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Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade
is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the
monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize
lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new
information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked
eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective
tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the
spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature
transformations were performed, texture features and vegetation indices were combined, and various feature images were
classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated
using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade
were screened. The results showed that compared with a multispectral image, the principal components, texture features, and
combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the
combination of texture features and vegetation indices is 86.61%, and the Kappa coeflicient is 0.8327, which is higher than that
of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful

for monitoring of maize lodging grades.

1. Introduction

Maize (Zea mays L.) is an important food and feed crop,
which is mainly distributed at latitudes 30°-50°, and is also
the highest yielding crop in the world. The north, northeast,
and southwest mountain areas of China are the main maize-
producing regions. Maize is a thermophilic crop, which
requires high temperature during the whole growth period.
During the late growth stage of maize, strong winds and
heavy rainfall, as well as the structural characteristics of
maize plants such as tall and weaker stems, increase the like-
lihood of large-scale lodging [1-4]. Lodging hinders maize
growth, leading to a decrease in yield and a reduction in grain
quality [4, 5]. Timely and accurate acquisition of information
with different lodging grades of maize will help agricultural
management departments and insurance companies to cal-

culate area and yield losses, to perform postdisaster produc-
tion management and relief work.

Accurate acquisition of information on maize lodging
relies on conventional means, such as artificial field investiga-
tions and sample measurements, which are time-consuming,
labor-intensive, and inefficient. The rapid development of
remote sensing technology provides new methods for obtain-
ing information on crop lodging. A method based on remote
sensing has advantages of low cost and high convenience and
is widely used to extract phenotypic information about crops
[6, 7]. A maize lodging model based on the difference of the
ratio vegetation index (RVI) before and after lodging can be
constructed using HJ-1B CCD multispectral images [8].
Hyperspectral remote sensing with principal component
analysis (PCA) and artificial neural networks may be applied
to discriminate lodged from normal crops on regional and
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large scales [9]. With improved remote sensing monitoring
capability, the ultralow altitude UAV system has become a
focus for crop lodging investigation because of advantages
such as its low cost, high resolution, and ability to acquire
images under clouds. Red-green-blue (RGB) images were
acquired by a small UAV equipped with a digital camera to
analyze the image features of nonlodging and lodging maize,
and a method for extracting the maize lodging area based on
color and texture features was established [10]. Liu et al. [11]
analyzed the spectral characteristics and texture features of
wheat lodging based on UAV data and adopted an object-
oriented method to extract the lodging area of wheat. Based
on the digital surface model (DSM) and texture information
obtained from the UAV image, Yang et al. [12] reported
that the optimal model was a decision tree classification
combined with the single feature probability (SFP) value.
A method was proposed by Chu et al. [13] to evaluate
the lodging severity of maize fields using UAV digital
cameras and information on plant height. The genetic factors
affecting maize lodging and predicting the lodging rate were
quantitatively identified based on UAV digital and multi-
spectral images by analyzing the nomograms [14]. Wilke
et al. [15] quantified the lodging rate and severity based on
the UAV canopy height model combined with the target
threshold method and evaluated the potential application of
UAV images in quantitative research on the lodging rate
and severity using structure from motion (SfM). The differ-
ential digital elevation model of unmanned aerial systems
(UAS) was used for the quantitative evaluation and verifi-
cation of wheat lodging. Alternative visual evaluation of
UAS-based crop high-throughput phenotypes was found
to be important role for complex lodging phenological
characteristics [16].

To date, many studies have focused on extracting lodging
information and area by using RGB image, but relatively few
studies have further subdivided lodging grades. RGB image
contains only three bands of data representing the intensities
of red, green, and blue wavelengths of each pixel [17, 18]. It
covers less crop information and can only obtain the image
information of ground objects. A multispectral imager with
a near-infrared band is an important sensor widely used in
agricultural remote sensing from a satellite platform to a near
ground platform, which can obtain both image information
and spectral information of ground objects at the same time.
There are few studies on the spectral characteristics of crops
in the existing research on crop lodging monitoring based on
UAV. The spectral characteristics, especially the red edge and
infrared band, can reflect the growth status of crops from the
essential aspects such as physical and chemical properties
and canopy structure [19, 20]. There is a clear physical signif-
icance to monitor crop lodging on the basis of spectral char-
acteristics. Numerous studies [21-23] have shown that the
lodging crop has stronger reflectance from leaves and stalks
in the NIR band which results in the large contrast between
the lodging and nonlodging areas. Parrot Sequoia is tailor-
made for agriculture and can be used in a variety of agricul-
tural applications with application width and depth. UAV
with a Sequoia multispectral camera is used to obtain farm-
land images and capture information from visible and invis-
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ible light in order to measure the health and vitality of crops.
Based on a multispectral image with a spatial resolution of
0.05m obtained by UAV on September 10, 2018, the spectral
characteristics of the canopy of different lodging grades were
analyzed at the maize filling stage. Principal component
transformation was performed, the texture features were
extracted, the vegetation indices were constructed, and the
maximum likelihood classification (MLC) was used to clas-
sify the lodging grade of maize. The results provide a basis
for the investigation of the crop lodging grade by UAV
high-resolution images.

