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ABSTRACT
A taxonomic revision of Iris subser. Sibiricae is provided based on morphological and
molecular analyses and the study of protologues and original material. Two to three
species have been recognized in this subseries by botanists. To address the question
of species delimitations and relationships within this group, we analyzed four non-
coding regions of plastid DNA (trnS–trnG, trnL–trnF, rps4–trnSGGA, and psbA–trnH)
for samples from 26 localities across the distribution ranges of two currently recognized
species, I. sanguinea and I. sibirica. Variance analysis, based on nine characters, revealed
no separation between taxa. Moreover, no morphological character could be used
to define clear boundaries between taxa. Our results strongly support that I. subser.
Sibiricae is monotypic and comprises only I. sibirica, instead of two or three species. Iris
sibirica is morphologically variable and one of the most widespread Eurasian species of
Iridaceae. Previously accepted taxa, I. sanguinea and I. typhifolia, are synonymised with
I. sibirica and also two names, I. orientalis and I. sibirica var. haematophylla, which are
typified here, are placed in the synonymy of I. sibirica. Information on the distribution
of I. sibirica and the main features used to distinguish between I. sibirica and I. subser.
Chrysographes species are provided.

Subjects Molecular Biology, Plant Science, Taxonomy
Keywords Chloroplast DNA, Iris subser. Sibiricae, Molecular phylogeny, Morphology,
Nomenclature, Taxonomy

INTRODUCTION
Iris L. is the largest, most widespread in Iridaceae distributed mainly in the temperate
zones of the Northern Hemisphere. Iris is a taxonomically difficult genus. Its generic
limits are controversial, and recent data seem to favour a much narrower circumscription
(Crespo, Martínez-Azorín & Mavrodiev, 2015). However, the infrageneric composition and
circumscription of Iris is questionable (Boltenkov et al., 2018). Therefore, we believe that
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additional studies are needed, and thus, a conservative taxonomy is here applied (Mathew,
1989; Wilson, 2009).

While revising I. sect. Limniris Tausch, we find that the taxonomy of I. ser. Sibiricae
(Diels) G.H.M.Lawr. still remains unclear. Plants of this Eurasian group are rhizomatous
herbs distinguished from all the other Iris species, except I. clarkei Baker ex Hook.f., by
having a hollow flowering stem. The infrageneric taxon Sibiricae was first described byDiels
(1930) as a subsection, including eight species with a short tube, a triangular elongated
stigma, narrow grassy leaves, in cross-section triangular capsules, and disc-shaped or
nearly cubical seeds. These species were later subdivided into two groups on account of
their chromosome numbers (Simonet, 1934), morphology and geographical distribution
(Grey-Wilson, 1971; Lenz, 1976). The autonymic subseries of I. ser. Sibiricae includes
well-known garden ornamentals, with 2n= 28 chromosomes (Löve, 1975; Probatova,
2006), that hybridise easily both in the garden and in the wild (McEwen & McGarvey, 1978;
Grey-Wilson, 2012), and are known to horticulturists under the name of Siberian irises.
The other group, I. subser. Chrysographes (Simonet) L.W.Lenz, comprises species with
2n= 40 chromosomes, and are known to horticulturists as Sino-Siberian irises (Waddick
& Zhao, 1992). These latter irises are native to southwestern China (mainly Yunnan and
Sichuan provinces) and eastern Himalayas, and occur at high elevations (Zhao, Noltie
& Mathew, 2000; Grey-Wilson, 2012). The distinctness of these two groups within I. ser.
Sibiricae was also supported by previous molecular studies (Tillie, Chase & Hall, 2000;
Wheeler & Wilson, 2014; Crespo, Martínez-Azorín & Mavrodiev, 2015).

The species’ circumscription of Siberian irises differed among later botanists, who
distinguished either two (McEwen & McGarvey, 1978; Mathew, 1989; Doronkin, 2012) or
three species (Rodionenko, 2007; Zhao, Noltie & Mathew, 2000; Grey-Wilson, 2012; Crespo,
Martínez-Azorín & Mavrodiev, 2015) in this group: I. sanguineaHornem., I. sibirica L., and
I. typhifolia Kitag.

Iris sibiricawas first described by Linnaeus (1753) from Austria, Switzerland, and Siberia.
Authors from the end of the 19th century (e.g., Baker, 1877; Hooker, 1899) believed that
I. sibirica is one of the most widespread species of Iridaceae in Eurasia, extending from
Central Europe to Japan. Therefore, I. sibirica has been considered as a single species
including several varieties (Regel, 1867; Baker, 1877; Maximowicz, 1880; Komarov, 1901;
Dykes, 1910).

Iris sanguinea was formally described by Hornemann (1813) based on cultivated plants
from the Botanical Garden of Copenhagen, Denmark. Subsequently, I. sanguinea was
reduced to a variety of I. sibirica, i.e., I. sibirica var. sanguinea (Hornem.) Ker Gawl.,
characterized by having young leaves often red-tinged at base. Some authors (e.g., Spach,
1846; Ledebour, 1852) cited this variety under the name I. sibirica var. haematophylla
Besser. At the same time, plants from the eastern regions of Eurasia were indicated
under the names I. sibirica var. sanguinea, I. sibirica var. haematophylla, and I. sibirica
var. orientalis (Schrank) Baker. Koidzumi (1926) re-established I. sanguinea, indicating a
distribution range including Japan, Dauria (currently Transbaikal region), and the Amur
River basin. As a result, this taxon was accepted as being native to temperate regions of East
Asia by all subsequent authors (e.g., Pavlova, 1987; Mathew, 1989), or it was cited under
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the illegitimate name I. orientalis Thunb. (e.g., Dykes, 1912; Diels, 1930; Fedtschenko, 1935;
Lawrence, 1953).

