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ABSTRACT: 

 

Grassland represents the largest single agricultural vegetation in Germany and provides a multitude of ecosystem services. Timely 

and accurate information about herbage yield and quality is essential for an efficient use of resources, e.g. to be able to match the 

actual available feed with a demand of animals or with other industrial uses. Grasslands frequently exhibit small-scale botanical and 

structural heterogeneity with pronounced spatio-temporal dynamics. These features present particular challenges for sensor 

applications, which, apart from limitations posed by high costs and low temporal and spatial resolutions of many available remote 

sensing (RS) systems, may be the reason for so far little commercial applications of RS in practical grassland farming. This paper 

considers recent developments in the use of spectral and point-cloud data for herbage yield and quality assessment of grasslands. 

Former research showed that single sensor systems mounted on unmanned aerial vehicles produce similar prediction errors in crude 

protein or acid detergent fibre concentrations as proximal sensing tools (e.g. field spectroscopy). However, further improvements are 

needed. Beside improvements of single sensor types, the development of systems with complementary sensors is seen as a promising 

research area. It will help to overcome the limitations of single sensors and provide better information about herbage yield and 

quality. From an agronomic point of view, thematic maps of farm fields are suggested as the central outcome of RS and data analysis. 

These maps are representing the relevant grassland features and therefore can be used as low-cost, appropriate and timely 

information to support farmers’ decision-making. 

 

 

1. INTRODUCTION 

In Europe, grasslands represent approximately 30 to 35 % of the 

total agricultural area (Huyghe et al., 2014). Grassland is mainly 

used for feed provision as forage for ruminants and herbivores 

and as biomass substrate for energy production. Particularly 

permanent grasslands are extremely variable in species 

composition, biodiversity, management practices, as well as in 

productivity (Lesschen et al., 2014). 

A multitude of destructive and non-destructive methods are 

applied to measure or estimate the production and quality of the 

forage (Heather, Nature, 1999; t’ Mannetje, Jones, 2000; 

Wachendorf, 2018). Timely and accurate information about 

forage quality is essential to match actual available feed with 

animals’ demand. For collecting data on herbage yield and 

quality, traditional techniques based on field measurements (e.g. 

by cutting and weighing) are the most accurate methods. To 

achieve representative data for large areas, high number of field 

measurements is needed. It is labour-intensive and time 

consuming, particularly on sites that are remote or difficult to 

access. Further, they are unable to represent variations in the 

spatial distribution of any biomass parameter. Remote sensing 

(RS) with its repetitive data collection and digital format, allows 

fast recording and processing of large quantities of data, making 

it a most interesting source for estimation of biomass over large 

areas (Rossini et al., 2012; Kumar et al., 2015). 

Information collected by RS systems has different features, such 

as the spectral, radiometric, spatial, and temporal resolution, 

and sensors used for biomass and quality estimation vary 

substantially in these characteristics. Recognizing and 

understanding the strengths and weaknesses of different types of 

sensor data are essential for selecting suitable methods for 

herbage yield and quality estimation. This paper reports recent 

findings on the potentials of point cloud and spectral data, either 

obtained by proximal measurements or with sensors based on 

unmanned aerial vehicles (UAV). Though satellite-borne RS 

showed interesting developments, uncertain temporal 

availability of images (e.g. due to unfavourable weather 

conditions) restricts its applicability in practical grassland 

management. Thus, satellite-borne RS applications were not 

covered in the present paper. 

Optical RS (i.e. multi- or hyperspectral spectrometry or imaging) 

is a main source of remotely sensed data for both –herbage yield 

and quality (Cho, Skidmore, 2009; Cho, Skidmore, Corsi, van 

Wieren, Sobhan, 2007; Schut et al., 2006; Mutanga, Skidmore, 

2004). Point cloud data are frequently used in forests (Collins et 

al., 2009; Listopad et al., 2015; McGlinchy et al., 2014), but 

light detection and ranging (LiDAR) sensors and advanced 

photogrammetric methods (i.e. structure from motion, SfM) 

may also provide beneficial information on grassland canopy 

structure. Ultrasonic sensors have a lower spatial resolution than 

LiDAR, however, they provide promising applications for the 

assessment of structural characteristics of grassland canopies. 