2. Materials and Methods

2.1. Overview of the Research Area. The research area is
located in Gaocheng, Shijiazhuang City, Hebei Province,
China, with the geographical coordinates of 37°51'N-
38°18'N, 114°39'E-114°59'E (Figure 1). Gaocheng is located
in the North China Plain and has a warm temperate semihu-
mid continental monsoon climate, characterized by cold
winters and hot summers. The territory has four distinct sea-
sons, with an average annual temperature of 12.5°C, an aver-
age annual rainfall of 494 mm, and an annual sunshine
duration of 2711.4 hours. The cultivated land area of Gao-
cheng is about 549.02km*. The crop planting is an annual
double-cropping system. It is a wheat-maize rotation area.
The maize variety in the research area is Zhengdan 958 which
is widely planted in the Huang-Huai-Hai area. The growth
period of maize is about 96 days, the plant type is compact,
the plant height is about 246 cm, the ear position is about
110 cm, and it is resistant to disease, lodging, and drought.
Summer maize planting is generally completed around June
20th and harvested in October of the same year.

2.2. Data Acquisition. On September 5, 2018, there were
severe winds in Gaocheng, and local wind speeds reached
grade 6, which led to a large area of maize lodging during
the maize filling period. The data in this study were derived
from maize plots with different lodging grades acquired by
the UAV platform at 2:00 pm on September 10, 2018.

A Parrot Sequoia camera served as a multispectral sensor
for acquiring images mounted on a DJI Spreading Wings
$1000. The single arm length of the UAV is 386 mm, the
net weight of the UAV is about 4 kg, the weight of the carrier
is 6 kg, and the duration of imaging is 15-20 min. The Parrot
Sequoia camera consists of four spectral channels of green,
red, red edge, and near-infrared (Table 1) with a global posi-
tioning system (GPS) and irradiance sensors. On the day of
data acquisition, the weather was clear and calm. Radiomet-
ric calibration images obtained with the Parrot Sequoia cam-
era were captured using a calibrated reflectance panel on the
ground before and after each flight. The image resolution was
1280 x 960 pixels. The flight altitude was set at 60 m above
the ground. The forward and lateral overlap was 80%. Flight
speed was set to 6 m per second. There were eight routes, and
a total of 271 multispectral images were collected per band.

2.3. Image Preprocessing. UAV multispectral images are pre-
processed as follows: (1) Image screening: poor quality
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FIGURE 1: Geographical location and overview of the research area (ROI is the yellow frame) and distribution of training and verification
samples.
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TaBLE 1: Parrot Sequoia camera parameters.
Band name Center wavelength (nm) Bandwidth (nm)
Green 550 40
Red 660 40
Red edge 735 10
Near-infrared 790 40

images during the UAV take-off and landing are deleted to
decrease the number of images and ensure image quality.
(2) Image stitching: 240 groups of screened images were
stitched using the agricultural multispectral template in the
Pix4D mapper software (version 4.0, Lausanne, Switzerland)
[24, 25]. (3) Image clipping: due to the large flying area of the
UAV, the size of the region of interest (ROI) was approxi-
mately 199.23 m x 159.20 m (Figure 1) and contained differ-
ent lodging types.

The Sequoia camera combined with Pix4D software
allows for better evaluation of collected data. The specific
steps of mosaicking multispectral images using Pix4D soft-
ware [26] are as follows: (1) Creating a new project. (2)
Importing all discrete band imagery (green, red, red edge,
and near-infrared imagery) from the flight. This includes
the images of the calibration target. (3) Choosing the agricul-
tural multispectral processing template. (4) Starting process-
ing, including initial processing, point cloud and mesh, DSM
(digital surface model), orthomosaic, and index. (5) Generat-
ing the orthomosaic imagery. Pix4D agricultural multispec-
tral processing template automatically performs radiometric
calibration [27, 28], which is to convert the digital number
(DN) of ground object into absolute reflectance data.

The multispectral image geographic coordinate system
was GCS_WGS_1984 and the projected coordinate system
was UTM_Zone_50N and consisted of green, red, red edge,
and near-infrared with a spatial resolution of 0.05 m.

2.4. Analysis Method. The spectral reflectance of maize with
different lodging grades is various in four bands. We
analyzed the spectral characteristics of maize with different
lodging grades and constructed vegetation indices. At the
same time, we extracted principal components of the UAV
multispectral image and analyzed texture features. Five fea-
tures are extracted; they are spectral characteristics, principal
component, texture features, vegetation indices, and the
combination of vegetation indices and texture features. The
MLC [29, 30] supervised classification method was used to
classify lodging grades combined with training samples based
on the above five features. The classification accuracy was
evaluated using a confusion matrix with verification samples.
A method for extracting information regarding maize with
different lodging grades based on UAV multispectral images
is preferred. The workflow of maize lodging grade classifica-
tion is shown in Figure 2.

