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ABSTRACT 

Purpose  

The decision-making process plays a key role in organizations. Every 

decision-making process produces a final choice that may or may not prompt 

action. Recurrently, decision makers find themselves in the dichotomous 

question of following a traditional sequence decision-making process where 

the output of a decision is used as the input of the next stage of the decision, 

or following a joint decision-making approach where several decisions are 

taken simultaneously. The implication of the decision-making process will 

impact different players of the organization. The choice of the decision- 

making approach becomes difficult to find, even with the current literature and 

practitioners’ knowledge. 

The pursuit of better ways for making decisions has been a common goal 

for academics and practitioners. Management scientists use different 

techniques and approaches to improve different types of decisions. The 

purpose of this decision is to use the available resources as well as possible 

(data and techniques) to achieve the objectives of the organization. 

The developing and applying of models and concepts may be helpful to 

solve managerial problems faced every day in different companies.  

As a result of this research different decision models are presented to 

contribute to the body of knowledge of management science. The first models 

are focused on the manufacturing industry and the second part of the models 

on the health care industry. Despite these models being case specific, they 

serve the purpose of exemplifying that different approaches to the problems 

and could provide interesting results. 

Unfortunately, there is no universal recipe that could be applied to all the 

problems. Furthermore, the same model could deliver good results with certain 

data and bad results for other data. A framework to analyse the data before 

selecting the model to be used is presented and tested in the models developed 

to exemplify the ideas. 

Methodology 

As the first step of the research a systematic literature review on the joint 

decision is presented, as are the different opinions and suggestions of different 

scholars. 
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For the next stage of the thesis, the decision-making process of more than 

50 companies was analysed in companies from different sectors in the 

production planning area at the Job Shop level. The data was obtained using 

surveys and face-to-face interviews. 

The following part of the research into the decision-making process was 

held in two application fields that are highly relevant for our society; 

manufacturing and health care.  

The first step was to study the interactions and develop a mathematical 

model for the replenishment of the car assembly where the problem of 

“Vehicle routing problem and Inventory” were combined. The next step was 

to add the scheduling or car production (car sequencing) decision and use some 

metaheuristics such as ant colony and genetic algorithms to measure if the 

behaviour is kept up with different case size problems.  

A similar approach is presented in a production of semiconductors and 

aviation parts, where a hoist has to change from one station to another to deal 

with the work, and a jobs schedule has to be done. However, for this problem 

simulation was used for experimentation. 

In parallel, the scheduling of operating rooms was studied. Surgeries were 

allocated to surgeons and the scheduling of operating rooms was analysed. The 

first part of the research was done in a Teaching hospital, and for the second 

part the interaction of uncertainty was added. 

Once the previous problem had been analysed a general framework to 

characterize the instance was built. In the final chapter a general conclusion is 

presented. 

Findings and practical implications 

The first part of the contributions is an update of the decision-making literature 

review. Also an analysis of the possible savings resulting from a change in the 

decision process is made. Then, the results of the survey, which present a lack 

of consistency between what the managers believe and the reality of the 

integration of their decisions. 

In the next stage of the thesis, a contribution to the body of knowledge of 

the operation research, with the joint solution of the replenishment, sequencing 

and inventory problem in the assembly line is made, together with a parallel 

work with the operating rooms scheduling where different solutions 

approaches are presented. 

In addition to the contribution of the solving methods, with the use of 

different techniques, the main contribution is the framework that is proposed 

to pre-evaluate the problem before thinking of the techniques to solve it. 
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However, there is no straightforward answer as to whether it is better to have 

joint or sequential solutions. Following the proposed framework with the 

evaluation of factors such as the flexibility of the answer, the number of actors, 

and the tightness of the data, give us important hints as to the most suitable 

direction to take to tackle the problem. 

Research limitations and avenues for future research 

In the first part of the work it was really complicated to calculate the possible 

savings of different projects, since in many papers these quantities are not 

reported or the impact is based on non-quantifiable benefits. The other issue is 

the confidentiality of many projects where the data cannot be presented. For 

the car assembly line problem more computational power would allow us to 

solve bigger instances. For the operation research problem there was a lack of 

historical data to perform a parallel analysis in the teaching hospital.  

In order to keep testing the decision framework it is necessary to keep 

applying more case studies in order to generalize the results and make them 

more evident and less ambiguous. The health care field offers great 

opportunities since despite the recent awareness of the need to improve the 

decision-making process there are many opportunities to improve. Another big 

difference with the automotive industry is that the last improvements are not 

spread among all the actors. Therefore, in the future this research will focus 

more on the collaboration between academia and the health care sector. 

 

 

 

Keywords 
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PREFACE 

This document contains the results of four years of research in the Industrial 

Management Area. This work was developed at the Universidad Politecnica 

de Madrid (Home University) and Politecnico di Milano (Host University), 

with the addition of a short research stage in Argentina (INTEC). 

The main supervisors of this thesis are: 

 Home university supervisor:  Álvaro García Sánchez. 

 Host university supervisor: Alessandro Brun. 

 

Structure of this document 

The following diagram (Fig. 0.1) shows the structure of this document. While 

the first section presents the problem, the solving approach, and the solving 

methods the second section presents the different application fields involved 

with industrial applications. The third section presents the health care 

application, and the forth section is the conclusion and appendix to the thesis. 