Most studies involving herbage yield and quality estimation 

from RS data have used a single sensor or single-date image, 

which may not be sufficient for applications in heterogeneous 

areas or grasslands with high botanical and structural diversity. 

Since RS data are available from a range of sensors, each with 

its own characteristics, a combination of sensors may be 

beneficial in terms of providing better information on the 

observed stand. 
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2. ASSESSMENT OF HERBAGE YIELD AND 

QUALITY IN GRASSLANDS 

2.1 Herbage yield 

The estimation of herbage yield from point clouds is based on 

the relationship between sward height (Schulze-Brüninghoff et 

al. 2019, Wijesingha et al. 2019) or volume (Cooper et al. 2017, 

Wallace et al. 2017) and biomass. In a recent study, Schulze-

Brüninghoff et al. (2019) compared methods based on point 

cloud derived height and volume parameter and showed that the 

best correlation was found for fresh (FMY) and dry mater yield 

(DMY) when height information (i.e. average height in the 

upper percentiles of the point cloud) were used (adj.R² = 0.58 

and 0.72, respectively). Wijesingha et al. (2019) evaluated the 

potential of terrestrial LiDAR (TLS) based height 

measurements for estimating FMY and DMY in three different 

grasslands with different management strategies (i.e. intensive, 

lenient, extensive) over a full growth period (April to October 

2017). Models for predicting DMY achieved better model 

qualities (nRMSE = 11.6 to 25.9 %) than models for FMY 

(nRMSE = 15.0 to 29.1 %). The variation in model quality 

along the growth period could be explained by the viewing 

geometry of the emitted laser impulse and thus the occlusion 

due parts of the vegetation (Wijesingha et al. 2019). In order to 

create point clouds with a high point density and to reduce the 

effect of occlusions, several TLS scans from different locations 

are needed. Schulze-Brüninghoff et al. 2019 showed that two 

scans from opposite directions already deliver acceptable 

accuracies. Further scans increase prediction quality of herbage 

yield only slightly but result in a dramatic increase of the 

processing time and data volume. Since many scans are needed 

to cover a larger area (e.g. > 1ha) and the spatial coverage is 

limited, TLS approaches are not appropriate for large-scale 

estimation of grassland yield.  

To derive point clouds, photogrammetric approaches based on 

numerous photographs from different viewing angles might be 

an alternative (Wijesingha et al. 2019, Grüner et al. 2019, 

Forsmoo et al. 2018, Viljanen et al. 2018, Bareth, Schellberg 

2018) to TLS measurements. While point clouds created from 

TLS have a deeper penetration into the grassland canopy and 

can also be affected by single plant parts sticking out (e.g. grass 

flowers/stems), point clouds from SfM approaches are covering 

rather the upper percentiles of the canopy (Figure 1) and are 

thus less susceptible for single extreme values. 

 
Figure 1: Comparison of point cloud density and penetration 

depth of TLS (left) and SfM (right) approaches 

 

Traditional field methods for estimating yield in grass swards 

(e.g. height measurements or the rising plate meter) can also be 

affected by the canopy structure and are not applicable on large 

fields. To compensate for this effect, SfM approaches have been 

proven to deliver equal or even better yield estimations than 

traditional field methods (Grüner et al. 2019, Bareth, Schellberg 

2018). For example, Grüner et al. 2019 showed an improved 

prediction quality (i.e. lower relative prediction error) for a 

SfM-based DMY prediction for a clover-grass mixture (13 %) 

than predictions based on a large number of height 

measurements (rRMSEP = 19 %). For a lucerne-grass mixture 

the predictive performance between the SfM and the manual 

height measurements was more similar, which could be 

explained by the different plant architecture of clover and 

lucerne (Grüner et al. 2019). 