2.5. Evaluation of Accuracy. Accuracy evaluation is an
important and essential step in the classification process
[31], which is to quantitatively determine how effectively
pixels were grouped into the correct feature classes in the
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area. In order to verify the effectiveness of the classification
results of different features, we need to use the verification
samples to evaluate the classification results after the imple-
mentation of the supervised classification. The most com-
mon method used to evaluate the classification accuracy of
remote sensing images is to establish a confusion matrix
[32] for statistical analyses, which provides the classification
accuracy for the population and each category. Furthermore,
the accuracy of the classification results is displayed in a con-
fusion matrix, which is a basic, intuitive, and simple method
for measuring a classification model. The classification
results were evaluated using the confusion matrix combined
with the maize verification samples. Six indicators (Table 2)
were used to evaluate the classification accuracy: producer’s
accuracy, user’s accuracy, commission error, omission error,
overall accuracy, and Kappa coefficient.

3. Monitoring Maize Lodging Grade

3.1. Definition of Maize Lodging Grades. Because the spatial
resolution of the UAV multispectral image reached centime-
ters in our study, it is possible to distinguish maize with dif-
ferent lodging grades visually. Based on previous knowledge
and field observation, nonlodging and three types of lodging
were observed in the research area; lodging could be divided
into light, moderate, and severe grades (Figure 3). Nonlod-
ging indicates that the maize plants maintain an upright
growth state; that is, the inclination angle (between the maize
plant and the vertical line) of maize is 0°-10°. This is due to
the strong self-resilience of maize, and the maize with slight
lodging can recover quickly in a short time. Light lodging
indicates that the inclination angle is 10°-30%; the plant is bent
and has some ability for self-recovery. Moderate lodging
refers to the plant with an inclination angle of 30°-60" and
partially exposed maize stem. Severe lodging indicates that
the inclination angle is 60°-90%; the plant falls so close to the
ground, the stem is completely exposed, some stems are bro-
ken, and some of the lower leaves have dried up.

3.2. Training and Verification Samples. The smallest unit of a
remote sensing image is a pixel. Image classification is
defined as the process of categorizing all pixels in an image
or raw satellite data to obtain a given set of labels [35]. Max-
imum likelihood supervised classification is a method in
which the analyst defines representative small areas called
training sites for each category on the image. The software
then uses these training sites and applies them to the entire
image. The delineation of training areas representative of a
category is most effective when an image analyst has experi-
ence with the spectral properties of the category [35, 36].
The spatial resolution of the UAV multispectral image
reaches a centimeter level which is 5cm. Different lodging
types can be identified from the image by visual interpreta-
tion. Visual interpretation refers to the process of extracting
and analyzing the ground information contained in remote
sensing images through human eye observation [37, 38]. Its
advantage is that it can make full use of prior knowledge,
and its interpretation accuracy is generally high. Visual inter-
pretation was used to randomly select the maize sites with
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FIGURE 2: The workflow of maize lodging grade classification.

TaBLE 2: Evaluation index of classification accuracy.

Evaluation index

Formula

Description

References

Producer’s accuracy

PA(C) =

x 100%

i=1%ki

Any pixel selected from the ground truth,
the probability of which is the same as the
classification result, is calculated by using the
columns of the confusion matrix.

[32-34]

User’s accuracy

UA(C)) = —

x 100%

i=1%ik

Any pixel selected from the classification result,
and the probability that it is consistent with the
ground truth, is calculated by using the
rows of the confusion matrix.

[32-34]

Commission error

CE(C,)=1-UA(C))

The pixels that belong to the ground truth
but are not classified into the corresponding
categories and are displayed in the columns

of the confusion matrix.

[31, 34]

Omission error

OE(C;) = 1-PA(C,)

The pixels that are divided into one category
and actually belong to another, displayed in
the rows of the confusion matrix.

[31, 34]

Overall accuracy

OA(C

1 N
)= ;Zakk x 100%
i=1

For each random pixel, the probability that
the classification result is consistent with the
actual type of the corresponding area on
the ground truth.

[32-34]

Kappa coeflicient

N N
om0 — 2y (o X o)

K(C) =

N
n2 = Y (o X )

Kappa analysis is an indicator to determine

the coincidence or accuracy between two images.

Kappa coeflicient is -1-1, but usually between

0 and 1. The closer to 1, the higher the precision.

[32-34]
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FIGURE 3: (a-d) are field survey photos of maize lodging: (a) is nonlodging, (b) is light lodging, (c) is moderate lodging, and (d) is severe
lodging. (e) is a schematic diagram of maize with different lodging angles during the filling stage. (f) is an enlarged view of a part of the
UAV multispectral image with different lodging grades. The green is nonlodging, the blue is light lodging, the yellow is moderate lodging,
and the red is severe lodging.
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TaBLE 3: The pixel numbers of training and verification sample.