It has been stated that I. sanguinea and I. sibirica are morphologically barely
distinguishable (Komarov, 1901; Dykes, 1912; Grubov, 1977), and their identification is
mostly based on the inflorescence structure (McEwen & McGarvey, 1978; Mathew, 1989;
Grey-Wilson, 2012). In the I. subser. Sibiricae species, the inflorescence is cymose and
formed by the terminal head of flowers and one or two lateral heads (Szöllösi et al.,
2011; Skrypec & Odintsova, 2017). According to several authors (Dykes, 1912; Mathew,
1989; McEwen & McGarvey, 1978; Grey-Wilson, 2012), the typical I. sanguinea individuals
generally produce stem bearing the terminal head, while I. sibirica individuals produce a
stem with terminal and lateral heads. According to Skrypec & Odintsova (2017), I. sibirica
inflorescences have a high morphological variability in the number of flowers, their
position, and the flowering order. Other studies (Dénes, Juhász & Salamon-Albert, 2008;
Szöllösi et al., 2011) indicated that the inflorescence features in I. sibirica vary through years
and depend on climatic parameters.

Iris typhifolia, the third species recognized in I. subser. Sibiricae by some authors, was
described by Kitagawa (1934) as a Chinese endemic on the basis of one specimen. This
specimen was collected in the northern part of the Beiling District (currently Shenyang
City, Liaoning Province) and originally identified as I. sibirica (see Taxonomic treatment
below). Kitagawa (1934) specified that I. typhifolia is distinct from other irises by having
slender twisted leaves. Waddick & Zhao (1992) suggested that I. typhifolia differs from
I. sanguinea by its narrow leaves, generally about 0.2 cm wide. Nevertheless, Grey-Wilson
(2012) noticed that the cultivated plants of I. typhifolia appeared to differ from the original
description (0.15–0.22 cm wide) in having broader leaves.

Fedtschenko (1949) noticed that the eastern boundary of the distribution range of
I. sibirica is the Sayan Mountains in southern Siberia (Russia). According to recent
studies (McEwen & McGarvey, 1978;Mathew, 1989; Galanin, 2009; Grey-Wilson, 2012), the
identification of I. sanguinea and I. sibirica has often been based on their geographical
origin: I. sibirica has been considered to be distributed in Europe and Western Siberia,
while I. sanguinea has been considered to occur in East Asia, eastward Lake Baikal (also
see Global Biodiversity Information Facility, 2020). Iris typhifolia has been reported from
the same Chinese provinces where I. sanguinea has also been reported (Zhao, Noltie
& Mathew, 2000). Furthermore, it has recently been found that the typical plants of
I. typhifolia described by Kitagawa (1934) are not found in the type locality, or in any other
area in Liaoning Province whereas plants matching I. sanguinea have been recorded in this
province (Zheng et al., 2017).

Integrative approaches combining morphological and molecular data obtained from
plastid DNA (cpDNA) and nuclear ribosomal DNA (nrDNA) are widely used to distinguish
taxa at different taxonomic ranks (Liu et al., 2012; Hu et al., 2015; Vicente, Alonso &
Crespo, 2019). The nrDNA spacer regions provide information useful for phylogenetic
reconstructions in plant systematics, though intraindividual nrDNA polymorphism can
lead to erroneous or ambiguous results (Poczai & Hyvönen, 2010; Wilson, Padiernos &
Sapir, 2016). Numerous studies have highlighted the great value of applying chloroplast
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DNA (cpDNA) sequence data for species delimitation in Iris (Tillie, Chase & Hall, 2000;
Wilson, 2004; Wilson, 2009; Wilson, 2011; Wilson, 2017; Guo &Wilson, 2013). In previous
studies, we investigated the taxonomy of I. sect. Psammiris (Spach) J.J.Taylor (Kozyrenko,
Artyukova & Zhuravlev, 2009) and I. ser. Lacteae Doronkin (Boltenkov, Artyukova &
Kozyrenko, 2016; Boltenkov et al., 2018) based on cpDNA analysis (Boltenkov, Artyukova &
Kozyrenko, 2016; Boltenkov, 2018).

To reconstruct the relationships among species within I. subser. Sibiricae, we used
morphological and molecular data. Our aims are: (1) to compare the morphological
characters of living plants and herbarium specimens from the distribution range of I. ser.
Sibiricae; (2) to resolve the phylogenetic relationships of the I. subser. Sibiricae species
and of some other series of I. sect. Limniris using four cpDNA regions; (3) to ascertain
whether the genetic relationships among I. sanguinea and I. sibirica are consistent with
their current taxonomic classification as separate species; and (4) to compare the results
of morphological and molecular studies in order to evaluate the number of species in
I. subser. Sibiricae.

MATERIALS & METHODS
Morphological study
The I. subser. Sibiricae species descriptions available in literature (Krylov, 1929;
Sergievskaya, 1972; Doronkin, 1987; Mathew, 1989; Pavlova, 1987; Zhao, Noltie & Mathew,
2000; Grey-Wilson, 2012) were examined. We evaluated the thirteen characters, which
were selected from those typically used in the literature together with those considered
relevant according to our personal observations (see Fig. 1). These characters are listed
in detail in Table 1. The original material of I. sanguinea, I. sibirica, I. sibirica var.
haematophylla, I. orientalis Thunb., and I. typhifolia (see Taxonomic treatment below)
was studied. In total, 224 scaled specimens of well-developed plants in flowering or fruiting
were measured (see Appendix S1). The specimens of I. sanguinea and I. sibirica have
been checked through high resolution images available in virtual herbaria (herbarium
codes according to Thiers, 2020): ABGI and VBGI (https://botsad.ru/herbarium/), E
(https://data.rbge.org.uk/search/herbarium/),MHAandMW(https://plant.depo.msu.ru/),
NS and NSK (http://herb.csbg.nsc.ru:8081/#fuzzy-label), PI, PRC and WU (https:
//herbarium.univie.ac.at/database/search.php). For I. typhifolia, 48 specimens were used:
27 specimens from the Chinese botanist Yu-Tang Zhao, an expert on Chinese Iridaceae
(e.g., Waddick & Zhao, 1992; Zhao, Noltie & Mathew, 2000), collection at NENU, and also
21 specimens have been checked through images available in virtual Chinese herbaria
( http://www.cvh.ac.cn/). The morphological characters were measured using AxioVision
4.8 (Carl Zeiss, Germany), a freeware comprehensive images viewer.