Although herbage yield estimations based on satellite spectral 

data (e.g. Chladil, Nunez 1995) or field spectrometric data 

(Reddersen et al. 2014) are characterised by a long history, only 

the recent developments in drone based spectral data collection 

allows to consider the high spatial variability in yield 

(Wachendorf et al. 2017). In an experimental approach with two 

typical legume-grass mixtures (clover-grass and lucerne-grass) a 

low-cost multispectral camera system (Parrot Sequioa) was 

mounted on a “off-the-shelf” drone system to predict forage 

yield along the whole growing period in 2018. The camera 

operated with four spectral bands (i.e. green, red, rededge, and 

near-infrared), which all have a spatial resolution of 1.2 

megapixel. The camera was equipped with an up-welling 

sunshine sensor, measuring both incoming radiance along with 

the irradiance from the ground. This allows a direct conversion 

from radiance values into reflectance information and makes the 

camera a robust and easy-to-use tool even under non-perfect 

light conditions and for multi-temporal measurements. The 

experiment consisted of 24 plots (1.5 m x 10 m) containing 

mixtures of clover-grass and lucerne-grass as well as their pure 

stands (legumes and grasses). In all plots, biomass samples were 

taken at nine sampling dates between May and October 2018. 

Three samplings were made one day before the actual harvest of 

the complete experiment, which represents the peak in biomass 

production for these kind of managed grassland types. Prior to 

each biomass harvest a spectral measurement using the drone 

system was conducted and the average reflectance of all spectral 

bands were extracted for each plot. 13 spectral vegetation 

indices were calculated based on the average reflectance values. 

Using a machine learning approach, a random forest regression 

model was calibrated using the average reflectance values and 

the spectral indices as explanatory variables (n = 17).  

The prediction of FMY and DMY showed comparable good 

results with R²val = 0.64 and 0.65, respectively. The prediction 

error was below 20% for both yield measures. The prediction 

was improved when individual models for clover grass and 

lucerne grass mixtures were calibrated (nRMSEval = 0.17 and 

0.14 for clover grass and 0.16 and 0.14 for lucerne grass for 

FMY and DMY respectively) (Figure 2). The prediction models 

in combination with the multispectral drone data can 

subsequently be used to predict FMY and DMY on larger scales 

(Figure 2). 

While multispectral sensors collect reflectance information only 

for a few single wavelengths, hyperspectral sensors can be used 

to collect spectral information almost continuously for a certain 

spectral range (Wachendorf et al. 2017). So far, the potential of 

hyperspectral drone-based data for predicting herbage yield was 

rarely examined (de Oliveira et al. 2019, Capolupo et al. 2015). 

de Oliveira, for example, evaluated the potential of a 

hyperspectral drone-based system (36 spectral bands) in 

estimating FMY and DMY in a highly intensive grassland 

experiment. The authors found very low prediction errors of 

approx. 5 % for FMY and 2.5 %. for DMY. A reason for this 

exceptional low prediction error is the very small variation in 

the yield (de Oliveira et al. 2019). In another study eight 

grasslands with different management practices were sampled 

with a hyperspectral full-frame camera (124 bands, 450-950 nm) 
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close to their harvest (Astor et al. in prep.). The study sites were 

located in central Germany and included seven extensive 

grasslands in nature protected areas with one cut (at three 

different cutting dates between 15 Jun and 15 July) and no 

fertilisation, and one intensively used fertilized grassland. The 

intensively used grassland was cut up to three times. Thus, 

together ten datasets along the growth period in 2018 were 

obtained and included in a Cubist regression model (Quinland, 

1992). Using 100 times repeating cross-validation with keeping 

25 % of the samples out for validation at each run, the 

prediction model for FMY and DMY was evaluated. 

 

Figure 2: Predicted fresh matter (top) and dry matter yield 

(bottom) maps for the experimental layout (Grüner et al. 2019) 

for the second sampling date (June 2018). Predicted values are 

based on a random forest regression model using spectral 

reflectance of the green, red, rededge, and NIR bands as well as 

14 spectral indices 

 

The median R²val for fresh matter biomass was 0.86 and for 

DMY the R²val was 0.76. The relative prediction error was 39 % 

and 36 %, respectively. The error indicates that still some 

portion of the total variation in the grassland yield cannot be 

predicted using spectral information solely. A reason could be 

the vegetation density close to the harvest dates which leads to 

saturation effects of the incoming radiation and thus to a 

disturbance of the biomass-reflectance relationship. 

Furthermore, nature conservation grasslands close to their 

harvest dates are already quite mature (i.e. high proportion of 

dead material). It also can hamper the prediction of yield using 

spectral reflectance information (Wachendorf et al. 2017). 