Lodging grade Training sample Verification sample
Nonlodging 7484 6472
Light lodging 7461 6448
Moderate lodging 7461 6448
Severe lodging 7495 6434
Soil and shadow 7485 6423

0.6 7« -

Spectral reflectance

Green Red

Red edge Near-infrared
Band name

= Non-lodging
® Light lodging

Moderate lodging
B Severe lodging

FIGURE 4: Spectral reflectance variation of maize with different
lodging grades.

different lodging grades as the training and verification sam-
ples in the ROI based on prior knowledge, field investigation,
and spectral reflectance. Because the samples are different in
size and the basic classification unit is the pixel, we counted
the pixel numbers of training and verification samples in
ENVI 5.3 software (Table 3).

3.3. Spectral Reflectance Variation. The agricultural multi-
spectral Parrot Sequoia camera has four spectral channels,
including green, red, red edge, and near-infrared. The means
and standard deviations of maize reflectance with different
lodging grades of training samples were extracted and calcu-
lated (Figure 4). Because the multispectral images have been
corrected by radiometric calibration in Pix4D software, the
actual reflectance data of the surface object have been
obtained. The four spectral reflectances are calculated by
the average of all pixels of training samples with different
lodging types; we extracted it directly from the statistical
function of ENVI 5.3 software.

The spectral reflectance of the same lodging type is con-
sistent with the vegetation spectral curve. The spectral reflec-
tance with different lodging grades varied consistently in four
bands, which were lower in red and higher in near-infrared.
In different bands, the spectral reflectance of lodging was
higher than that of nonlodging, and the more serious the
lodging, the higher the spectral reflectance [39] (Figure 4).

The main reason is that lodging changes the structure and
shape of the crop population and causes the change of can-
opy spectral reflectance. The more serious the lodging, the
more stem exposure, and the reflectance of the stem is higher
than that of leaf [39]. Severe lodging caused the maize stems
to break and the lower leaves to dry; thus, the reflectance is
slightly lower than moderate lodging in near-infrared. After
lodging, the original canopy structure collapsed, the pro-
portion of stems increased significantly, and the propor-
tion of leaves decreased, which caused the reflectance of
different lodging grades to increase [40, 41]. In four bands,
spectral reflectance of lodging maize varies most in the
near-infrared band compared to nonlodging maize [42]
(Figure 4, Table 4).

Compared with nonlodging maize, the spectral reflec-
tance of light lodging increased by 24.54-32.28%, that of
moderate lodging increased by 47.84-66.03%, and that of
severe lodging increased by 37.83-205.79%. This showed that
the more serious the lodging, the higher the increase of spec-
tral reflectance. Under the same lodging grade, the increase
rate in the visible band was larger than that in the near-
infrared band [39] (Figure 5).

3.4. Construction of Vegetation Indices. The vegetation index
is a linear or nonlinear combination of two or more charac-
teristic bands, which reflects the relative abundance and
activity of green vegetation. The main purpose of establishing
vegetation indices is to effectively synthesize relevant spectral
signals, enhance vegetation information, and reduce non-
vegetation-related information. The vegetation index mainly
reflects the difference between the visible and near-infrared
bands and the soil background. Each vegetation index can
be used to quantitatively describe the growth status of vegeta-
tion under certain conditions.

The normalized differential vegetation index (NDVI)
[43] is currently the most widely used index. Due to the easy
saturation of the red band and neglect of the green band,
Gitelson et al. [44] proposed the green normalized vegetation
index (GNDVI). Studies have shown that the green band is
closely related to vegetation parameters [45, 46]. The soil-
adjusted vegetation index (SAVI) modified the sensitivity of
NDVI to soil background and reduced its impact. The renor-
malized difference vegetation index (RDVI) provides the
advantages of both NDVI and difference vegetation index
(DVI), which can be used for vegetation with different cover-
age. The calculation formulas of the four vegetation indices
are displayed in Table 5.

The variance of vegetation indices with different lodging
grades is shown in Figure 6. The change trend of different
vegetation indices is various under lodging stress. The more
serious the lodging, the smaller the NDVI, which is
consistent with the results of previous studies [39]. GNDVI
decreases with the increase of lodging grades, because the rel-
ative increase rate of spectral reflectance in the visible band
was larger than that of the near-infrared band after lodging.
Compared with nonlodging, the NDVI and GNDVI reduc-
tions of light lodging are smaller, because we collected
UAV data on the 5th day after lodging, and the light lodging
maize returned to normal growth.
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TABLE 4: Variation value in spectral reflectance.