This thesis could be read from beginning to end.  However, should the 

reader wish to go to a specific section they can jump to the specific section or 

skip any section. 

Figure 0.1: Structure of the document. 
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Outputs from this research 

The latest improvements in computational power, solving techniques and 

algorithms could help to solve new types of problems. These extra capabilities 

could help us to face problems with different approaches with the purpose of 

obtaining a better solution. 

These approaches were implemented in different application fields, such as 

assembly lines, and operating rooms. The different parts of this job were 

presented at various conferences and workshops. Some parts of this conference 

paper have evolved into a journal paper. 
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SECTION 1. GENERAL INTRODUCTION 

The first section of this thesis has three chapters. In the first chapter a general 

introduction of the thesis is presented. The second chapter is dedicated to the 

problem of awareness and in the third chapter a literature review of the 

decision theory is presented. 

Chapter 1: Introduction 

In this chapter a general introduction to the thesis is provided, followed by the 

motivation of the problem and which approach is used together with more 

detailed settings of the problems, and why these problems had been chosen.  

 

MOTIVATION 

Decision making plays a key role in the success or failure of a company, where 

virtually every job involves a certain type of decision-making. The ability to 

follow a proper decision-making process does not guarantee the success of the 

company, but it will increase the chance of succeeding. Numerous knowledge 

fields have research into this subject because of the direct impact on the 

organization’s performance that the best decision-making process can have. 

The possible benefits of good decision-making are a better use of resources, 

an increase in efficiency, business growth, and achievement of objectives, 

among others. 

The decision-making process has been divided into different stages by 

different authors. Mintzberg et al. (1976) divided it into three phases: 

identification, development and selection. The identification phase is divided 

into recognition and diagnosis, the development phase into design and research 

and finally the selection phase into screen, evaluation-choice and 

authorization. 
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Figure 1.1: The relationship between the phases and routines of a decision-process (Mintzberg et al. 1976). 

Academia has made great efforts for the second and third phase (Mintzberg 

et al. 1976). A quick literature review of the papers that appear in this field 

shows that the most common output of a paper is to highlight that one 

algorithm or solution method is x% faster that a previous algorithm, or that 

any technique could help to have a tighter boundary that helps to offer a better 

solution in less time than other methods.  

It is necessary to keep researching into the development and selection 

stages, since the computational power now available offers us new possibilities 

of addressing problems that some years ago were impossible to solve. But the 

first stage of the decision should not be forgotten since interesting 

improvements could be achieved. The first stage to this achievement is to 

understand all the characteristics of a decision-making process, and the 

possible outputs of any changes in the approach. 

Because several scholarly disciplines share an interest in the decision-

making process these characteristics change depending on the fields. Some 

fields such as operation research and management science are concerned about 

how to improve the decision-making process. Others such as psychology are 

interested in the thinking behind the decision. Despite the models used, a 

common characteristic is the conception of decision-making as an 

information-processing activity taken by one or more actors. (Vroom, 1973). 

Many operations management researchers assume that “integration is a 

must” and that cross-functional coordination and integration are necessary 

(Ketokivi, 2006). In later research Turkulainen et al. (2012) argued that the 

benefits are context-dependent and sometimes disaggregation is beneficial. 

Following the idea of integration, joint decision-making is the one in which 

all the actors involved can participate in the decision-making process (Scharpf, 

1998). However, joint decision-making process benefits could be attractive for 

some circumstances or unappealing in other situations. In this work, the 
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benefits of the decision-making process are explored, when it is advisable to 

use it, and examines when it is better to use another decision-making process.  

The process of joint decision-making results in a paradox since the different 

actors may not achieve the optimal of their operation in order to achieve the 

optimal as a whole. A typical example of this situation is lean implementation. 

A reduction of the inventory reduces the inventory cost but increases the 

transportation cost. The global optimal is not the sum of the optimal of 

transportation plus the optimal of the inventory, but something in between. As 

more actors are taken into account, the difficulty or complexity of the problem 

increases.   

Complexity 

Complexity plays a crucial role in the decision-making process, but there is no 

generally accepted definition of complexity since different authors have 

proposed a definition that only captures a limited part of the phenomena. For 

dynamical systems theory, the complexity measures are usually computational 

complexities, which is a measure of the interactions. For example: 

“Kolmogorov complexity” (Kolmogorov, 1965) for information theory 

defines “the complexity of a string of characters as the length of the shortest 

program that can generate that string. This theory implies that random strings 

are maximally complex.” (Adami, 2002). 

Heylighen (2008) highlights that a fundamental part of a complex system 

is the connected parts via interactions. The components are both distinct and 

connected, autonomous and to some degree mutually dependent. The 

interdependence could create a conflict of goals since the improvement of one 

part could lead to the decrement of the other part. 

Fig. 1.2 shows a diagram of some parts of the complexity in a decision. The 

higher the number of interactions the higher the complexity. The complexity 

could grow for different causes, such as taking into consideration a tactical and 

operational decision together. Also because the decision or many functional 

areas are addressed together, or a long term decision and a combination of the 

previous factors. As more blocks are taken into consideration the complexity 

of the decision increases up to the extreme of a holistic decision where 

everything is taken into account. 
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Figure 1.2: Complexity of the decisions. A higher number of “blocks” implies a higher complexity. 