As an approach to compensate for these kind of saturation 

effects the fusion of datasets from different sensors can be 

tested. Data from sensors detecting different vegetation 

characteristics like structural characteristics derived from point 

cloud and biochemical characteristics derived from spectral 

information should be used (Wachendorf et al. 2017). When 

combining information from two or more sensor systems, 

classic ordinary linear regression approaches will not work due 

to, among other things, the high number of inter-correlated 

explanatory variables. In this case machine learning approaches 

have been shown to have a great potential (Möckel et al. 2017, 

Safari et al. 2016). In a recent study four machine learning 

methods (support vector machines, random forest, partial least 

squares and gradient boosting machines) were tested for their 

prediction quality of FMY and DMY. TLS and drone based 

hyperspectral measurements were used solely and in 

combination. All machine learning methods revealed lower 

prediction errors and higher R²val values when the information 

of both sensor techniques was used together (Figure 3), 

confirming the expectation of better prediction performance 

when sensor data fusion is used (Wachendorf et al. 2017). 

 

Figure 3: Prediction model quality for fresh matter yield (black) 

and dry matter yield (grey) for four machine learning methods 

(svm: support vector machines, rf: random forest, pls: partial 

least squares, gbm: gradient boosting machines) using only 

point cloud data (tls), hyperspectral data (cub), or both datasets 

together (comb) 

 

The best prediction performance for both FMY and DMY was 

achieved by using the random forest regression (rRMSE = 29.5, 

24.7 and R² = 0.80, 0.80 for FMY and DMY respectively). 

Overall, the prediction quality of herbage yield using remote 

sensing data is very good. However, the prediction accuracies in 

the future need to be improved to make drone based remote 

sensing approaches applicable in practical agricultural grassland 

management. For this a combination of remote sensing data 

with grassland yield models (Taubert et al. 2012) might lead to 

the necessary model qualities. 

 

2.2 Herbage quality 

For herbage quality monitoring and mapping techniques ranging 

from satellite RS to field spectroscopy and from optical RS to 

synthetic aperture radar have been used (Ali et al., 2016; 

Wachendorf, 2017). However, the most of studies with RS 

based forage quality estimation have utilised field spectroscopy, 

which collects point level spectral reflectance data between 

visible to short-wave infrared areas of the electromagnetic 

spectrum. Crude protein (CP), nitrogen (N), neutral detergent 

fibre (NDF) and acid detergent fibre (ADF), indicating the less 

digestible part of fibre constituents, are the most common 

forage quality parameters that have been estimated using field 

spectroscopy data for different grasslands with significant 

accuracy (Biewer et al., 2009; Mutanga et al., 2004; Pullanagari 

et al., 2012; Ramoelo et al., 2013b). 

Spectral images were acquired from eight grasslands in the 

mountainous region of northern Hesse, Germany (ranging 

between 135 and 846 m.a.s.l.), which strongly differed in 
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management practices and composition of species. A 

hyperspectral snapshot camera (Cubert Hyperspectral Firefly 

S185 SE (Cubert GmbH, Ulm, Germany) with 126 bands 

between 450 - 950 nm was used, which was attached to an UAV. 

From various predictive modelling regression algorithms tested, 

support vector regression (SVR) provided the highest precision 

and accuracy for CP estimation (median nRMSEp = 9.6 %; 

median R2 = 0.81), while the cubist regression (CBR) model 

provided the best estimation of ADF (median nRMSEp = 

13.0 %; median R2 = 0.60). The plots of fit for the best-

performing models show the model fits across all grasslands 

(Figure 4). Overall, prediction accuracy tended to be lower at 

higher levels of CP, whereas for ADF the accuracy was 

consistent across the whole range of observed values. Similar 

relative error pattern for CP and ADF estimation models was 

obtained in previous studies that utilised field spectroscopy data 

(Kawamura et al., 2008; Pullanagari et al., 2012; Safari et al., 

2016). Further analysis showed that the wavelength (718 nm), 

which obtained the highest linear correlation with CP turned out 

to be the most crucial wavelength for both – best-performing 

CP and ADF models. However, the identified first most 

important wavelengths were not related to any foliar chemical 

absorption feature, such as chlorophyll, protein or cellulose 

(Curran, 1989). According to Curran (1989), the absorption 

features that relate to CP and ADF can be found at wavelengths 

in the shortwave infrared region of the spectrum (1400 – 3000 

nm). Singh et al. (2017) also confirmed that important 

wavelengths for ADF were in the shortwave infrared region of 

the spectrum. The camera used in the present study did not 

capture shortwave infrared bands. 

eGL1

eGL2

eGL3

eGL4

eGL5

eGL6

eGL7

iGL1  

Figure 4: Observation vs prediction scatter plots from the 

resulting models for CP (left) and ADF (b) concentrations in 

different grasslands. Symbols represent different grasslands. 