Lodging grade\band name Green Red Red edge Near-infrared
Nonlodging 0 0 0 0
Light lodging 0.0234 0.0108 0.0660 0.0766
Moderate lodging 0.0531 0.0255 0.1249 0.1493
Severe lodging 0.1126 0.0794 0.1798 0.1181
Increase rate _ Green 0.8
(%) 0.7
0.6 4
051 M ] M
0.4
Near- 0.3 4
infrared Red
0.2 1
0.1 4
0 -
Non-lodging  Light lodging Moderate lodging Severe lodging
I NDVI [ SAVI
Red 3 GNDVI I RDVI
edge
FIGURE 6: Variance of vegetation indices.
—— Light lodging
Moderate lodging turn yellow and dry, the soil background was exposed and the
— Severe lodging vegetation coverage decreased. The vegetation coverage of

FIGURE 5: Increase rate in the spectral reflectance of maize with
different lodging grades.

TaBLE 5: Calculating formula for various vegetation indices.

Vegetation index Calculating formula Reference
PNIR ~ PRED
NDVI NDVI=Z==—— "= 43
PN t PRED [43]
GNDVI = PNIR ~ PGRrEEN
GNDVI [44]
PNIR T PGREEN
1+L -
SAVI SAVI = (1+L) * (Pair ~ Prep) [47]
(Pxir + Prep) T L
RDVI RDVI=+vNDVI % DVI (48]

Note: L = 0.5 in the area of medium vegetation cover.

SAVI and RDVI decreased in severe lodging which were
lower than those of nonlodging after increasing slightly with
the increase of lodging grades. SAVI values range from -1 to
1. The lower the green vegetation coverage, the lower the
SAVI value [49]. The nonlodging maize plants are erect,
and the canopy spectra are mainly from the upper leaves.
And the leaves shaded each other, which have an influence
on the canopy spectra. Compared with nonlodging plants,
the vegetation coverage of light and moderate lodging
increased, and the vegetation coverage of moderate lodging
was higher than that of light lodging. Therefore, the order
of SAVI value is moderate lodging > light lodging > nonlod-
ging. For severe lodging, due to the lower leaves of the plants

severe lodging is lower than that of the nonlodging, so the
SAVT value is lower than the nonlodging maize.

NDVI decreased with the increase of lodging severity,
and RDVT decreased after increasing, indicating that RDVI
is mainly affected by DVI, and DVT is extremely sensitive to
changes in soil background [50]. The spectral reflectance of
vegetation in near-infrared is higher than that in the red
band. In nonlodging, light, and moderate lodging, the differ-
ence between near-infrared and red band increases with the
increase of lodging grades. In the case of severe lodging, the
reflectance in near-infrared decreases due to the influence
of soil, so RDVI decreases and is smaller than that of
nonlodging.

3.5. Principal Components and Texture Features. PCA can
remove redundant information between bands while com-
pressing multiband information into several, more efficient
bands [51, 52]. There are four bands in the multispectral
image; in order to avoid data redundancy, PCA was per-
formed to obtain the first few principal components which
contained more information. The first two principal compo-
nents contain 96.86% information of all bands and could be
used to extract texture features in this study.

The texture feature involves the extraction and analysis of
spatial distribution patterns of gray grade in an image, which
is widely used in image classification and target recognition
[53-55]. Texture feature parameters are extracted to obtain
qualitative or quantitative descriptions of texture by certain
image processing technology. The gray level cooccurrence
matrix (GLCM) is a comprehensive analysis of its local fea-
tures and arrangement based on pixels. Haralick et al. [56]
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TABLE 6: Parameters of texture feature.

Parameters Formula References
N-1
bi= .ZOZ(PZJ)
i
Mean 1\;—1
M] z J(Prj)
ij=0
N 2
0" = VZOPi,j(l_‘”z)
i
Variance 171
sz - Z Pi,j(j_[’l]>
N-1 P..
. i
Homogeneity ;
i,j=0 L+ (l _])2
N-1
Dissimilarity > P li-j [57-59]
$j=0
N-1
Contrast z P i(i—
ij=0
N-1
Entropy Z p ij (—log P i,j)
i,j=0
N-1

Second moment

N-
Correlation Z

extracted and analyzed image texture features using GLCM
and derived 14 parameters for quantifying texture features.
The GLCM reflects the distribution characteristics of the gray
level and presents changes in the repetition, alternation, or
specific rules in the spatial range, which is a second-order sta-
tistical feature of the grayscale change of the image. The
extraction of 8 texture features (Table 6) based on GLCM
uses the first two principal components. The 8 texture
features were mean, variance, homogeneity, dissimilarity,
contrast, entropy, second moment, and correlation. After
comparative analysis, the filtering window was set to 7 x 7,
the spatial correlation matrix offset X and Y were 1, and
the grayscale quality was 64.

