A tutorial on training recurrent neural
networks, covering BPPT, RTRL, EKF

and the "echo state network" approach

-Herbert Jaeger

Presented by: Shaowei Wang

Outline

* Recurrent neural network (RNN)
 Algorithms on training RNN
* Echo state network — special case of RNN

Recurrent neural network (RNN)

*Used to do sequence processing
*The output is fed back as input to others
Allows loop

Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network
(right).

Short characterization comparison

Recurrent neural
network

Feedforward
network

Structure

At least contain cycles
Can “remember” states

No cycle and the layers are
clear

Input-output

time sequential data

no time series

publications

5%

95%

Training
approaches

No clear winner

Most popular:
backpropagation algorithm

Category

 Discrete-time recurrent neural network
(DTRNN)

— The processing occurs in discrete steps, as if
the network was driven by an external clock

 Continuous-time recurrent neural network
(CTRNN)

— The processing occurs in continuous time

The difference In activation updating

K mput N 1internal units L output

units P units

(1.6) x(n+1)=f(W"u(n+1)+ Wx(n) + W**y(n)),

n could be understood as time step

Training approaches

« Backpropagation though time (BPTT)
* Real-time recurrent learning
« Extended Kalman filter

Backpropagation though time

Unfold the discrete-time recurrent neural

. O
neural network (FFNN) each time a

sequence is processed.

network into a multilayer feedforward A
\-.,&:.

*FFNN has a layer for each "time step" in
the sequence, as if the "time step" is the
Index of the layer

*Redirect the connection between layers o o xF1)©
uin+1) !
*Use the standard backpropagation ey
algorithm to train each FFNN form top to u(n)
bottom .
=

.'- ____..--""" .
%E““O“F ;

WA

) S o

yint+l1)
N\

= o

y(n)

yin-1)

Algorithm to update weights

T
neww, =w, + "fz 8, (n)x,(n—=1) [usex;(n—1)=0 for n=1]

n=|

T
new w, =w, + "fz o, (n)u,;(n)
=]
[T
(2.18) Z:‘Ef (n)u (n),if j refers to input unit
Joul +-:r,r < - rr;l

new wi" = w;
ZSI. (n)x;(n—=1),if j refers to hidden unit

| =]

new ufj‘”‘ pheck ,fzi.’} (n)y,(n=1) [usey,(n=1)=0 forn=1]

me=|

*Since layers have been obtained by replicating the DTRNN over and over,
weights in all layers should be the same.

*BPTT updates all equivalent weights using the sum of the gradients
obtained for weights in all layers.

Drawback

* It's hard to be used in the application
where online adaption is required as the
entire time series must be used.

— One option (p-BPTT): truncate part of time

Instead of entire time.

« Drawback: the ‘memory’ beyond truncated time
can’t be captured by the model

Training approaches

« Backpropagation though time (BPTT)
» Real-time recurrent learning
« Extended Kalman filter

Real-time recurrent learning

« Compute the error
gradient and update
weights for each time
step

* During forward step, it
compute the gradient
of internal and output
nodes with respects to
all weights as the
network

K 1npuy N internal units L output
units e T units
Z /30 o
ol /T ®o
i O¢ \ %
(G AT

Objective function

Some of the units in L7 are output units, for which a target is defined. A target may not be defined for every single input however. For example, if we are
presenting a siring to the network to be classified as either grammatical or ungrammatical, we may provide a target only for the last symbol in the string. In
defining an error over the outputs, therefore, we need to make the error time dependent too, so that it can be undefined (or 0) for an output unit for which no
target exists at present. Let 7(Z) be the set of indices & in U7 for which there exists a target value {2/ at time {. We are forced to use the notation o, instead of ¢

here, as ¢ now refers to time. Let the error at the output units be

_] () — () ke T()
ex(t) = { 0 otherwise “)

and define our error function for a single time step as

E(r) = Tles(r)l ®

kel

The error function we wish to minimize is the sum of this error over all past steps of the network

Eiotar(to 31) = E E(r (6)
T =1
Now, because the total error is the sum of all previous errors and the error at this time step, so also, the gradient of the total error is the sum of the gradient
for this time step and the gradient for previous steps