The dashed line is the 1:1 line and the solid line represents the 

linear regression between observed and predicted values. Shown 

are 100 different model runs used in the model training and 

testing phase 

 

To calibrate ultrasonic and hyperspectral reflectance sensors, 

Safari et al. (2016) used extremely heterogeneous pastures 

continuously grazed by cows with three stocking density 

treatments (moderate, lenient and very lenient stocking). 

Hyperspectral analysis by a modified partial least square 

regression (MPLS) resulted in maximum accuracy for the 

prediction of ADF and CP (R2
CV = 0.63-0.85). Any reduction of 

hyperspectral data into vegetation indices based on few specific 

narrow wavebands or satellite broadbands reduced prediction 

accuracy significantly. However, prediction of ADF and CP was 

improved by a combined analysis of ultrasonic sward height and 

vegetation indices (Table 1), so that most calibration models 

exceeded an RPD value (Ratio of standard deviation and 

standard error of prediction) of 1.4, which is considered as an 

acceptable predicting capability for variable field conditions. 

 

Table 1. Cross-validation results for prediction of ADF and CP 

in the biomass of heterogeneous pastures from ultrasonic sward 

height (USH) the normalised difference spectral index (NDSI) 

exclusively and as a combination of both (USH + NDSI). 

Values in bold indicate best model approaches (adjusted from 

Safari et al., 2016). 

  USH 

R²CV / SECV 

NDSI 

R²CV / SECV 

USH+NDSI 

R²CV / SECV 

ADF Spring 0.50 / 2.95 0.45 / 3.12 0.68 / 2.19 

 Summer 0.29 / 5.33 0.63 / 3.90 0.66 / 3.79 

 Autumn 0.28 / 5.34 0.46 / 4.55 0.61 / 3.82 

CP Spring 0.03 / 1.89 0.41 /.1.41 0.45 / 1.39 

 Summer 0.03 / 3.59 0.84 /.1.42 n.s. 

 Autumn n.s. 0.60 / 1.95 n.s. 

 

3. CONCLUSIONS 

This paper considers recent developments in using spectral and 

point-cloud data for herbage yield and quality assessment of 

grasslands. Even if single sensor systems mounted on 

unmanned aerial vehicles compared to proximal sensing tools 

(e.g. field spectroscopy) produce similar prediction errors in 

crude protein or acid detergent fibre concentrations, there is still 

a need for further improvements. Beside improvements of 

single sensor types, the development of systems with 

complementary sensors must be advanced to help overcoming 

the limitations of single sensors and to provide better 

information about herbage yield and quality. 

Though few studies prove the multi-site validity of RS models 

for the estimation of herbage yield and quality, many grassland 

types are still not considered (i.e. wet or intensively managed 

grasslands) and heterogeneous pastures still represent a major 

challenge. Disruptive grassland features (e.g. senesced plant 

material, soil signals, animal excrements) are difficult to assess 

or to filter out. Spectral unmixing or deep learning methods may 

offer interesting perspectives. 

From an agronomic point of view, the central outcome of RS 

and data analysis are thematic maps of farm fields showing the 

relevant grassland features. Produced maps can be used to 

support various farm management decisions. These include 

measures at the (i) strategic level, where long-term decisions are 

made based on aggregated data over time regarding future 

scenarios created from downscaled climate scenarios (e.g., farm 

infrastructure planning); (ii) tactical level, where medium-term 

decisions are made (e.g., evaluation of clover dry-matter 

contribution in pastures and choice of crop species for 

oversowing); and (iii) operational level, where farmers make 

day-to-day decisions based on spatially explicit real-time data 

on yield and quality of pastures (e.g., planning of ration, pasture 

rotation and fertilizer application). Eventually, the overarching 

goal will be to provide cheap, appropriate and timely 

information to farmers to support decision-making. 