The texture feature parameters of the first principal com-
ponent were used as an example to analyze the variation
characteristics of different lodging grades (Figure 7). Since
the parameters differ in magnitude, the mean, variance, con-
trast, and entropy were represented by a bar chart, and the
homogeneity, dissimilarity, second moment, and correlation
were represented by a line chart. It was clear that the various
parameters differed when the lodging grades were different.
The mean, homogeneity, and second moment decreased
with increasing lodging grades, while variance, dissimilar-
ity, contrast, entropy, and correlation increased with
increasing lodging grades. Texture features reflect the spa-
tial variability of spectral changes in every band. The tex-
ture features of different bands are usually various, so

Non-lodging Light lodglng Moderate lodging Severe lodging

Il PCl1 Mean

[ PC1 Variance
[ PC1 Contrast
[ PC1 Entropy

—8- PCl Dissimilarity
—©— PC1 Homogeneity
—A— PC1 Second Moment
—%— PC1 Correlation

FIGURE 7: Variation of texture features with different lodging grades.

texture features have different abilities to distinguish differ-
ent lodging grades.

4. Results

4.1. Classification Results. Based on the spectral features,
principal component features, texture features, vegetation
indices, and the feature combination, the MLC method was
used to classify lodging grades (Figure 8). Figure 8(a) pre-
sents the original UAV multispectral image, which is dis-
played as a false color combination of red, near-infrared,
and green bands. The spatial resolution of the image was
up to 0.05 m. Based on prior knowledge and agronomic expe-
rience, the different lodging grades, the shadow of maize
plants, and the soil exposed by lodging can be clearly distin-
guished from the image, and soil and shadow were combined
into one category. It was clear that the area of maize lodging
was larger due to the influence of strong wind, and the area of
severe lodging was the largest, being mainly distributed in the
left half of the ROI (Figure 8(a)). It was also clear that the
severe lodging area is the largest, and all areas are located in
the left-central area of the ROI (Figures 8(b)-8(f)). The
ROI area was about 31718.39 m%; we counted the area of each
lodging type (Table 7). The results were slightly different but
showed that the area of severe lodging was the largest and
moderate lodging was the smallest.

The ground truth was used to verify the classification
accuracy; we extract the partial enlargement of classification
results which contain ground truth with different lodging
types (Figure 9). For nonlodging, the result of texture features
and combination of texture features and vegetation indices is
right; in other classification results, there is error phenome-
non of classifying nonlodging into light lodging. For light
lodging, all the classification results showed that some of
the pixels were classified into nonlodging and moderate lodg-
ing. For moderate lodging, all the classification results
showed that some of the pixels were classified into nonlod-
ging, light lodging, and severe lodging. For severe lodging,
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TaBLE 7: The area of different lodging grades (m?).

Combination of texture features

Lodging grade Spectra Principal component ~ Texture features ~ Vegetation indices and vegetation indices

Nonlodging 4689.19 5628.52 4228.78 5448.82 4503.47

Light lodging 4498.63 4923.99 4229.87 6728.50 6672.33

Moderate lodging 2648.37 1849.09 2459.68 2153.50 2888.99

Severe lodging 12521.23 12341.78 16513.41 9385.36 10780.50

Shadow and soil 7360.97 6975.01 4286.65 8002.21 6873.10
Multispectral image

I Non-lodging
B Light lodging
[ Moderate lodging

B Severe lodging
I Shadow and soil

FIGURE 9: Partial enlargement of classification results which contain ground truth with different lodging types.

there is also a phenomenon of misclassification. Some pixels
were classified into light lodging, moderate lodging, and
shadow and soil.

4.2. Validation. The classification of the maize lodging grade
was verified using the confusion matrix combined with veri-
fication samples. The classification accuracy of 6 evaluation
indicators for each category is shown in Table 8. From the
perspective of producer’s and user’s accuracy, the accuracy

of the shadow and soil class was the highest, followed by
severe lodging, and light lodging was lowest. Because the
image characteristics of shadow and soil are far from those
of normal and lodging maize in ROI, they are easy to identify.
Severe lodging caused most or all stems of maize to be
exposed as a result of falling to the ground. In addition, the
reflectance of maize leaves and stems as well as the image
characteristics is differed, making them easy to recognize.
From the perspective of commission error, light lodging
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TasLE 8: Evaluation of classification accuracy (%).

Lo . Principal Vegetation Texture Combination of texture feature
Evaluation index Lodging grade  Spectra : L
component index feature and vegetation index