 

APPROACH 

In the identification of the problem different approaches could be evaluated. 

 The first option is to use the output of the first part of the problem and then 

to use it for the second part of the problem, and so on. We will refer to it 

as a sequential decision. This is common usually in industry and in every 

day decisions. The main advantage is that the complexity of the problems 

is lower than the complete problem. Each part of the problems is more 

likely to be solved up to optimality. 

 The second option is to solve all the problems together. We will refer to 

this option as a joint decision. It consists in tackling the problems together, 

without any subdivision. Joint decisions have a high complexity. 

 

The problems that could be divided into parts and solved independently, 

and where the output of each part does not affect the other parts are outside the 

scope of this research.  In order to define what the entire problem is, it will be 

assumed to be one step higher that the way it is presented in the literature; e.g. 

in the case of the inventory and sequencing problem in a manufacturing plant, 

the entire problem will consist in solving both problems together. The holistic 

decision of the entire operation of the plant is out of the scope of this research 

because the available solution tools make it impossible to deal with this kind 

of problem.  
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INTEGRATED PLANNING IN INDUSTRY. 

 

Industry outsiders may be surprised by how often a functional area overlooks 

or ignores the detailed activity planning of the other area, either because of 

more pressing problems or because it is less interesting. The level integration 

decision should be an output of a decision process and not determined by a 

side answer. 

Leading companies take a more disciplined approach, recognizing that 

improving the level of integration is a critical step towards operational 

excellence. As stated before, it is difficult to integrate everything given the 

high degree of interdependence that exists. Determining the proper level of 

integration with the right level of complexity that could allow us to operate 

efficiently is a major step in the decision process, because an excess or 

deficiency of integration could have negative effects. 

Integrated planning presents important challenges such as coordination 

across teams and functions, and a disciplined management of change to the 

new work structure. 

The decision integration could be vertical, horizontal, or over time.  For this 

work, the vertical decision integration is when the strategic, tactical and 

operational decisions are taken together. The horizontal decision integration is 

when the decisions of the different functional departments are taken together. 

The decision integration over time is when the short, medium, and long-term 

decisions are taken together. 

This type of integration is common in industry. An example of the three 

different types of integration is presented in the literature. We have presented 

each paper as an example of only one type of integration, despite the fact that 

in some cases they could also be considered for two types of decision 

integration. 

Vertical integration decision. 

As an example, we could provide the type of decision that has to be made for 

a logistic network. The strategic level is that which designs the logistics 

network by prescribing facility locations, production technologies, and plant 

capacities. The tactical level prescribes the material flow management policy, 

including production levels at all plants, the assembly policy, inventory levels, 

and lot sizes. The operational level schedules operations to assure the in-time 

delivery of the final products to customers (Schmidt and Wilhelm, 2000).  In 

Table 1.1, we present different papers that combine the vertical integration 
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decision. There is no example of tactical and strategic decisions since the 

operational decision is an intermediate step.  

 

Table 1.1: Vertical integration decision. 

Paper Tactical Operational Strategic 

Beaudoin et al. (2008) X X  

Bilgen and Ozkarahan (2004) X X X 

Brown, and Vassiliou, A. L. 
(1993).  

X X  

Ivanov, D. (2010). X X X 

Lackman et al. (2000)  X X 

Malhotra (1994)  X X 

Rozinat et al. (2010) X X  

Sagie and Koslowsky (1994).  X X 

Schmidt and Wilhelm (2000). X X X 

 

Horizontal integration decision. 

As an example, this could be provided when two or more functional areas 

integrate their decisions. The vertical integration decision could be a success 

key for an organization since Frayret et al. (2003) highlight that the forest 

product industry has reached the point where profit cannot be reaped without 

the indolent coordination of their entire organization. In Table 1.2 we present 

different papers that combine horizontal integration decision. 

 

Table 1.2: Horizontal integration decision 

Paper Number of 

Areas 

Application 

Caridi and Sianesi (2000) 3 
Flow shop manufacturing, scheduling 

planning and scheduling 

Eberts and Nof (1993) 2 Capacity allocation planning 

Frayret et al. (2003) 4 Supply chain planning 

Gyires and Muthuswamy (1996) 4 
Multi-facility production and 

coordination 

Kim et al. (2003) 2 Warehouse and inventory management 

Miyashita (1998) 2 
Integrated operations planning and 

scheduling 

Tsukada and Shin (1998) 2 Tool management 

Wooldridge et al. (1996) 2 Job shop manufacturing control 
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Decision integration over time. 

Taking into consideration the planning horizon and depending on the 

availability of the data, a deterministic or stochastic model should be used. 

Forecasts are required for proper scheduling activities, such as generation 

scheduling, purchasing activities, production, maintenance, investment and so 

on. 

Table 1.3: Decision integration over time. 