For morphometric data analysis, nine characters were used (see Table 1). In this study
both parametric and non-parametric versions of a one-way variance analysis (ANOVA)
were applied. The differences were considered significant at p-value < 0.05. As multiple
statistical testing was performed, the calculated p-value was adjusted using the procedure
proposed by Benjamini & Hochberg (1995). To test basic ANOVA assumptions Shapiro–
Wilk test for normality and Levene’s test for equality of variances were used. The missing
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Figure 1 Photos of living plants of Iris sibirica. (A) Plant in habitat. (B) Inflorescence with the terminal
head of two flowers. (C) Inflorescence with the terminal head and one lateral head. (D) Fruits. (E) Seeds.

Full-size DOI: 10.7717/peerj.10088/fig-1

Table 1 Morphological characters analysed in the Iris subser. Sibiricae species.

No. Character Code Remarks

1 Rosette leaf length (cm) LL* Measured from base to apex for the longest leaf in rosette
2 Rosette leaf width (cm) LW* Measured in its broadest place for the broadest leaf in

rosette
3 Flowering stem height (cm) SH* Measured from base of stem to base of bracts
4 Inflorescence structure IS* Classified as inflorescence with terminal head (1) or with

terminal and one lateral head (2)
5 Number of flowers NF* Flowers per stem
6 Number of cauline leaves NC* Leaves arising on the flowering stem
7 Cauline leaf length (cm) CL* Measured from base to apex for the upper leaf
8 Bract length (cm) BL* Measured from base to apex for the outer bract
9 Pedicel length (cm) PL* Measured for the first blooming flower in

the terminal head
10 Flower colour FC According to literature data
11 Fruit length (cm) FL Obtained for all fruits from the specimens at fruiting
12 Fruit shape FS Obtained from the specimens at fruiting
13 Seed shape SS According to literature data

Note.
Asterisk (*) indicates characters used in the variance analysis.
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Figure 2 Map showing the geographical origin of Iris subser. Sibiricae samples analyzed in the present
study (created with https://www.simplemappr.net, CC 1.0). Locality codes as in Table 2; cultivated
plants (Sc1 and Sc2) are not mapped. Red circles –populations in the I. sibirica distribution range; white
circles –populations in the I. sanguinea distribution range; black square –the locality of I. sanguinea from
the Republic of Korea (Lee et al., 2017).

Full-size DOI: 10.7717/peerj.10088/fig-2

values in the original data table were imputed using correspondingmedian values according
(Kuhn & Johnson, 2018). The Kruskal–Wallis test was chosen as a non-parametric ANOVA
algorithm (Dodge, 2008). Principal components analysis (PCA) was used to visualize the
distribution of the analyzed individuals over the space of morphometric characters. It
was applied to all quantitative characteristics. Directions of principal components were
described in the factor space by their highest correlation values (denoted by r) with
original axes. Computations were performed by means of SciPy (Virtanen et al., 2020) and
Scikit-Learn (Pedregosa et al., 2011) packages.

DNA extraction, amplification and sequencing
Sequences of four cpDNA regions were obtained for 44 specimens taken from wild
populations, herbarium material and living collections. Among those, there were 20 from
13 localities in the I. sibirica distribution range, 22 from 11 localities in the I. sanguinea
distribution range, and two plants were of unknown origin (Fig. 2). It was not possible to
obtain samples from Japan and northeastern China, including Liaoning Province, where I.
typhifolia was described from. Nevertheless, while searching GenBank for any sequences of
four studied cpDNA regions of the I. subser. Sibiricae species, we found sequences of only
either psbA–trnH or trnL–trnF for several accessions of I. sibirica and I. typhifolia, as well as
I. sanguinea from Japan, northeastern China and the Republic of Korea (see Table S1). The
sequences of four cpDNA regions from the complete chloroplast genome of I. sanguinea
from the Republic of Korea (Lee et al., 2017) were included in the study. Our sampling also
comprises representatives of three other series of I. sect. Limniris: (1) I. laevigata Fisch.,
I. ensata Thunb., and I. pseudacorus L. from I. ser. Laevigatae (Diels) G.H.M.Lawr.; (2)
I. lactea Pall., I. oxypetala Bunge, and I. tibetica from I. ser. Lacteae; (3) I. uniflora Pall.
ex Link from I. ser. Ruthenicae (Diels) G.H.M.Lawr. Iris dichotoma Pall. from I. subgen.
Pardanthopsis (Hance) Baker was used as outgroup. The complete specimen list, including
the sampling localities and the voucher information is given in Table 2.

DNA extraction, amplification, and direct sequencing of four non-coding cpDNA
regions (trnS–trnG, trnL–trnF, rps4–trnSGGA, and psbA–trnH) follows Kozyrenko et al.
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Table 2 Sample information of the accessions used in the study.

Code (N) H Locality, voucher GenBank accession numbers trnH–psbA/rps4–trnS/trnS–
trnG/trnL–trnF

I. ser. Sibiricae subser. Sibiricae
BAD (1) H1 Mongolia, Badgir, Dolgaleva s.n. (VBGI*) LT627899/ LT628015/ LT628026/ LT628005
MDB (1) H1 Mongolia, Dornod, Bayan-Uul, Gubanov 550 (MW) LT978556/ LT981298/ LT984448/ LT984480
MKB (1) H1 Mongolia, Khentii, Binder Somon, Galanin s.n. (VBGI) LT978557/ LT981299/ LT984449/ LT984481
ORL (3) H2 Russia, Primorsky Krai, Orlovka, Boltenkov s.n. (VBGI) LT627900/ LT628016/ LT628027/ LT628006
RCH (5) H2 Russia, Amur Oblast, Chingan State Nature Reserve, Kudrin

s.n. (ARKH)
LT978531/ LT981273/ LT984423/ LT984456

RP1 (1) H1 Russia, Primorsky Krai, Solovei Kluch, Boltenkov s.n.
(VBGI)

LT978535/ LT981277/ LT984427/ LT984460

RP2 (1) H2 Russia, Primorsky Krai, Khankaysky District, Il’inka,
Pshennikova s.n. (VBGI)

LT978530/ LT981272/ LT984422/ LT984455

RP3 (3) H3 Russia, Primorsky Krai, vicinity of Vladivostok, Kuritskaya
s.n. (VBGI)

LT978534/ LT981276/ LT984426/ LT984459

RP4 (1) H3 Russia, Primorsky Krai, Romanovka, Chubar s.n. (VBGI) LT978533/ LT981275/ LT984425/ LT984458
RP5 (2) H3 Russia, Primorsky Krai, Pokrovka, Denisova & Talovskaya

s.n. (VBGI)
LT978532/ LT981274/ LT984424/ LT984457

RKP (1) H4 Russia, Kurgan Oblast, Pritobolny District, Fedotova s.n.
(NSK)

LT978536/ LT981278/ LT984428/ LT984461

RKT (1) H4 Russia, Karachay-Cherkess Republic, Teberda, Shilnikov s.n.
(cult.)