Nonlodging 78.35 78.11 74.57 88.49 86.40

Light lodging  74.12 75.43 77.25 69.07 75.11

Producer’s Moderate 80.20 82.92 78.68 85.64 84.85
accuracy lodging

Severe lodging ~ 86.57 87.50 87.47 88.73 88.56

Shadow and soil ~ 98.79 98.88 99.19 93.43 98.27

Nonlodging 84.17 85.00 85.87 86.17 89.90

Light lodging ~ 71.72 71.66 69.58 80.56 80.96

User’s accuracy Moderate 77.75 79.19 79.12 76.10 77.39
lodging

Severe lodging 86.48 89.29 86.11 84.92 86.99

Shadow and soil ~ 98.48 98.74 98.11 98.73 98.52

Nonlodging 15.83 15.00 14.13 13.83 10.10

Light lodging ~ 28.28 28.34 30.42 19.44 19.04

Commission error Moderate 2225 20.81 20.88 23.90 22.61
lodging

Severe lodging 13.52 10.71 13.89 15.08 13.01

Shadow and soil ~ 1.52 1.26 1.89 1.27 1.48

Nonlodging 21.65 21.89 25.43 11.51 13.60

Light lodging  25.88 2457 2275 30.93 24.89

Omission error Moderate g g 17.08 2132 14.36 15.15
lodging

Severe lodging 13.43 12.50 12.53 11.27 11.44

Shadow and soil ~ 1.21 1.12 0.81 6.57 1.73

Overall accuracy 83.58 84.54 83.40 85.05 86.61

Kappa coeflicient 79.47 80.68 79.25 81.31 83.27

and moderate lodging are most serious, which may be due to
the small difference among the light, moderate lodging, and
nonlodging types. The omission error is large in the case of
light lodging, which is divided into other lodging types. This
is because of some overlap of characteristic information
among the different lodging types.

The overall accuracy of spectrum features, principal com-
ponent features, vegetation indices, texture features, and the
feature combination was 83.58, 84.54, 83.40, 85.05, and
86.61%, respectively, and the Kappa coefficients were
0.7947, 0.8068, 0.7925, 0.8131, and 0. 8327, respectively.
The overall accuracy of the spectrum features reached
83.58%, indicating that visual interpretation is reliable to
identify the different lodging grades with high-resolution
images. The overall accuracy of the first two principal com-
ponents is about 1% higher than that of the spectral image.
PCA focuses on the various information features of different
lodging grades in fewer bands, thus avoiding data redun-
dancy. Vegetation indices were 0.18% lower than the spectral
feature, which may be due to the vegetation indices being
less, along with the small differentiation between various
lodging grades of maize (especially between light and moder-
ate lodging). The overall accuracy of texture features was
higher than those of spectral and principal component fea-

tures, mainly because the spatial resolution of UAV image
is high and the texture features reflect the homogeneous phe-
nomenon in the image. Additionally, the phenomena of
“same object different spectra” and “different objects same
spectra” in spectral feature recognition can be avoided, and
classification accuracy is improved. The overall accuracy
and Kappa coefficient of the feature combination were the
highest, which are higher than those of single feature. The
results show that the method based on feature combination
can significantly improve the classification accuracy of maize
lodging grades during the filling stage.

5. Discussion

Monitoring crop lodging needs to simultaneously determine
the grades and area in order to better evaluate the yield and
economic loss caused by lodging stress [60, 61]. After lodg-
ing, the canopy structure of maize changed greatly, mainly
regarding the ratio of stem to leaf in the detection field of
view and the light exposure conditions of each part of the
plant; thus, there is significant difference in spectral reflec-
tance of different lodging types. The more serious the lodging
stress, the more exposed the stem, and the higher the spectral
reflectance. We proposed a method based on the UAV
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multispectral image to classify the lodging grades of maize
during the filling stage.

Timely acquisition of crop lodging grades and area is of
great significance for the assessment of yield loss. The devel-
opment of remote sensing provides an important method to
monitor crop lodging [6, 62]. However, satellite data can be
affected by clouds, the revisiting time is long, and the spatial
resolution is low. There is a mixed pixel phenomenon, and
the cost of remote sensing data with high spatial resolution
is also high, which leads to large uncertainty in crop lodging
monitoring. Presently, there is a focus on research on crop
lodging monitoring based on the UAV platform with digital
and multispectral cameras. The UAV imaging system is fast,
nondestructive, low-cost, and unaffected by the atmosphere
[10-16, 63]. The data in the present study were derived from
UAYV multispectral images, which contain four bands: green,
red, red edge, and near-infrared. Compared with an RGB
image [12-15], the spectral characteristics of maize in differ-
ent bands can be used to qualitatively distinguish different
lodging grades. At the same time, the vegetation indices can
be constructed using multiple bands. The vegetation index
reflects the activity and physiological characteristics of green
vegetation (for example, chlorophyll content and photosyn-
thesis intensity), which can be used to quantitatively explain
the growth status of crops [64, 65]. The variation characteris-
tics of vegetation indices differ with different lodging grades.
The texture features can also be extracted based on the
GLCM, which reflects the spatial variability of spectral
changes of ground objects [66]. The various texture parame-
ters of maize with different lodging grades differ. In addition,
many studies have been performed to identify crop lodging
and extract crop lodging areas by UAV; however, they only
classified crop to lodging and nonlodging or predicted the
occurrence probability of lodging [12, 14, 15]. In fact, the
influence of different lodging grades on crops is usually vari-
ous. After crops are subjected to lodging stress, photosynthesis
in leaves is suppressed to varying extents, and physiological
and biochemical parameters are also changed [67-69]. Thus,
crop yield is affected; when the lodging is light, it will lead to
the reduction of crop yield, and when the lodging is serious,
it will lead to the failure of crop harvest; therefore, a more
detailed division of crop lodging grades is needed.