 

4. ACKNOWLEDGMENTS 

The authors are grateful to E. Grüner, J. Wijesingha, D. 

Schulze-Brüninghoff and M. Wengert for providing sensor data 

and analysis. We thank A. Gerke for coordination and 

implementation of field work. 

 

5. REFERENCES 

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., Green, S., 2016. 

Satellite remote sensing of grasslands: from observation to 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-267-2019 | © Authors 2019. CC BY 4.0 License.

 
270



 

management – a review. J. Plant Ecol. 9, 649–671. 

doi:10.1093/jpe/rtw005. 

 

Bareth, G., Schellberg, J., 2018: Replacing Manual Rising Plate 

Meter Measurements with Low-cost UAV-Derived Sward 

Height Data in Grasslands for Spatial Monitoring. PFG J. 

Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 157–168. 

doi.org/10.1007/s41064-018-0055-2 

 

Biewer, S., Fricke, T., Wachendorf, M., 2009. Development of 

canopy reflectance models to predict forage quality of legume-

grass mixtures. Crop Sci. 49, 1917–1926. 

doi:10.2135/cropsci2008.11.0653. 

 

Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., 

Suomalainen, J., 2015: Estimating Plant Traits of Grasslands 

from UAV-Acquired Hyperspectral Images: A Comparison of 

Statistical Approaches. ISPRS Int. J. Geo-Inf. 4, 2792–2820. 

doi.org/10.3390/ijgi4042792 

 

Cho, M. A., and Skidmore, A. K., 2009: Hyperspectral 

predictors for monitoring biomass production in Mediterranean 

mountain grasslands: Majella National Park, Italy. International 

Journal of Remote Sensing 30(2), 499–515. 

doi.org/10.1080/01431160802392596 

 

Chladil, M. A. and Nunez, M., 1995: ‘Assessing grassland 

moisture and biomass in Tasmania. The application of remote 

sensing and empirical models for a cloudy environment,’, Int. J. 

Wildland Fire. 5, 165–171. doi.org/10.1007/s10661-005-1611-y 

 

Cho, M. A., Skidmore, A., Corsi, F., van Wieren, S. E., & 

Sobhan, I., 2007: Estimation of green grass/herb biomass from 

airborne hyperspectral imagery using spectral indices and 

partial least squares regression. International Journal of Applied 

Earth Observation and Geoinformation 9(4), 414–424. 

doi.org/10.1016/j.jag.2007.02.001. 

 

Curran, P.J., 1989: Remote sensing of foliar chemistry. Remote 

Sens. Environ. 30, 271–278. doi:10.1016/0034-4257(89)90069-

2. 

 

Collins, J. N., Hutley, L. B., Williams, R. J., Boggs, G., Bell, D., 

& Bartolo, R., 2009: Estimating landscape-scale vegetation 

carbon stocks using airborne multi-frequency polarimetric 

synthetic aperture radar, SAR) in the savannahs of north 

Australia. International Journal of Remote Sensing 30(5), 

1141–1159. doi.org/10.1080/01431160802448935. 

 

Cooper, S.D., Roy, D.P., Schaaf, C.B., Paynter, I., 2017: 

Examination of the potential of terrestrial laser scanning and 

structure-from-motion photogrammetry for rapid nondestructive 

field measurement of grass biomass. Remote Sens. 9. doi.org/ 

10.3390/rs9060531. 

 

de Oliveira, R. A., Näsi, R., Niemeläinen, O., Nyholm, L., 

Alhonoja, K., Kaivosoja, J., Viljanen, N., Hakala, T., Nezami, 

S., Markelin, L. Jauhuaunen, L. Honkavaara, E., 2018: 

Assessment of rgb and hyperspectral uav remote sensing for 

grass quantity and quality estimation. International Archives of 

the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, Volume XLII-2/W13., 1305-1310. 

doi.org/10.5194/isprs-archives-XLII-3-1305-2018 

 

Forsmoo, J., Anderson, K., Macleod, C.J.A., Wilkinson, M.E., 

Brazier, R., Smit, I., 2018: Drone-based structure-from-motion 

photogrammetry captures grassland sward height variability. J. 