LT978529/ LT981271/ LT984421/ LT984454

RKU (1) H5 Russia, Kaluga Oblast, Ugra National Park, Reshetnikova et
al. s.n. (MHA)

LT978539/ LT981281/ LT984431/ LT984464

RKY (3) H1 Russia, Zabaykalsky Krai, Mountain Steppe State Reserve,
Roenko s.n. (VBGI)

LT978542/ LT981284/ LT984434/ LT984467

RLV (1) H6 Russia, Leningrad Oblast, vicinity of Vyborg, Boltenkov s.n.
(cult.)

LT978545/ LT981287/ LT984437/ LT984470

RMS (1) H7 Russia, Moscow, Setun River valley, Nasimovitch &
Shchukin s.n. (MHA)

LT978541/ LT981283/ LT984433/ LT984466

RPS (8) H5 Russia, Pskov Oblast, Sebezhsky District, Konechnaya s.n.
(LE)

LT978538/ LT981280/ LT984430/ LT984463

RRU (1) H4 Russia, Udmurt Republic, Perevoznoye,Melnikov s.n. (LE) LT978537/ LT981279/ LT984429/ LT984462
ALS (1) H4 Armenia, Lori Province, Saratovka, Khanjyan & Tumanyan

s.n. (ERE)
LT978528/ LT981270/ LT984420/ LT984453

ALT (1) H4 Armenia, Lori Province, track from Dashtadem to Tashir,
Tamanyan et al. 07-1189 (ERE)

LT978527/ LT981269/ LT984419/ LT984452

GJP (1) H4 Georgia, Javakheti, between Aspara and Vladimirovka
villages, Shvanova s.n. (LE)

LT978526/ LT981268/ LT984418/ LT984451

GBB (1) H8 Georgia, Borjomi, Bakuriani Botanical Garden,Merello s.n.
(cult.)

LT978543/ LT981285/ LT984435/ LT984468

LAS (1) H5 Austria, Niederösterreich, Haltestelle Stillfried, Barta s.n.
(ERE)

LT978544/ LT981286/ LT984436/ LT984469

Sc1 (1) H9 United Kingdom, Cambridge University Botanic Garden,
Boltenkov s.n. (cult.)

LT978558/ LT981300/ LT984450/ LT984482

(continued on next page)
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Table 2 (continued)

Code (N) H Locality, voucher GenBank accession numbers trnH–psbA/rps4–trnS/trnS–
trnG/trnL–trnF

Sc2 (1) H5 United Kingdom, Hertfordshire, St. Albans, Boltenkov s.n.
(cult.)

LT978540/ LT981282/ LT984432/ LT984465

ZOR (1) H4 Armenia, Zorakert, Fayvush et al. 09-1696 (ERE) LT627901/ LT628017/ LT628028/ LT628007

Outgroup specimens

I. ser. Laevigatae

I. ensata
ZAR Russia, Primorsky Krai, Zarubino, Boltenkov s.n. (VBGI) LT627896/ LT628012/ LT628022/ LT628002

I. laevigata
ROS Russia, Primorsky Krai, Roshchino, Pshennikova s.n. (cult.) LT627897/ LT628013/ LT628024/ LT628003

I. pseudacorus
VLA Russia, Vladivostok, Boltenkov s.n. (cult.) LT627898/ LT628014/ LT628025/ LT628004

I. ser. Lacteae

I. lactea
ZAB Russia, Zabaykalsky Krai, Kharanor, Chernova s.n. (IRK) LT627854/ LN871708/ LN871662/ LN871625

I. oxypetala
SHI China, Shaanxi, Suyde, Kabanov s.n. (LE) LT627844/ LT627950/ LT627975/ LT627911

I. tibetica
QHU China, Qinghai, Riyue Xiang, Long et al. 60 (E) LT627892/ LT627943/ LT627997/ LT627932

I. ser. Ruthenicae

I. uniflora
ANIS Russia, Primorsky Krai, Anisimovka, Orlovskaya s.n.

(VBGI)
LT627832/ LN871684/ LN871640/ LN871604

ZKY Russia, Kyrinsky District, Vologdina s.n. (cult.) LT627902/ LT628018/ LT628029/ LT628008

I. subgen. Pardanthopsis

I. dichotoma
RDA Russia, Amur Oblast, Baranova s.n. (cult.) LT978555/ LT981297/ LT984447/ LT984483

Notes.
N, number of analyzed individuals; H, haplotype; cult., cultivated. * Herbarium codes according to Thiers, 2020. Accession numbers in italics are reported in a previous study
(Boltenkov et al., 2018).

(2004); Kozyrenko, Artyukova & Zhuravlev (2009). The cycle sequencing was accomplished
on both strands and fragments were separated using a genetic analyzer ABI 3130 (Applied
Biosystems, USA) in the Instrumental Centre of Biotechnology and Gene Engineering
(Vladivostok, Russia). Sequences were deposited in the European Nucleotide Archive
database; their accession numbers are available in Table 2.

Data analysis
The sequences of each cpDNA region obtained in this study and retrieved from the
complete chloroplast sequence of I. sanguinea (KT626943) were aligned manually using
the program SeaView v. 4 (Gouy, Guindon & Gascuel, 2010) and concatenated for each
specimen. We included in the dataset indels and length variation in mononucleotide
repeats because repeatability tests allowed us to exclude PCR errors. The haplotypes were
identified based on combined DNA sequences using DnaSP v. 5 (Librado & Rozas, 2009).
This programwas also used to calculate the degree of divergence between cpDNA sequences
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based on nucleotide substitutions. A haplotype network was built using Network v. 4.6
(Bandelt, Forster & Röhl, 1999), treating each deletion/insertion, regardless of size as a single
mutational event and using the median joining (MJ) algorithm with default settings. To
reveal relationships between I. sanguinea, I. sibirica, and I. typhifolia, a haplotype network
was also built using a dataset including psbA–trnH and trnL–trnF sequences obtained in
our study and sequences of I. typhifolia retrieved from GenBank.