Author (year) Short 

Term 

Medium 

Term 

Long 

Term 

Determin

istic 

Stochastic 

Argoneto et al. (2008) X X   X X 

Campbell and Viceira M. (2002).   X X X   

Fleten and Kristoffersen (2008). X       X 

Gjelsvik et al. (2010)   X X   X 

Hanscom et al. (1980)   X X X   

Reneses et al. (2006) X X   X   

Xia et al. (2010) X X X     

 

PROBLEM SETTING 

Each problem deals with a different combination of a vertical integration 

decision, horizontal integration decision, and integration over time. In Figure 

1.3 the type of decision of each chapter is presented. For example Chapter 9 

deals with three functional areas (horizontal integration), and with two levels 

of vertical integration, and level 1 of integration over time. It is assumed that 

the more the decision is integrated, the higher its complexity. 
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Figure 1.3: Complexity of the decisions of each chapter. 

 

The selected research field will be the manufacturing and health care 

industry since both sectors play a key role in modern society. The focus for the 

manufacturing industry will be at the Job shop level and for health care at the 

scheduling and planning levels. One of the characteristics of the manufacturing 

industry, particularly the car industry, is the high speed at which the new 

techniques and best practices are spreading, one of the reasons being that in 

2013, 72 million out of 86.9 million cars were produced by the top 10 car 

manufacturing groups (OICA, 2013). 

In comparison, the health care sector is highly segmented, and the majority 

of the medical literature is about healing methods and not about the best use 

of resources or decision-making. 

Manufacturing industry 

The assembly line makes companies more efficient by dividing complicated 

tasks into simple tasks that are performed continually until the final product is 

achieved. It has been a long journey from the first use in the production of the 

T-Model by Henry Ford to modern assembly lines that can produce a huge 

diversity of complex products.  
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Sequencing problems are faced every day throughout the industry. The 

order in which the cars are produced is one of the most important decisions for 

the assembly line. As the assembly line has evolved to produce many models, 

scheduling the production has become a complex problem. 

Automotive industry 

The automotive industry has to produce hundreds of cars of different models 

every day so the production order of the vehicles needs to be decided. The 

schedule of this production is difficult since there are a lot of limitations in the 

production line. Some of the difficulties to sequence production are the 

different production times of each car in each workstation, the need for all the 

components to be on the production line before assembly and the shortage of 

extra workers.   

One of the approaches presented to deal with this problem is the one 

described by Butaru et al. (2005) and (Solnon et al., 2008). The cars to be made 

are not identical because the options are different for each car. The 

workstations that install these options are designed to handle a maximum 

production percentage of each option. Therefore, the production manager 

needs to arrange the sequence to respect these percentages. 

Each workstation has moved from installing one component to installing a 

variety of components, and it is also necessary to have an inventory of the 

different types of components in a compact space. The inbound logistic for 

feeding the workstation inside the factory is a critical issue in the car 

manufacturing industry. Replenishment is a critical issue since a lack of 

inventory could cause line stoppage or reworking. On the other hand, an excess 

of inventory increases the holding cost or even blocks the replenishment paths. 

The decision regarding the replenishment routes cannot be made without 

taking into consideration the inventory needed by each station during the 

production time, which will depend on the production sequence.  

When we refer to replenishment we are refering to the Vehicle Routing 

Problem (VRP) + Inventory problem. The objective of VRP is to set the 

optimal routes for a fleet of vehicles to deliver to a given set of customers. The 

objective of the Inventory problem is to define the optimal amount of inventory 

that is delivered to each customer.  

There are some extensions for the VRP such as Inventory Routing Problem 

(IRP) (Campbell et al., 1998), Multi-vehicle Routing Problem (MVRP) 

(Gambardella et al., 1999), Production Routing Problem (PRP) (Adulyasak et 

al., 2012), Capacited Vehicle Routing Problem (CVRP) (Ralphs et al., 2003) 

which have some things in common but differ in others. In order not to restrict 
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the research to an extension of the problem, a general definition of the problem 

was used. 

The interaction of the concepts “Scheduling”, “Vehicle Routing Problem” 

+ “Inventory Problem” on Assembly lines was studied. The first step was to 

get expertise in each concept separately, then research into the integration and 

add more complexity to the problem (see Figure 1.4). 

Assembly lines are flow-oriented production systems, which are still typical 

for the production of high quantity standardized commodities and they are 

even gaining importance in the low volume production of customized products 

(Becker and Scholl, 2006). One of the most complex products that is built on 

the assembly lines are cars and trucks. The assembly lines are a way to mass-

produce cars quickly and efficiently. 

The focus of the research was the automotive industry as an example of all 

the complexities described above. The automotive industry is one of the most 

important European industries and the automotive sector is an essential 

reference for a broad spectrum of manufacturing industries. The improvement 

techniques in their assembly lines are often extended to other assembly lines. 

A change in the production schedule affects the inventory and the 

replenishment of components. Sometimes improving one undermines the 

overall performance, thus, it is necessary to discuss when it is beneficial to 

take a joint decision and when it is not. 

 

 

Figure 1.4: The interaction of scheduling, inventory and CVRP. 

Aeronautical industry 

Aeronautical manufacturing is a high technology industry that produces 

airplanes, spacecraft, satellites, missiles, and related parts. It is hard to imagine 

something more complex than a flying object, which requires thousands of 

man hours, complex manufacturing facilities and top class suppliers.  

Among all the processes that raw materials have to follow to become 

finished products, the chemical anodized process was researched. The airplane 
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parts are exposed to extreme weather conditions, thus it is important that 

chemical treatments are properly applied to the parts to avoid any accident. 