Appl. Ecol. 94, 237. DOI: 10.1111/1365-2664.13148 

 

Grüner E., Astor T., Wachendorf M., 2019: Biomass Prediction 

of Heterogeneous Temperate Grasslands Using an SfM 

Approach Based on UAV Imaging. Agronomy 2019, 9(2), 54. 

doi.org/10.3390/agronomy9020054 

 

Heather, R., Nature, E., 1999: Grassland Monitoring, in: Crofts, 

A., Jefferson, R.G., (Eds.), Lowland Grassland Management 

Handbook. English Nature, pp. 15:1-15:21. 

 

Huyghe C., De Vliegher A., Van Gils B. and Peeters A., 2014: 

Grasslands and herbivore production in Europe and effects of 

common policies. Les Editions Quae, Centre INRA de 

Versailles France, pp. 300 

 

Kawamura, K., Watanabe, N., Sakanoue, S., Inoue, Y., 2008: 

Estimating forage biomass and quality in a mixed sown pasture 

based on partial least squares regression with waveband 

selection. Grassl. Sci. 54, 131–145. doi:10.1111/j.1744-

697X.2008.00116.x. 

 

Kumar, L., Sinha, P., Taylor, S., & Alqurashi, A. F., 2015: 

Review of the use of remote sensing for biomass estimation to 

support renewable energy generation. Journal of Applied 

Remote Sensing, 9(1), 97696. doi: 10.1117/1.JRS.9.097696. 

 

Lesschen, J.P., Elbersen, B.S., Hazeu, G.W., van Doorn, A., 

Mucher, C.A., Velthof, G.L., 2014: Defining and classifying 

grasslands in Europe - Task 1. Wageningen. 

 

Listopad, C. M. C. S., Masters, R. E., Drake, J., Weishampel, J., 

& Branquinho, C., 2015: Structural diversity indices based on 

airborne LiDAR as ecological indicators for managing highly 

dynamic landscapes. Ecological Indicators 57, 268–279. 

doi.org/10.1016/j.ecolind.20. 

 

McGlinchy, J., van Aardt, J. A. N., Erasmus, B., Asner, G. P., 

Mathieu, R., Wessels, K., & Cawse-Nicholson, K., 2014: 

Extracting structural vegetation components from small-

footprint waveform lidar for biomass estimation in savanna 

ecosystems. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 7(2), 480–490. 

doi.org/10.1109/JSTARS.2013.2274761. 

 

Moeckel T., Safari H., Reddersen B., Fricke T., Wachendorf M., 

2017: Fusion of Ultrasonic and Spectral Sensor Data for 

Improving the Estimation of Biomass in Grasslands with 

Heterogeneous Sward Structure. Remote Sens. 2017 9(1), 98. 

doi.org/10.3390/rs9010098 

 

Mutanga, O., Skidmore, A.K., Prins, H.H.T., 2004: Predicting 

in situ pasture quality in the Kruger National Park, South Africa, 

using continuum-removed absorption features. Remote Sens. 

Environ. 89, 393–408. doi:10.1016/j.rse.2003.11.001 

 

Mutanga, O., & Skidmore, A. K., 2004: Integrating imaging 

spectroscopy and neural networks to map grass quality in the 

Kruger National Park, South Africa. Remote Sensing of 

Environment 90(1), 104–115. doi.org/10.1016/j.rse.2003.12.004. 

 

Pullanagari, R.R., Yule, I.J., Tuohy, M.P., Hedley, M.J., Dynes, 

R.A., King, W.M., 2012: In-field hyperspectral proximal 

sensing for estimating quality parameters of mixed pasture. 

Precis. Agric. 13, 351–369. doi:10.1007/s11119-011-9251-4. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-267-2019 | © Authors 2019. CC BY 4.0 License.

 
271

https://doi.org/10.1080/01431160802392596


 

Quinlan, J.R., 1992: Learning with continuous classes. In 

Proceedings of the 5th Australian Joint Conference on Artificial 

Intelligence, Hobart, Tasmania, 16–18 November 1992, pp. 

343–348. 

 

Ramoelo, A., Skidmore, A.K., Cho, M.A., Mathieu, R., 

Heitkönig, I.M.A., Dudeni-Tlhone, N., Schlerf, M., Prins, 

H.H.T., 2013: Non-linear partial least square regression 

increases the estimation accuracy of grass nitrogen and 

phosphorus using in situ hyperspectral and environmental data. 