Phylogenetic analyses were performed on two datasets of combined sequences for four
cpDNA regions studied (available at https://purl.org/phylo/treebase/phylows/study/TB2:
S26635). The first one was composed of sequences from the I. subser. Sibiricae specimens
obtained in the present study, haplotypes of seven taxa of I. sect. Limniris and I. dichotoma
as outgroup. The second dataset was enlarged by the addition of psbA–trnH and/or
trnL–trnF sequences for 13 accessions of the I. subser. Sibiricae species available in
GenBank, and for these accessions, lacking portions of sequences (trnS–trnG and rps4–trnS
regions) were coded as missing. Phylogenetic analyses were performed using Maximum
Likelihood (ML) and Maximum Parsimony (MP) methods as implemented in PAUP v.
4.0b10 (Swofford, 2003). Bayesian Inference (BI) was conducted using MrBayes v.3.2.6
(Ronquist & Huelsenbeck, 2003) on the CIPRES portal (http://www.phylo.org/; Miller,
Pfeiffer & Schwartz, 2010). For the MP analyses, gaps were coded according to (Simmons
& Ochoterena, 2000), as implemented in the program FastGap v. 1.2 (Borchsenius, 2009).
Optimal trees were found using a heuristic search with 1,000 random addition sequence
replicates, starting trees obtained via stepwise addition, tree bisection and reconnection
(TBR) branch swapping and the MulTrees option in effect. For ML and BI analyses,
GTR + I + G model was selected according to the Akaike information criterion (AIC)
using Modeltest v. 3.6 (Posada & Crandall, 1998). ML heuristic searches were done using
the resulting model settings, 100 replicates of random sequence addition, TBR branch
swapping and MULTrees option on. In BI, using the default prior settings, two parallel
MCMC runs were carried out for tenmillion generations, sampling every 1,000 generations
for a total of 10,000 samples. Convergence of the two chains was assessed, and the posterior
probabilities (PP) were calculated from the trees sampled during the stationary phase. The
robustness of nodes in ML and MP trees was tested using bootstrap with 1,000 replicates
(bootstrap percentage, BP).

RESULTS
Morphological data
Morphological comparison among the I. subser. Sibiricae species is provided in Table 3. The
results showed overlap of I. sanguinea, I. sibirica, and I. typhifolia at the morphological level
(Fig. 3, Table 3). The majority of characters were variable in this analysis (see Coefficient
of variation in Table S2).

The result of PCA revealed three characters with high factor loadings (r ≥ 0.5) on the
first three principal components. These are LL, SH and CL (see abbreviations in Table 1).
Together, the first three components accounted for 99.2% of the total variation. The first
two components explained 75.3% and 21.9% of the total variation, respectively.
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Table 3 Morphological comparison among the Iris subser. Sibiricae species.

Character (code) I. sanguinea I. sibirica I. typhifolia

Rosette leaf length, cm (LL) 24–77 24–88 28–99

Rosette leaf width, cm (LW) 0.2–0.7(1.1) 0.2–0.8(1.1) 0.2–0.4

Flowering stem height, cm (SH) 23–82 22–99 35–74

Inflorescence structure (IS) terminal head or occasionally
with a lateral head

terminal head or
with a lateral head

terminal head or
occasionally with a lateral head

Number of flowers (NF) 1–3(4) 1–4(6) 1–3(4)

Number of cauline leaves (NC) (0)1–2(3) (0)1–2(3) 1–3

Cauline leaf length, cm (UL) 4–13(25) 3.5–13.5 4–9.5

Bract length, cm (BL) 2–7 2.1–5.5 3–6

Pedicel length ,cm (PL) 0.6–6.5 0.4–6 0.5–6

Flower colour (FC) blue to violet with purple veins blue to violet with purple veins violet with purple veins

Fruit length, cm (FL) 1.7–7.7 1.5–4.2 2.3–5.5

Fruit shape (FS) oblong-ellipsoidal oblong-ellipsoidal or ellipsoidal oblong-ellipsoidal

Seed shape (SS) semirounded or irregular, flat,
thin, slightly glossy, brown

semirounded or irregular, flat,
thin, slightly glossy, brown

nearly elliptical, flat, thin,
slightly glossy, brown

Figure 3 Principal components analysis of the Iris subser. Sibiricae species based on nine morphologi-
cal characters. Refer to Table 1 for character abbreviations.

Full-size DOI: 10.7717/peerj.10088/fig-3

The biplot of PCA for all those species illustrates the overlap between all specimens
and significant morphological similarity (Fig. 3). Two characteristics SH and LL displayed
the highest correlations with the first and second axis (corresponding values are r = 0.73
and r = 0.67), and the remaining one (CL) highly influenced the third axis (r = 0.93).
Results of parametric and non-parametric ANOVA analysis to projected data on three
principal components showed that mean (median in case of the non-parametric test)
values do not differ significantly among the species. Corresponding statistics and p-values
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are: p-value = 0.21 and adjusted p-value = 0.63 for traditional ANOVA; p-value = 0.03
and adjusted p-value= 0.11 for Kruskal–Wallis test. However, being applied to the original
plant characters, both parametric and non-parametric ANOVA tests showed significant
differences of average values for I sanquinea, I. sibirica, and I. typhifolia. Our results showed
that mean (in case of traditional ANOVA) and median (in case of Kruskal–Wallis test)
values only for LL and possibly PL do not significantly differ among the considered species
(Table S2). Thus, having likely different average values of morphometric characters, caused
by environmental conditions and interspecific trait variability, these species can still be
considered as indistinguishable in a generalized (PCA) factor space.