VWEtomj (t(l; t + 1) = VWE:mﬂj [ic, t) + VwE(i -+ 1) (7)

Ag atime series is presented to the network, we can accumulate the values of the gradient, or equivalently, of the weight changes. We thus keep track of the
value

‘ﬁ} (? ®)
http:.//www.willamette.edu/~gorr/classes/cs449/rtrl.html

Aaviift) = — po

http://www.willamette.edu/~gorr/classes/cs449/rtrl.html

Training approaches

« Backpropagation though time (BPTT)
* Real-time recurrent learning
» Extended Kalman filter

Extended Kalman filter

 Kalman filter

— a set of mathematical equations that provides an
efficient computational (recursive) means to
estimate the state of a process, in a way that
minimizes the mean of the squared error on linear
system.

« Extented Kalman filter
— A version working on nonlinear system

Objective function of Kalman filter

- ”= n= X, the state of network at time-step Kk,
Ik = Ik + K(Ek - HI,&} X7 Is the posteriori state estimate of X,
XM is the priori state estimate of X,
Z, Is the actual measurement, H X"
e = Xp — j:k- pre_:dict measurement
e, is the posteriori estimate error

FJL- — E[Ekfg] e Mil_'lim?ze Pk (e_rror covariance) as the
objective function and get Kk
K, = P,HT(HP,HT +R)”
_ P.HT
) HP H" +R

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

Discrete Kalman filter cycle

Linear function

Measurement Update (*Correct™)

' T '|' (1] L
Time Update ("Predict™) (1) Compute the Kalman gain

- . - - -1
[]JF‘I‘ﬂJf_:Ct'[hE state ahead K.ic — FkHT(HPkHT+R]
X, = AX, _,+Bu,_,

(2) Update estimate with measurement z;
(2) Project the error covariance ahead ks y = _‘i‘;{ + K k(Z; — H’fﬁ}

P ¥ = AP I — |AT +0 (3) Update the error covariance
P, = (I-K,H)P,

Initial estimates for &, _; and P, _,

Discrete extended Kalman filter
cycle

Nonlinear function

Measurement Update (*Correct™)

Time Update (“Predict™
ime Update (“Predict”) (1) Compute the Kalman gain

(1) Project the state ahead T “uT T -1
o : K, = P.HI(H,P,HT +V R V])
X = f(& _up_,0)

(2) Update estimate with measurement z;
(2) Project the error covariance ahead jf.i; — ‘?k + Kk(2 — hl: ’Tkﬂ D]}

P.i; = AkPk— IAE + kak —1 WE (3) Update the error covariance

P, = (I-K H,)P,

[nitial estimates for %, _, and P, _,

18

Adapt to RNN

w(n+1)=w(n)+q(n)
d(n) = h(w,u(0)....,u(n))
e =z(n)—d(n)
K(n) = P(n)H(n)[H(n) P(n)H(n)]™
Measurement update (correct) (59) w(n+1)=w(n)+K(n)&(n)
P(n+1)=P(n)-K(n)H(n) P(n)+Q(n)

Time update (predict) (5-8)

(5.10) K(n)=Pm)H(m)[(1/m)I+H(n) P(n)H(n)]™",
Interpret the weights

w of the RNN as the
state of a dynamical where d(n) is the desired output, w(n) is the weights.

system n is the time step. H(n) is the derivative of h(). The
information of d(n) is incorporated into P(n) to update

the Kalman gain function K(n).

Outline

* Recurrent neural networks
 Algorithms on training RNN
* Echo state network — special case of RNN

Example — sinewave

* D(n) =1/2sin(n/4)
« Task: remember the d(n) by using 300-step sequence
of d(n) as the teacher signal (training data), without

fixed before

training: — | —

"-._x..-. /
"._: / . WOUt
T\\J trained: - >
\ ' ¥ O
k_/‘ linear output
O unit
Whack
dynamlcal

reservoir (DR)

Figure 6.2: Schematic setup of ESN for training a sinewave generator.