ISPRS J. Photogramm. Remote Sens. 82, 27–40. 

doi:10.1016/j.isprsjprs.2013.04.012 

 

Reddersen B., Fricke T., Wachendorf M., 2014: A multi-sensor 

approach for predicting biomass of extensively managed 

grassland. Computers and Electronics in Agriculture 109, 247-

260. doi.org/10.1016/j.compag.2014.10.011 

 

Rossini, M., Cogliati, S., Meroni, M., Migliavacca, M., 

Galvagno, M., Busetto, L., Colombo, R., 2012: Remote sensing-

based estimation of gross primary production in a subalpine 

grassland. Biogeosciences 9(7), 2565–2584. doi: 10.5194/bg-9-

2565-2012. 

 

Safari H., Fricke T., Reddersen B., Möckel T., Wachendorf M., 

2016: Comparing mobile and static assessment of biomass in 

heterogeneous grassland with a multi-sensor system. J. Sens. 

Sens. Syst. 5, 301-312. doi.org/10.1016/j.jag.2018.10.006 

 

Safari, H., Fricke, T., Wachendorf, M., 2016: Determination of 

fibre and protein content in heterogeneous pastures using field 

spectroscopy and ultrasonic sward height measurements. 

Comput. Electron. Agric. 123, 256–263. 

doi:10.1016/j.compag.2016.03.002. 

 

Schulze-Brüninghoff D., Hensgen F., Wachendorf M., Astor 

T., 2019: Methods for LiDAR-based estimation of extensive 

grassland biomass. Computer and Electronics in Agriculture 

156, 693-699. doi.org/10.1016/j.compag.2018.11.041 

 

Schut, A. G. T., van der Heijden, G. W. A. M., Hoving, I., 

Stienezen, M. W. J., van Evert, F. K., & Meuleman, J., 2006: 

Imaging spectroscopy for on-farm measurement of grassland 

yield and quality. Agronomy Journal 98(5), 1318–1325. 

doi.org/10.2134/agronj2005.0225. 

 

Singh, L., Mutanga, O., Mafongoya, P., Peerbhay, K., 2017: 

Remote sensing of key grassland nutrients using hyperspectral 

techniques in KwaZulu-Natal, South Africa. J. Appl. Remote 

Sens. 11, 036005. doi:10.1117/1.JRS.11.036005. 

 

t’ Mannetje, L., Jones, R., 2000: Field and Laboratory Methods 

for Grassland and Animal Production Research. CABI 

Publishing, Oxon, UK. 

 

Taubert, F., Frank, K., Huth, A., 2012: A review of grassland 

models in the biofuel context. Ecol. Model. 245, pp. 84-93. 

doi.org/10.1016/j.ecolmodel.2012.04.007 

 

Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, 

O., Kaivosoja, J., 2018: A Novel Machine Learning Method for 

Estimating Biomass of Grass Swards Using a Photogrammetric 

Canopy Height Model, Images and Vegetation Indices Captured 

by a Drone. Agriculture 8, 70. 

doi.org/10.3390/agriculture8050070 

 

Wachendorf, M., 2018: Advances in remote sensing for 

monitoring grassland and forage production, in: Marshal, A., 

Collins, R. (Eds.), Improving Grassland and Pasture 

Management in Temperate Agriculture. Burleigh Dodds 

Science Publishing, Cambridge. 

 

Wachendorf, M., Fricke, T., Möckel, T., 2017: Remote sensing 

as a tool to assess botanical composition, structure, quantity and 

quality of temperate grasslands. Grass Forage Sci. 1–14. 

doi:10.1111/gfs.12312. 

 

Wallace, L., Hillman, S., Reinke, K., Hally, B., 2017: Non-

destructive estimation of aboveground surface and near-surface 

biomass using 3D terrestrial remote sensing techniques. 

Methods Ecol. Evol. doi.org/10.1111/2041-210X.12759 

 

Wijesingha J, Moeckel T., Hensgen F., Wachendorf M., 2019: 

Evaluation of 3D point cloud-based models for the prediction of 

grassland biomass. International Journal of Applied Earth 

Observation and Geoinformation 78, 352-359. 

doi.org/10.1016/j.jag.2018.10.006 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W16, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W16-267-2019 | © Authors 2019. CC BY 4.0 License.

 
272