In this study, the MLC method was used to classify the
lodging grades of maize during the filling stage. Due to the
lack of field survey data and the high spatial resolution of
0.05m, combined with prior agronomic knowledge, it was
possible to visually distinguish different lodging grades. The
overall accuracy of the multispectral image was 83.58%, and
the Kappa coeflicient was 0.7947, indicating that the training
samples for visual interpretation are reliable for identifying
the lodging grades of maize. The overall accuracy of the
combination of texture features and vegetation indices was
3.03% higher than that of the spectral feature, indicating that
the feature combination is better for classification of lodging
grades.

RGB images have been used for a long time to observe
crops in order to compile a history of the fields and to analyze
reparceling. The RGB camera only obtains the information of
red, green, and blue bands, and all of them are in the visible
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band. Compared with RGB data, multispectral data contains
not only the visible band but also the near-infrared band.
When the vegetation is stressed, the chlorophyll content
and water content will change, although this change appears
synchronously in visible and near-infrared band, but the
change is more obvious in the near-infrared [20]. Our previ-
ous studies [40-42] have shown that crop lodging causes the
collapse of the original canopy structure and disrupts the dis-
tribution of leaves; some or a considerable number of leaves
are pressed or covered. The more serious the lodging degree,
the stem-leaf ratio of canopy also increases. The higher the
exposure ratio of the canopy stem is, the higher the spectral
reflectance is, and the change in near-infrared band is more
significant than that in the visible band. Therefore, the
near-infrared band provides important information in mon-
itoring crop lodging.

Regarding the flight altitude, we refer to References
[14, 28, 70, 71]. When the flying height is too high, the
spatial resolution of the image will be low and the spectral
information will be lost. When the flying height is too low
and the spatial resolution is high, a maize plant will be
divided into more categories; at the same time, the amount
of image data will increase, resulting in data redundancy. In
addition, the flight area will also become smaller. The high
spatial resolution of 0.05m ensures that there are all pure
pixels, which avoids the interference caused by mixed pixels
and omits the mixed pixel decomposition in image classifica-
tion [72, 73]. Multispectral image classification is strongly
affected by spatial resolution while the accuracy is not neces-
sarily improved by the increase of the spatial resolution [74].
There exists an optimal resolution for each geographical
entity, corresponding to its intrinsic spatial and spectral
characteristics. Because the resolution of the UAV multi-
spectral image was high and a pixel was used as the basic
classification unit, the reflectance and characteristics of
maize leaves and stems differed. Thus, the same maize is
inevitably divided into two or more categories. Although
the degree of stem exposure in maize was different, the
spectra and other characteristics of different lodging grades
were similar, which can easily lead to misclassification.

In the maize planting plot, we conducted a field survey of
maize varieties and lodging types. The UAV flight plots we
selected included different types of lodging, and the maize
varieties were Zhengdan 958, which avoids the difference
caused by maize varieties and the defect of the single lodging
type in the same plot. The maize plant has strong growth
ability and a certain recovery ability after lodging, which is
various with different lodging grades [40, 41]. In different
times of the same lodging type, coupled with the self-
recovery of maize, the canopy structure will change greatly
and the spectral reflectance will also change. In addition,
the mechanism of plant recovery after lodging is a complex
process, which is affected by many factors. The method pro-
posed in this paper is effective to classify the lodging types of
the data collected on the same day and avoids the influence of
the reflectance of the same lodging type in different periods.
In the next work, we will study the recovery of maize after
lodging from multitime series data. Also, we will add field
survey data, make comprehensive use of multisource
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remote sensing data, introduce more image features, com-
bine different features, and use an object-oriented method
and other classification methods to improve accuracy and
identify the optimal method to classify maize lodging
grades. Providing the relevant agricultural production
departments and agricultural insurance companies with
data on accurate losses caused by different grades of crop
lodging will permit reasonable postdisaster remedial work
and claim-settlement programs.

6. Conclusions

First, the spectral reflectance of maize with different lodg-
ing grades was extracted from UAV images using training
samples, and the spectral characteristics of maize with
different lodging grades were analyzed. Compared with
nonlodging, the more serious of lodging grades, the higher
the spectral reflectance, the greater the increase in spectral
reflectance. Then, the principal components were
extracted, the texture features based on GLCM were trans-
formed, the four vegetation indices were constructed, and
the texture features and vegetation indices were combined.
The maize lodging grades of different features were classi-
fied by the MLC method. The results showed that the
severe lodging area was the largest and was distributed
in the left half of the field plot. Finally, based on the ver-
ification samples with different lodging grades, classifica-
tion accuracy was evaluated using a confusion matrix.
The overall accuracy of the spectral features was 83.58%,
and the Kappa coeflicient was 0.7947. The overall accuracy
of the combination of texture features and vegetation indi-
ces was 86.61%, and the Kappa coefficient was 0.8327, and
these values were 3.03% and 0.038 higher than those of
the spectrum features, respectively. There is an advantage
of quickly and accurately extracting the maize lodging
grades based on feature combination of high-resolution
UAV multispectral image.
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