0 Tg ﬂg 0,7
0’2 :2) 02

50 -042 50 :ﬂé 50 0,42 50
-0.7 = -0.7

oo oo
M=k

ulf.!'l, f§| M ANa 531, [\ 5:3 A !3
_u__f, 50 Egé 50 :H:E 50 :3::5_ o
ENANAE 2 AN N B g:3

2 e S = \VAAVASE = IAVAAV,
EITANTANE & TANANER |g A A AW
-f:3 >0 g 20 foft ° 43 =
EQEEF N [8 0.1 3.

3053 T VAV 01 = VAAVAE:

* The echo of sinewave d(n)is kept in
the echo state network

[
oo oD
bl i
E|

Figure 6.3. The dynamics within the DR induced by teacher-forcing the sinewave
d(n) in the output unit. 50-step traces of the 20 internal DR units and of the teacher
signal (last plot) are shown.

Features of ESN

* It has a sparsely connected hidden layer
(with typically 1% connectivity).

* The weights of hidden neurons are
randomly assigned and are fixed.

* The weights of output neurons can be
learned and produce (echo) specific
pattern.

http://en.wikipedia.org/wiki/Echo_state network

http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Echo_state_network

Whether a network has echo
state property?

The property Is only dependent on W
(weights of hidden layers), not dependent
on W,_., and W,

If spectral radius |A.,.,] >1, no echo state
property, where A, the max value of
eigenvector of W.

If spectral radius |A,,.,|] <1, have echo state
property.

How to estimate the \Wo°ut?

* The desired output weights W°t are the
linear regression weights of the desired
outputs d(n) on the states of network x(n)

* Minimize the mean squared error (MSE)

Ill_:l.'uh.l' |

=T
MS5E = Z{rf{”j _ Z “I?“t'ré{-”j:lg

=1

Learning algorithm - 1

Step 1. Procure an untrained DR network (W”, W, W™y which has the echo state
property, and whose internal units exhibit mutually interestingly different dynamics
when excited.

This step involves many heuristics. The way | proceed most often involves the
following substeps.

1.
2.

B W

Randomly generate an internal weight matrix W,,.

Normalize W, to a matrix W, with unit spectral radius by putting W, =1/|Ana]
W, where || is the spectral radius of W,. Standard mathematical packages
for matrix operations all include routines to determine the eigenvalues of a
matrix, so this is a straightforward thing.

Scale W, to W E 1, where o < 1, whereby W obtains a spectral radius of «.
Randomly generateNgput weights W' and output backpropagation weights
W™ Then, the untrainddnetwork (W”, W, W) is (or more honestly, has
always been found to be) anesho state network, regardless of how W™, W
are chosen.

Small a for fast
teacher dynamics,
otherwise big a

Learning algorithm - 2
Step 2. Sample network training dynamics.

This is a mechanical step, which involves no heuristics. It involves the following
operations:

1. Initialize the network state arbitrarily, e.g. to zero state x(0) = 0.

2. Drive the network by the training data, for times n =0, ..., T, by presenting the
teacher input u(n), and by teacher-forcing the teacher output d(»-1), by
computing

(6.10) X(n+1) = f{(W"u(n +1) + Wx(n) + W*"d(n))

At time »n = 0, where d(n) is not defined, use d(n) = 0.

For each time larger or equal than an initial washout time T;, collect the
network state x(n) as a new row into a state collecting matrix M. In the end,
one has obtained a state collecting matrix of size (I'- T, +1) x (K + N + L).

5. Similarly, for each time larger or equal to 75, collect the sigmoid-inverted
teacher output tanh'ld(ﬁ) row-wise into a teacher collection matrix T, to end up
with a teacher collecting matrix T of size (T— Tp+1) X L.

B w

Note: Be careful to collect into M and T the vectors x(n) and tanh™'d(n), not x(n) and
tanh™' d(n-1)!

Learning algorithm - 3

Step 3: Compute output weights.

1. Concretely, multiply the pseudoinverse of M with T, to obtaina (K + N+ L)
x L sized matrix (W)’ whose i-th column contains the output weights from
all network units to the i -th output unit:

6.11) (W™)' =M"T_

Every programming package of numerical linear algebra has optimized
procedures for computing pseudoinverses.

2. Transpose (W) to W°? in order to obtain the desired output weight
matrix.

Thank you!

