2 .

Learner adds $\epsilon \cdot a$ (that is, a) and its suffixes to the set E, and makes membership queries to obtain the observation table:



This table is closed and consistent. So Learner conjectures the automaton A_2 . Teacher responds with counterexample *abb*.

Learner adds abb and its prefixes to S, makes membership queries to obtain the observation table:

		ϵ	а	
	ϵ	1	0	
S	а	0	1	
	Ь	0	0	
	ab	0	0	
	bb	1	0	
	abb	0	1	Ь
	аа	1	0	
<i>S</i> .{ <i>a</i> , <i>b</i> }	ba	0	0	
	aba	0	0	
	bba	0	1	a
	bbb	0	0	Д
	abba	1	0	
	abbb	0	0	

а 01

bb 10

а

а

Learner adds b and its suffixes to E, and makes membership queries to obtain the observation table:

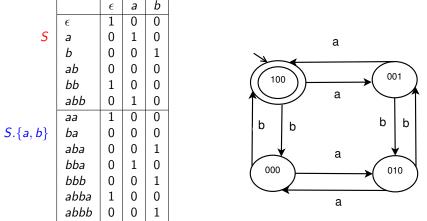


Table is closed and consistent, so Learner conjectures DFA A_3 .

Learner adds b and its suffixes to E, and makes membership queries to obtain the observation table:

		ϵ	а	b	
	ϵ	1	0	0	
S	а	0	1	0	
	b	0	0	1	
	ab	0	0	0	
	bb	1	0	0	
	abb	0	1	0	
	аа	1	0	0	
<i>S</i> .{ <i>a</i> , <i>b</i> }	ba	0	0	0	
	aba	0	0	1	
	bba	0	1	0	
	bbb	0	0	1	
	abba	1	0	0	
	abbb	0	0	1	

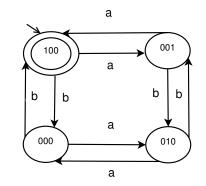


Table is closed and consistent, so Learner conjectures DFA \mathcal{A}_3 . Teacher responds with "Yes!".

Conclusion

- Angluin's automata learning framework
- Learns the smallest automaton that satisfies given constraints.
- Does it efficiently in polynomial time in smallest automaton that satisfies the given constraints.