These parts have to take chemical baths in different tanks where they have 

to stay a minimum time to complete the chemical process, but lower than the 

maximum time that would damage the parts. Each part has to follow a recipe 

to be ready. The only way to move from one tank to another is using a crane 

that can carry one part from one tank to another.  

Like the automotive industry, the scheduling of the production of 

aeronautical parts has many limitations. One of the main difficulties to plan 

the production scheduling is the different bathing time that each part has to be 

in each tank, which adds difficulty to having a smooth flow. In order to 

complete the chemical process each part has to follow a unique path. A path 

consists of the series of tanks that each part has to visit. This path is unique 

and different from the others. Usually these paths are not linear because the 

next tank of the recipe could require a jump forward or backward. 

The other problem that is faced during the chemical treatment is that the 

movement between tanks can only be done by a crane / hoist. This hoist can 

only transport one part at a time, which could generate conflicts when more 

than one part needs transportation. As there is no intermediate buffer between 

tanks, it is necessary to assure that the destination tank is ready to receive the 

part. When the bathing time exceeds a limit the part becomes useless. During 

the time that a part is being transported another part may become flawed. This 

problem is often called the hoist scheduling problem (Bloch et al. 2010). Each 

part has to follow a different recipe through the chemical tanks. 

The scheduling and the hoist problem could be solved with a sequential 

decision that implies deciding the schedule of the aeronautical parts to be 

processed and later finding the optimal/feasible path for the crane robot, 

separately solving one problem after the other. The other option is try to solve 

both problems simultaneously trying to synchronize the movement of the hoist 

with the scheduling of the aeronautical parts (see Figure 1.5). 

  

Figure 1.5: The interaction of scheduling, and Hoist Scheduling Problem. 
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Health care industry 

The health care resources are insufficient in almost any country for the 

increasing demand of services to be met. This challenge has become greater 

with the growing and ageing of the population while governments are reducing 

the overall cost of the health care services. Health care providers must decide 

the most effective resource allocation and effective use of resources to provide 

these services.  

Providing support for this complicated decision-making process could help 

to face these problems. Modern hospitals are complex organizations that have 

to deal with an increasing number of treatment options delivered by an 

increasing number of specialists. They usually serve as a research centre and 

for teaching. 

In many hospitals the surgery department is one of the main cost 

contributors (Jebali et al. 2006). Moreover, the main cost of the surgery 

department is the operating rooms (ORs). The number of hospital admissions 

that will require surgery is increasing together with the demand for other 

services such as medical consultation. Therefore, the proper scheduling of the 

operating rooms and surgeries are important if the hospital is to operate 

properly. This is even more complicated in teaching hospitals that play a key 

role in the health care system by training the future doctors.  

The scheduling of surgeries consists in deciding which surgical operation 

will be performed by each surgical doctor in a determined operating room 

during a time slot. 

One of the limitations to scheduling the surgeries is that not all the surgeons 

perform surgery at the same time and not all the surgeries could be performed 

by the same surgeon. The ORs scheduling should target cost reduction and the 

efficient use of resources while maintaining the service level. 

When the head of the surgical service draws up the schedule, they should 

take into consideration that a vacant OR produces a cost, also an idle surgeon 

has a cost, and the surgeons working extra time also have a cost. 

The extra difficulty to create the scheduling of the ORs in a hospital 

includes the surgeon’s expertise. The difference of expertise between surgeons 

in a teaching hospital is higher than in a non-teaching hospital. However, in all 

hospitals there are surgeons that have more experience than others and who 

can perform a surgery in less time. This is more evident in a teaching hospital 

where surgeries are performed by veteran surgeons and apprentices. Moreover, 

it is necessary that young surgeons perform a certain number of surgeries in 

order to complete their training. 
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Again, this decision could be made sequentially or jointly. In the sequential 

decision case, firstly, the time slots in the ORs are allocated to the different 

surgical services. Then the head of the surgical service decides which surgery 

will be performed in each time slot and which surgeon will perform the surgery 

(Blake and Carter, 1996). In the second case, the joint decision will be used to 

make all decisions simultaneously and the results will be compared with the 

sequential decision (see Figure 1.6) 

 

 

Figure 1.6: The interaction of OR Scheduling, and Surgeon Scheduling. 

 

WHY IS THIS STUDY IMPORTANT? 

There is no straight answer to what is better: to make a joint decision or to 

make a sequential decision. Both have their pros and cons. The joint decision 

consists in increasing the scope of the decision-making process; that is, adding 

decisions that could be made before or after.   

This additional decision could come from other functional areas, or by 

adding tactical or strategic decisions to the operational ones, or taking short, 

medium, and long term decisions together. As shown in Fig 1.2, a joint 

decision consists in adding more “blocks” to the decision. The possible 

benefits of incorporating more “blocks” to the decision-making process (joint 

decision) are the saving of costs thanks to the better use of the resources due 

to the increased number of possible options that are evaluated. The decrease 

in the cost is accompanied by an improvement in the performance indicators. 

However, despite the advantages of the joint decision, it is necessary to take 

into consideration the drawbacks of the use of a joint decision. The main 

drawback is the increase in complexity added to the problem. 