Molecular data
Among the 44 specimens studied, nine haplotypes (H1–H9) were identified based on
nucleotide substitutions and indels detected across 3766 aligned positions of four cpDNA
regions (Table 2). Four haplotypes (H6–H9) were unique, i.e., found in a single population:
H6 in RLV population (Leningrad Oblast, Russia), H7 in population RMS from the Setun
River valley (Moscow Oblast, Russia), H8 in population GBB from Georgia, while H9 was
found in the plant Sc1 cultivated at the Botanic Garden of CambridgeUniversity, theUnited
Kingdom (UK). Five other haplotypes were detected inmore than one accession, often from
geographically distant locations in the I. subser. Sibiricae distribution range. The sequences
of cpDNA regions obtained in our study were compared with those from the complete
chloroplast sequence of I. sanguinea from the Republic of Korea (KT626943). Haplotype
H1 found in accessions from two localities in Russia (RP1, RKY) and from three localities
in Mongolia (BAD, MDB, and MKB), turned out to be identical with the haplotype of I.
sanguinea from the Republic of Korea (KT626943). Specimens of populations RP3, RP4,
and RP5 from Primorsky Krai, Russia shared haplotype H3, while populations ORL, RP2
(Primorsky Krai) and RCH (Amur Oblast, Russia) shared haplotype H2. Specimens from
populations ALS, ALT, and ZOR (Armenia), GJP (Georgia), RKT (Karachay-Cherkess
Republic, Russia), RRU (Udmurt Republic, Russia), and RKP (Kurgan Oblast, Russia)
shared haplotype H4. Haplotype H5 was found in samples RKU (Kaluga Oblast, Russia),
RPS (Pskov Oblast, Russia), and LAS (Austria) as well as in a cultivated plant Sc2 (UK).
No specimen from the European part of the distribution range shared haplotypes with
plants from the Asian part. The sequence divergence of cpDNA between plants from the
European and Asian parts of the distribution range was very low (KS= 0.00056).

In the median network, all haplotypes formed one group (Fig. 4A) with a minimal
divergence between each other (one to three mutational steps). Five haplotypes (H1–H3,
H7, and H9) formed a star-like structure with haplotype H1 in the centre. This group
composed of all haplotypes (H1–H3) from East Asian plants also included H7 from
Eastern Europe and differed only by one substitution in the psbA–trnH region from all
other haplotypes found in plants from the European range, namely haplotypes H4–H6
and H8. All haplotypes found across the I. subser. Sibiricae distribution range were closely
related and derived from the same unsampled or extinct ancestral haplotype connected by
many mutation steps with the haplotype of I. pseudacorus from I. ser. Laevigatae (Fig. 4A).
A similar pattern was obtained in the network based on sequence data from the psbA–trnH
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Figure 4 Median-joining networks showing the relationships among cpDNA haplotypes of the Iris
subser. Sibiricae species found in 27 localities across the distribution range including I. sanguinea sam-
ple from the Republic of Korea (KT626943) and I. pseudacorus as outgroup. (A) The data are based on
combined sequences of the trnS–trnG, trnL–trnF, rps4–trn SGGA, and psbA–trnH regions. (B) The data are
based on combined sequences of the psbA–trnH and trnL–trnF regions including sequences of I. typhifo-
lia retrieved from GenBank (KP089502, EU939514). Each circle represents a haplotype and the size of the
circle is proportional to the number of population where that haplotype is found. Red circles –haplotypes
found in plants from the I. sibirica distribution range; white circles –haplotypes found in plants from the I.
sanguinea distribution range; grey circle –haplotype from cultivated plant S1. Black dots indicate interme-
diate haplotypes not observed in the sampling. Haplotype codes as in Table 2.

Full-size DOI: 10.7717/peerj.10088/fig-4

and trnL–trnF regions, which included sequences of I. typhifolia retrieved from GenBank
(Fig. 4B). In this network, all specimens from the Asian part of range share the common
haplotype connected by six mutational steps with haplotype of I. typhifolia and by two
steps with two haplotypes found in specimens from the European range.

MP, ML and BI analyses based on sequences of I. subser. Sibiricae obtained in the
present study yielded similar topologies with few differences in node statistical supports
(Fig. 5A). All Iris specimens clustered into highly supported (BP 100, 100%, PP 1.0) clades
according to their affiliation to corresponding series of I. sect. Limniris. Haplotypes of
all plants belonging to I. subser. Sibiricae formed a monophyletic highly supported clade
(BP 100, 100%, PP 1.0) sister to the clade including species of I. ser. Laevigatae (BP 82,
93%, PP 1.0). Within the I. subser. Sibiricae clade, it was possible to distinguish a group
including haplotypes H1–H3 from the Asian part of range, haplotype H7 from the Moscow
Oblast (Russia), as well as haplotype H9 of the cultivated plant (Sc1), though this group
received poor support in the MP and ML analyses (BP 63, 64%) and strong support only
in BI analysis (PP 0.99). The overall topology of MP and BI trees (Fig. 5B) constructed
with dataset including thirteen accessions of the I. subser. Sibiricae species retrieved
from GenBank was largely similar to those of the trees described above (Fig. 5A). Ten of
the thirteen additional accessions of I. sanguinea, I. sibirica, and I. typhifolia were placed
together with all specimens of I. subser. Sibiricae in a monophyletic group (BP 100%, PP
1.0). However, the phylogenetic relationships within this clade were unresolved. Only one
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Figure 5 Phylogenetic analysis of Iris subser. Sibiricae. (A) Strict consensus tree of the six equally most
parsimonious trees resulting from MP analysis of combined plastid trn S–trnG, trnL–trnF, rps4–trnSGGA,
and psbA–trnH sequences from 27 localities across the distribution range of Iris subser. Sibiricae includ-
ing I. sanguinea sample from the Republic of Korea, KT626943 (Tree length of 429 steps, CI= 0.8228,
RI= 0.8905). (B) Strict consensus tree of more than 600,000 equally most parsimonious trees resulting
from MP analysis of the enlarged dataset including psbA–trnH and/or trnL–trnF sequences for 13 addi-
tional accessions of the I. subser. Sibiricae species retrieved from GenBank (Tree length of 469 steps, CI
= 0.7655, RI= 0.8579). The numbers above and below branches indicate bootstrap values (> 50%) for
MP/ML analyses and Bayesian posterior probabilities (>0.90) for BI analysis, respectively. Haplotype and
locality codes correspond to those in Table 2. The asterisk (*) indicates species names and accession num-
bers of the sequences retrieved from GenBank. Bars indicate the geographical origin of the examined pop-
ulations: white –East Asia; red –Europe and Western Siberia; grey –cultivated plants.

