

Enhanced Verification by Temporal Decomposition

Mike Case, Hari Mony, Jason Baumgartner, Bob Kanzelman FMCAD 2009, Nov. 16, 2009

Introduction

- Domain: gate-level property checking (and SEC)
- Problem: simplify the design; remove irrelevant detail

[XKCD]

- Transient Signals
 - What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - What are they and where do they come from?
 - How to eliminate them
- Experimental Results

- Transient Signals
 - What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - What are they and where do they come from?
 - How to eliminate them
- Experimental Results

Transient Signals

 Definition: a *transient signal* takes arbitrary values for a finite number of clock cycles and then assumes a fixed constant value

Why Do They Occur? – Initialization Sequences

Why Do They Occur? – Verification Testbenches

FPU Pipeline

• Testbench \rightarrow all FPU signals are transient

	=
	_
(100 U	
	_

How Common Are Transient Signals?

- On 105 "hard" IBM designs: 49% had transients
- On 27 "hard" HWMCC designs: 25% had transients

	E E	T. Fo	und		
Design	ANDs	Regs	Inputs	Num.	Dur.
IBM0	3039	291	45	8	1
IBM6	77313	9829	544	1	1
IBM8	3011	396	86	2	2
IBM22	11218	908	924	23	10
IBM23	8713	477	6	1	1
IBM28	116322	21607	1316	1150	74
IBM31	7291	696	61	4	3
IBM32	8177	698	65	4	3
nusmvbrp	464	52	11	2	1
nusmvguidancep2	1748	86	84	2	1
nusmvqueue	2376	84	82	2	1
nusmvreactorp2	1242	76	74	2	1
r17b	4087	322	613	18	2

- Transient Signals
 - -What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - What are they and where do they come from?
 - How to eliminate them
- Experimental Results

Detecting Transients With Ternary Simulation

Fast, but incomplete

Temporal Decomposition For Verification

 Definition: the *transient duration* is the number of time steps before a transient settles to its constant value

Time Shifting for Unbounded Verification

• Modeling: a register's *initial values* is an arbitrary combinational function

New design starts in any state reachable in N steps.

Simplification Results

	T. Fo	und	Transients Simp	olified	Logic Size	e Change
Design	Num.	Dur.	Num.	Dur.	TR	Total
IBM0	8	1	8	1	-1.10%	1.83%
IBM6	1	1	1	1	-1.44%	2.05%
IBM8	2	2	2	2	-0.27%	2.76%
IBM22	23	10	23	10	-17.17%	19.48%
IBM23	1	1	1	1	-9.57%	0.00%
IBM28	1150	74	0	0	0.00%	0.00%
IBM31	4	3	4	3	-2.23%	7.26%
IBM32	4	3	4	3	-1.18%	7.18%
nusmvbrp	2	1	2	1	-8.18%	3.18%
nusmvguidancep2	2	1	2	1	-1.89%	15.14%
nusmvqueue	2	1	2	1	-4.10%	11.79%
nusmvreactorp2	2	1	2	1	-5.52%	15.82%
r17b	18	2	16	1	-30.38%	44.03%
	Reset trans	ource	s limit the	• TI	R decrea	ses
	simplified			In In	itializatio creases	n logic

- Transient Signals
 - What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - -What are they and where do they come from?
 - How to eliminate them
- Experimental Results

IBM

We have lots of initialization inputs

 Definition: an *initialization input* is a primary input that is only needed to compute the initial state

	I	Design Siz	e	
Design	ANDs	Regs	Inputs	Init. Inputs
IBM0	3039	291	45	0
IBM6	77313	9829	544	0
IBM8	3011	396	86	1
IBM22	11218	908	924	275
IBM23	8713	477	6	0
IBM28	116322	21607	1316	232
IBM31	7291	696	61	0
IBM32	8177	698	65	0

Transient Simplification Creates Initialization Inputs

- Transient Signals
 - What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - -What are they and where do they come from?
 - How to eliminate them
- Experimental Results

Initialization and Observability

- Definition: a signal X is *observable* at signal Y if a toggle at X can cause a toggle at Y
 - Approximate with structural analysis

 Simplify initialization inputs that are never observable at any property

Simplification of Initialization Inputs: High Level

Simplification of Initialization Inputs: High Level

Simplification Results

		Transier	nt Simp.	COI-Based	Input Simp.,	Alg. 3
Design	Init. Inputs	Num.	Dur	Init. Inputs	Removed	Time
IBM0	0	8	1	25	0	1.59 s
IBM6	0	1	1	409	1	9.55 s
IBM8	1	2	2	58	12	0.67 s
IBM22	275	23	10	368	214	1.61 s
IBM23	0	1	1	0	0	0.00 s
IBM28	232	0	0	0	4	0.34 s
IBM31	0	4	3	178	3	0.36 s
IBM32	0	4	3	178	3	0.37 s

Fast, but incomplete

- Transient Signals
 - What are they and where do they come from?
 - How to eliminate them
- Initialization Inputs
 - What are they and where do they come from?
 - How to eliminate them

Experimental Results

Runtime of our Methods + BMC Results

- Two methods presented:
 - Transient Simplification Runtime capped at 10 seconds
 - Initialization Input Simplification Runtime capped at 10 seconds
- Tested on 105 "hard" industrial designs and 27 "hard" academic designs
 - Largest was 632K ands and 97K registers

Benchmark		Trans. Simp. + Input Simp. +
Set	30-min BMC	29-min BMC
IBM (135)	100.00%	102.20%
HWMCC (28)	100.00%	103.68%

TABLE IV.BMC Depth Comparison

Note: this is a systematic improvement on a large benchmark suite, not a collection of anecdotal examples

_		_		_
	_			
			-	_
_	_			
_		·		

Synthesis Results

TABLE VII.	Design St	ize after	Retiming,	On	163 Designs

Flow	Ands	Regs.	Inputs
Baseline (after Comb. Synth.)	100.00%	100.00%	100.00%
Retiming + Retiming	116.81%	91.06%	174.56%
Retiming + Algorithms 2,3	108.04%	90.73%	163.65%

TABLE VI. Design Size after Signal Correspondence, On 163 Designs

Flow	Ands	Regs.
Baseline (after Comb. Synth.)	100.00%	100.00%
Signal Correspondence	76.23%	73.91%
Trans. Simp. + Input Simp. + Signal Correspondence	75.39%	72.21%

	_	
	_	
	_	
<u> </u>		

Verification Results

TABLE V.	Interpolation Co	omparison
	Transient +	Input Simp.
Benchmark Set	Enables Proof	Breaks Proof
IBM (135)	10	3
HWMMC (28)	0	1

- Induction results:
 - Transient logic often breaks induction
 - Our methods can render problems inductive
 - Design 1: 22k Ands and 800 registers, solvable in 42 sec
 - Design 2: 20k Ands and 3k registers, solvable in 56 sec

Conclusion

- Transient and Initialization Input Simplification
- Fast running
- Benefits synthesis and verification

Thank You