Regardless, of the solution method that will be selected, solving a more 

complex problem will be more costly than a non-complex problem, since it 

will require more coordination among the parties involved, a higher amount of 
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resources and a longer solving time. Should the solving method selected be a 

mathematical model more computational power, time, and IT tools will be 

required to solve this big problem. When the solving times become excessive, 

other solution procedures such as non-exact methods should be evaluated but 

with the risk that the savings will be lower because the global optimum is not 

achieved. 

 

THE NEXT STEPS 

In the following chapters, a literature review of the possible achievement of 

this decision will be presented together with a survey on how the decisions are 

taken by different companies. 

The survey will be used as a starting point for the research of the decision-

making process, where the measure of the integration of the companies will be 

evaluated. The survey has answers from different professionals from many 

sectors, which will help us to understand the real decision-making process. 

This will be reinforced with some face-to-face interviews to better understand 

the decision-making process, and the decision support tools that are used. 

From chapters 4 to 9 different models related to the manufacturing, 

aeronautical industry and health care that could represent typical problems will 

be developed, with different degrees of integration to research the impact of 

the integration of the decision-making process. 

An additional complication for the decision-making process is that the level 

of integration that is good for one company may not be good for other company 

as their data are different from those of the original company.  

For this reason, a pre-evaluation of the joint decision is advisable since there 

is a risk that the cost of implementation will be higher than the savings. A 

framework for a pre-evaluation of a decision will be designed for the sake of 

having more elements before deciding which type of decision to use. Thus it 

could help decision-makers of similar problems to pre-evaluate their problem. 
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Chapter 2: Problem Awareness 

In this second chapter, the problem will be presented together with the research 

design and the methodology. 

PROBLEM STATEMENT 

Decision-making is a vital part of the management world. Since decision-

making is different from one company to another, the first step consists in 

understanding how these decisions are made in different companies. The next 

step of this research was to analyse and to compare when it is suitable to 

increase the scope of the decision, what the impact of the change of the 

decision type is, who the actors involved in the change are, which other 

application fields are suitable to those changes and when it is better to use the 

sequential decision-making process instead of the joint decision. 

 

The main research question is: What is the impact of the complexity of the 

model-based decision-making process in the context of industrial 

management? 

 

To help us to analyze and answer this research question, in Table, 2.1 four 

other secondary research questions and the goals of this thesis are presented. 

The first question is related to the opportunities offered by present-day 

computational power. This computational power opens the door to dealing 

with problems using techniques that some years ago were impossible to even 

think about. The second question deals with when the exact method is not 

powerful enough to deal with a real life-size problem, the dilemma of trying 

heuristic techniques or when a sequential approach appears. The third question 

deals with which characteristic of a problem makes it more likely that one 

approach or another will be used. Finally, the last question deals with the 

theory involved in this change of approach. 

 

 

Table 2.1 Goals and secondary research questions. 

 Research Question  Goals 
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1 Using current knowledge and 

computational power, is it possible to 

develop models that deal with the 

increase in complexity for joint 

decision making in an efficient and 

effective manner? 

 To analyse and quantify the 

effectiveness of using a joint 

decision model for different 

functional areas in the different 

application fields and compare it 

with a separate decision process 

2 When exact methods are not enough 

to deal with the increasing complexity 

of real size problems, is it better to try 

with heuristic methods or is it better 

to use sequential decision-making? 

 To increase the size of the problems 

up to real life-size problems and 

analyse the impact of the resultant 

complexity and the use of other 

solving techniques. 

3 When is the use of complex decisions 

advisable and when is it not? 

 To determine the main characteristic 

of the instance that could provide 

promising results using one 

approach or another. 

4 What is the managerial theory and 

implication behind the decision 

models that are currently being used? 

 To analyse the managerial insights 

and implications behind the current 

decision model with the analysis of 

their objective function and 

constraints. 

 

RESEARCH DESIGN 

The impact of the change in the decision process is analysed in the application 

fields of the manufacturing, aeronautical, and health care industry. With a deep 

analysis of the change in the decision-making process the research questions 

were answered. The analyses of these changes were supported by different 

techniques, such as simulation, mixed integer linear programming, interviews 

and heuristic techniques.  

The basic design of this research was to select some cases from the 

application fields and modelled with different approaches. Once the models 

had been constructed, different experiments were run changing the conditions 

and analysing the behaviour of these changes in the output variables. 

Despite the problems addressed in the literature, there are still a number of 

challenges and questions that can be solved by using the new techniques and 

computational power available. For the first research question, taking 

advantage of the increase in computational power, a model that increases the 

scope of the decision-making process will be used, and this will be compared 



 

 

 

Raul Pulido. 

 

 

29 

to traditional decision-making. These experiments were carried out for the car 

assembly line and the operating room scheduling.  

In order to answer the research questions the application fields of 

manufacturing and health care were selected. The cases were modelled in a 

different way. In Fig 2.1 the scope of the model is presented for the car 

assembly line. We compared separately the production scheduling model, 

replenishment and the inventory level with the joint model. Similar work was 

done with the different parts of the operating room scheduling. 

 

 

Figure 2.1: Layout of the Research. 

The second research question was answered using a real life-size problem. 