Full-size DOI: 10.7717/peerj.10088/fig-5

of three I. sibirica accessions (voucher Mosulishvili G99-12, RSA; see Wilson, 2009) and
two (isolates ISD1 and ISD2, Lee & Park, 2013) of six accessions of I. sanguinea from the
Republic of Korea were placed outside of the I. subser. Sibiricae clade but clustered with
the I. ser. Laevigatae species (Fig. 5B). The sequence divergence (KS) calculated for two
cpDNA regions between Korean accessions of I. sanguinea placed in the I. ser Laevigatae
clade and I. sanguinea accessions placed in the I. subser Sibiricae clade was 0.009510
that was comparable with divergence between species in other series of I. sect Limniris
(0.00451–0.01223; Boltenkov et al., 2018).
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DISCUSSION
The overlapping of some previously considered diagnostic characters of I. sanguinea, I.
sibirica, and I. typhifolia (see Fig. 3, Table 3) indicates that they constitute a group of
morphologically very similar taxa, difficult to tell apart. We came to the conclusion that
the key characters reported to distinguish I. typhifolia from I. sibirica are not stable and
overlap among specimens attributed to either name.

Our examination of herbarium specimens and the analysis of the relevant literature
revealed a wide range of variation in I. sanguinea and I. sibirica morphological characters.
Key morphological characters discriminating I. sanguinea and I. sibirica are considered
the features of the flowering stem structure. However, our data show that the flowering
stems can be longer or shorter than the basal leaves, depending on the phenological phase,
as well as simple or branched (Table 3). Skrypec & Odintsova (2017) also reported a high
variability of the I. sibirica inflorescences structure. In our survey of herbarium specimens
from the I. subser. Sibiricae distribution range, most plants had a flowering stem with
terminal head of two flowers. In some parts of the I. subser. Sibiricae distribution range,
plants with terminal and one lateral head are rarer (i.e., Omsk Oblast, Novosibirsk Oblast,
and Buryatia Republic) or are the only ones (northern Kazakhstan, north of the European
part of the Russia, Irkutsk Oblast, Zabaykalsky Krai, Sakha Republic, and Russian Far East).
Previously, Poljakov (1958) indicated that the plants with terminal head is the typical of I.
sibirica in northern Kazakhstan. Therefore, contrary to the general assumption of many
botanists, inflorescence structure could not be a diagnostic key to distinguish species in I.
subser. Sibiricae. In addition, our data showed that leaf width is variable in both I. sanguinea
and I. sibirica, so it could not be used as a diagnostic character either. Differences of these
characters observed may be the result of environmental conditions and the variability of
characters within the species.

In the present study, we also failed to genetically distinguish between specimens collected
in different localities of the I. subser. Sibiricae distribution range where I. sanguinea or I.
sibirica are considered to occur (Figs. 4 and 5). Our analyses based on sequence variability
in four non-coding regions of cpDNA showed an absence of clear differentiation between
plants of I. sanguinea growing eastward Lake Baikal and I. sibirica distributed in Europe
andWestern Siberia.All specimens studied were closely related to each other and are clearly
separated from other species in I. sect. Limniris. However the samples from the I. sanguinea
distribution range together with a specimen RMS from European part of the range formed
a distinct clade supported only in BI analysis (Fig. 5). Only one single point mutation in psb
A–trn H distinguished these groups indicating their minimally differentiation. Nucleotide
divergence of cpDNA between these groups (KS= 0.00056) is lower than between species
in other series of I. sect. Limniris (0.00451–0.01223; Boltenkov et al., 2018) and comparable
with divergence between populations of some Iris species, e.g., I. lactea (0.00037–0.00112;
Boltenkov, Artyukova & Kozyrenko, 2016). The star-like structure of haplotype diversity
also indicates an absence of deep phylogenetic split between plants from European and
Asian parts of the I. subser. Sibiricae distribution range and is consistent with a rapid range
expansion (Ferreri, Qu & Han, 2011).
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In phylogenetic trees (Figs. 5A, 5B), all 44 specimens of Siberian irises studied as well
as most accessions of I. subser. Sibiricae available in GenBank (including I. typhifolia)
form a single monophyletic clade sister to the clade including species of I. ser. Laevigatae.
Previously, the monophyly of the I. subser. Sibiricae species was also shown in phylogenetic
study of Tillie, Chase & Hall (2000). In other studies, where the same one specimen
(voucher Mosulishvili G99-12, RSA) was used as sole representative of I. sibirica, this
specimen was embedded within the clade comprising species from I. ser. Laevigatae
(Wilson, 2009; Mavrodiev et al., 2014) or I. ser. Lacteae (Jiang et al., 2018), thus making I.
subser. Sibiricae polyphyletic. Crespo, Martínez-Azorín & Mavrodiev (2015) have pointed
out that additional samples of I. sibirica should be sequenced to determine the phylogenetic
position of this species at the infrageneric level. The specimen Mosulishvili G99-12 was
confirmed as amisidentification (CarolWilson &MarineMosulishvili, 2020, pers. comm.).
Only DNAmaterial, but no herbarium voucher was collected byMosulishvili fromKazbegi,
north-eastern Georgia, in 1999. Moreover, it was noted (Mosulishvili, 2020, pers. comm.),
that I. sibirica was never found near Kazbegi, while I. pseudacorus is common in this area.
Other two samples of I. subser Sibiricae (isolates ISD1 and ISD2, Lee & Park, 2013) that had
fallen into the clade of the I. ser Laevigatae species were of I. sanguinea from the Republic
of Korea. Large divergence of these samples from all other samples of I. sanguinea from the
Republic of Korea and other parts of the distribution range is comparable with divergence
between different species of I. sect Limniris and the further studies are required to establish
the species affiliation of these Korean samples. In this work, none of the studied specimens
belonging to I. subser. Sibiricae fell within the I. ser. Laevigatae clade. Thus, our results
clearly show that I. subser. Sibiricae is a monophyletic taxon that is strongly supported as
sister to the I. ser. Laevigatae species.

The broad morphological variation, including inflorescence structure, observed in the
group surveyed, together with the molecular results, point out to the difficulty in separating
I. sanguinea at specific rank. Evidently, I. sibirica includes a set of morphotypes, but it
remains homogeneous taxonomically, without possible recognition of infraspecific taxa
or separate species, as evidenced by the molecular data obtained in this study. Therefore,
we regard I. sanguinea, I. sibirica, and I. typhifolia as synonymous and formally propose a
reduction of I. sanguinea and I. typhifolia to I. sibirica, which is the earliest legitimate name
and has priority (Art. 11.3, Turland et al., 2018).

Taxonomic treatment
In the present study we confirm that I. subser. Sibiricae includes only a single variable
species, I. sibirica. It is the most widespread Iris species, occurring from Central and
Eastern Europe, including northeast Turkey, northern Kazakhstan, and Caucasus, to
Siberia, East Asia (northern Mongolia, northern and eastern China, Korean Peninsula, and
Japan), and the southern Russian Far East. It is found growing wild in moist meadows
along river valleys. It is cultivated worldwide and sometimes naturalized. Morphologically,
I. sibirica is distinct from I. subser. Chrysographes species by having shorter bracts (2–6 cm
long), a much shorter perianth tube (no more than 0.5 cm long), and green basal leaves.
The synonymic list of taxa specified in the present work, including types, is provided below.
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Iris sibirica L., Sp. Pl. 1: 39. 1753. ≡ Iris pratensis Lam., Fl. Franç. 3: 498. 1779, nom.
illeg. (Art. 52.1, Turland et al., 2018).≡ Biris sibirica (L.) Medik., Staatswirthschaftl. Vorles.
Churpfälz. Phys.-Ökon. Ges. Heidelberg, 1: 257. 1791. ≡ Iris strictaMoench, Methodus, 2:
528. 1794, nom. illeg. (Art. 52.1).≡ Iris angustifolia Salisb., Prodr. Stirp. Chap. Allerton: 44.
1796, nom. illeg. (Art. 52.1).≡ Xiphion sibiricum (L.) Schrank, Flora 7(2, Beil.): 19. 1824.≡
Xiphion pratense Parl., Nuov. Gen. Sp. Monocot.: 45. 1854.≡ Limniris sibirica (L.) Fuss, Fl.
Transsilv.: 637. 1866. ≡ Xyridion sibiricum (L.) Klatt, Bot. Zeitung (Berlin), 30: 500. 1872.
– Limnirion sibiricum (L.) Opiz, Seznam: 5. 1852, nom. inval. (Art. 38.1). – Iris sibirica
var. typica Maxim., Bull. Acad. Imp. Sci. Saint-Pétersbourg, 26: 519. 1880, nom. inval .
(Art. 24.3). Type: [Specimen from a cultivated plant]. sibirica 9, HU [Horto Upsaliensis],
Herb. Linnaeus (lectotype: designated by Altinordu & Crespo, 2016: 297, LINN! [LINN No.
61.20]).

= Iris orientalis Thunb., Trans. Linn. Soc. London, 2: 328. 1794, nom. illeg. (non Mill.,
Gard. Dict., ed. 8: Iris No. 9. 1768; Art. 53.1), syn. nov. ≡ Xiphion orientale Schrank, Flora
7(2, Beil.): 19. 1824. ≡ Iris sibirica var. orientalis (Schrank) Baker, J. Linn. Soc., Bot. 16:
139. 1877. ≡ I. extremorientalis Koidz., Bot. Mag. (Tokyo), 40: 330. 1926, nom. nov. (Art.
6.11). Type: Japan. [Note on the upper side]: Iris sibirica, Fl. jap. p. 33, Barin; [Note on
the reverse side]: e Japonia, Thunberg s.n., Herb. Thunberg (lectotype: UPS [UPS-THUNB
1144, image!], designated here by E.V. Boltenkov).

= Iris sanguinea Hornem., Hort. Bot. Hafn. 1: 58. 1813, syn. nov. ≡ I. sibirica var.
sanguinea (Hornem.) Ker Gawl., Bot. Mag. 39: t. 1604. 1814. ≡ Limniris sanguinea
(Hornem.) Rodion., Bot. Zhurn. (Moscow & Leningrad), 92: 551. 2007. – Iris sanguinea
Donn, Hort. Cantabrig., ed. 6: 17. 1811, nom. inval. (Art. 38.1) – I. sanguinea var. typica
Makino, J. Jap. Bot. 6: 32. 1930, nom. inval. (Art. 24.3). Type: [Specimen from a cultivated
plant]. [Handwriting 1]: Iris sanguinea, ex hort. bot. Hafn.; [Handwriting 2]: [Iris sanguinea
] Don., ad I. sibir [ica ]. L. ref. spr., Herb. Hornemann (lectotype: designated by Boltenkov,
2018: 178, C [C10022296, image!]).

= Iris sibirica var. haematophylla Besser, Flora, 17(1, Beibl.): 25. 1834, syn. nov. Type:
[Specimen from a cultivated plant]. Iris (sibirica) haematophylla, Dahuria, Fischer s.n.,
Herb. Lindley (neotype: CGE! [CGE14724], designated here by E.V. Boltenkov).

= Iris typhifolia Kitag., Bot. Mag. (Tokyo), 48: 94. 1934, syn. nov. ≡ Limniris typhifolia
(Kitag.) Rodion., Bot. Zhurn. (Moscow&Leningrad), 92: 551. 2007. Type: China. [Liaoning
Province], Iris sibirica? . . . 14 Aug. 3 [1928], K. Yamatsuta 60 (holotype: TI [image!]).

CONCLUSIONS
In Iris subser. Sibiricae, both morphological and geographical aspects are important
to delimitate species. In this group, I. sanguinea, I. sibirica, and I. typhifolia have been
recognized. However, analyses of morphological and molecular phylogenetic data may
allow positioning the species among its relatives more exactly. In the case presented here,
we reconstructed the phylogeny based on four non-coding regions of plastid DNA (trnS–
trnG, trnL–trnF, rps4–trnSGGA, and psbA–trnH), and explored morphological characters
to determine the relationship between species. At the same time, we once again showed
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that these regions are very informative for the taxonomy of irises, as they allow identifying
species. Our results show that the morphological characters of I. sanguinea, I. sibirica, and
I. typhifolia are overlaping. Phylogeny studies show that in accordance with the current
circumscription, Iris subser Sibiricae is not polyphyletic. All the three species are nested
together forming a well-supported monophyletic group (BP 100%, PP 1.0). It is thus
concluded that I. sanguinea and I. typhifolia are conspecific with I. sibirica, a previously
described species.
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