This type of problem could not be solved using exact methods in a reasonable 

time, so we built a heuristic model to deal with the entire problem, with the 

disadvantage of non-optimal results which we compared with a sequential 

decision. As Afshin (2012) also reports that classical MIP and MILP tools are 

being used for the majority of the models and considering the computational 

complexity of real-life problems, it is necessary to develop efficient algorithms 

and metaheuristics for some cases. 

The third research question is focused on creating a framework that could 

help managers to make a decision as to which decision approach should be 

taken. Monczka et al., (2008) highlighted that in a complex ecosystem, 

managers have to consider several important aspects of the movement of 

materials such as inbound logistics and their impact on the sequencing and the 

interaction between first-tier suppliers and the sequencing since tightening the 

supply chain impacts on the operation and on the cost of the supply-chain. In 

these cases it is not easy to decide whether to try to solve the different problems 

jointly or sequentially. The models constructed were analysed and 

experimentation carried out to try to identify the factors that make an instance 

more suitable to be solved with a sequential or joint decision. 
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Finally, business analysis requires understanding of the industry and the 

organization. Among other things, this comes from data analysis, and 

information, and the proper choice of analytical tools. For the last question the 

managerial insight acquired from all types of experimentation and interviews 

in all the application fields are presented. 

RESEARCH METHODOLOGY 

In order to describe the methodology we will follow the research onion of 

Saunders et al. (2009). We will start with the outer layers, and then go into the 

inner part of the research onion. We will start with the research philosophies, 

the approaches, and the strategies. 

The philosophy, positivism 

The research philosophy adopted defines the way that our research is 

performed. Johnson and Clark (2006) argue that the important issue is “how 

well we are able to reflect upon our philosophical choices and defend them in 

relation to the alternatives that we could have adopted.''. The choice of the 

philosophy is supported by other similar research in the field. Positivism 

adopts a clear quantitative approach for investigating quantitative phenomena 

in many sciences. Gill and Johnson (2002) advocate that a good positivist 

researcher has to create a structured methodology to facilitate the replication. 

The approach, deductive 

The next layer of the research onion is the approaches, which can be deductive 

or inductive. A deductive approach owes more to positivism. It involves the 

development of a theory that is rigorously tested. Robson (2002) lists five 

sequential stages: formulating a hypothesis; expressing the hypothesis in 

operational terms, testing this operational hypothesis, examining the specific 

outcome, and modifying the theory if needed. These five steps create a cycle. 

When necessary we should rebuild our hypothesis according to the findings.  

The strategy, modelling 

The philosophies and approaches are common to the different sciences, but for 

the strategy layer, the strategies division proposed by Kotzab et al. (2005) will 

be followed. Reviewing the characteristics of these strategies, and matching 

them with the research question, the background and the preference of the 
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authors, and reviewing similar works in the field of study, the modelling was 

selected.  

Quantitative models generate models of causal relationships between 

control variables and performance variables. Then we can isolate the 

phenomenon and analyse and test. Mitroff et al. (1974) made an early 

contribution to the methodology discussion with their model.  

In the conceptualization phase, the researcher creates a conceptual model 

of the parts of the subjects under investigation, in this case the assembly lines, 

aeronautical parts, and health care industry. Then, it is necessary to make a 

decision about the variables that need to be included in this model, and the 

scope of the model. In the next phase, the quantitative model is built, thus 

defining causal relationships between variables, such as cost, constraints, and 

requirements. Then, the model is solved using mathematical solving methods. 

Finally, the results of the model are implemented and a new cycle could begin 

(Mitroff et al., 1974). 

The study of the supply chain from different approaches has been a constant 

in the field of Industrial Management research. The area that is of concern to 

this research is the integration of the supply chain, which has gained increasing 

attention in recent years, in the direction of gaining flexibility and cost 

efficiency. However, a high degree of integration is not necessarily desirable 

in all situations (Bagchi et al, 2003). To answer these types of problems, 

quantitative models have been used to solve operational management 

problems and develop scientific knowledge. 

A major problem in solving real-life operational processes is that they are 

all different, depending on the work organization, information system used, 

flow lines, job shop characteristics, and so on. The majority of these processes 

are cluster processes based on the manufacturing technology used, and making 

general assumptions for theoretical models (Will and Fransoo, 2002).  

The data collection is linked to the construction of the quantitative models, 

since the definition of variables and parameters can serve as a framework for 

the data collection (Mikkola, 2003). The simplification of the model plays a 

key role and is justified when a solution of the mathematical formulation 

describes the studied phenomena. (Wylie and Barrett, 1982). 

The drawback of mathematical modelling is that the analysis is limited to 

the variables of the formulation, and when additional variables are added to 

the formulation the models can become extremely complex and cannot be 

solved with traditional solving tools. 

The modelling of an assembly line could involve thousands of variables; 

the selection and estimation of the most important variables is extremely 

complex. The oversimplification makes the model unrealistic while 
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overstatement makes it almost impossible to solve. Therefore, it is necessary 

to create a model that can give us interesting information to apply to the 

operation of the assembly lines. 

 

Implementation 

The fourth phase of the model of Mitroff et al. (1974) is implementation. 

Strategies of empirical research should be used to test the implementation. This 

phase also tunes the parameters used to decrease many unrealistic assumptions 

in the previous stages due to the growing mathematical complexity (GroBler 

and Schieritz, 2005).  

The main objectives of the thesis were obtained using quantitative models, 

such as linear programming methods, mixed integer programming, stochastic 

programming and heuristic techniques. Even though there is no doubt about 

the importance of qualitative models in decision-making science, such as 

participant observation or interviews, which can help to tune the models 

(Tayur et al., 1999), these qualitative models are used in the first part of section 

2 to understand the complexity of the decision-making in companies. 

Techniques and procedures 

Mathematical mixed integer linear programming (MILP) will be used to model 

the car assembly lines and operating room scheduling; exact solution methods 

work better for small problems. Because they consume a high amount of 

memory and computational time, it is impossible to use these methods with 

larger data, so it is expected to use other solution techniques. 

Heuristic techniques are usually explored when the exact methods cannot 

deal efficiently with the problem. These techniques trade optimality, 

completeness, accuracy and precision for a usually shorter solving time. These 

heuristic techniques do not guarantee the optimal, but the solution is still good 

enough to be used when the exact methods require excessive time and 

memory, or simply when they cannot achieve a solution. Heuristic techniques 

are designed for solving the MIP problems faster than the exact methods, but 

sometimes heuristics take more time to solve a problem than the exact 

methods. 

Another commonly used technique used in quantitative research is discrete 

event simulation. One of the main advantages of simulation is the level of 

detail of the studied subject and the step-by-step visualization of the status of 

the system at any time.  Discrete event simulation models the operation of a 

system as a sequence of events. The model of a complex system is a lab for 

researchers and managers in the different areas. It provides low cost 
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information-gathering for the decision-making. The dramatic increase in 

computing time and memory, and the development of more powerful 

simulation software allow us run highly detailed simulations where it is 

possible to evaluate several scenarios in a short time (Fishman, 2001). Discrete 

simulation was used to manufacture the aeronautical parts.  

CONCLUSIONS 

In this problem, a quick introduction to the problem was stated where the 

importance of the decision-making process was presented. Then the four 

research questions were presented, together with their goals. Different case 

studies based on manufacturing, aeronautical parts manufacturing and health 

care were developed. In these cases the sequential decision and the joint 

decision were performed using different techniques. 
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Chapter 3: Literature Review 

DECISION THEORY 

Every day companies are faced with hundreds of decisions; some are 

irrelevant, and others can be determinant in the life of the company. Sometimes 

managers are so afraid to make a decision that they postpone it or make no 

decision at all, but this is also a decision.  

The Cambridge Dictionary defines a decision as “a choice that you make 

about something after thinking about several possibilities” (Cambridge, 2015). 

Decision theory is concerned with the problem of making decisions. When 

statistical knowledge sheds light on some of the uncertainties involved in the 

decision, then it is called statistical decision theory (Berger, 2013). 

A requirement to make a decision is that at least two possibilities exist. For 

example, if someone is travelling from point A to B, and there is only one 

possible road with no intersections or forks there is no decision about the 

direction that should be taken. The existence of alternatives is a requirement 

for a decision.  

Interdisciplinary area 

Decision-making has called the attention of researchers from different fields, 

such as psychologists, linguists, management scientists, and so on. There are 

different ways to theorize and, therefore, there are many research traditions 

with different (mathematical) technical aspects. 

Contributions from different academic disciplines have helped create the 

actual body of knowledge. The main contributors are economists, statisticians, 

operation researchers, management scientists, psychologists, political and 

social scientists and philosophers. Even if Decision theory is a subject by itself, 

different disciplines have contributed to the body of knowledge of decision 

theory from a different perspective (Mitchell and Beach, 1990). 

The perspective of political science sets the focus on the collective decision-

making process, or the perspective of the philosopher is the rationality of 

decision while management science looks to improve the result of the decision. 

Each group of scientists has used their tools and methods to deal with similar 

problems, helping the development of decision theory (Hansson, 2005). 
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Types of decision theory 

Most contributions to decision theories could be divided into two. Normative 

decision theory explains how the decision should be made. Descriptive 

decision theory explains how the decision is taken. Normative decision theory 

also takes rational thinking following procedures or methods as a prerequisite. 

However, the distinction between rational-normative and descriptive theories 

is fuzzy (Hansson, 2005). 

Normative theory is based on the paradigms of expected utility theory and 

subjective expected utility theory. The expected utility theory is based on the 

act of choosing the option with the highest expected utility. The subjective 

expected utility theory adds the characteristic of the attractiveness of an option 

based on the decision-maker (Fishburn, 1983; Raiffa, 1968; Schoemaker, 

1982; von Neumann and Morgenstern, 1953). Utility theories require the 

decision-maker to have all information describing the decision situation. 

Weber (1987) presented an interesting framework to deal with incomplete 

information, but in the rest of this research, it is assumed that all the 

information is complete. 

 

CHARACTERISTICS OF A DECISION WITH COMPLETE INFORMATION 

A traditional decision situation is characterized by a set of options, a set of 

objectives or attributes, a known probability distribution of the outcomes and 

decision-maker(s) with a stable preference structure and then they evaluate and 

decide. Within the framework of prescriptive decision theory, methods should 

help a decision-maker find an optimal or satisfying solution (Weber, 1987).  

A set of options 

The next task of a decision is the exploration of the set of options. Generating 

some different options may be complicated at first, but the wider the options 

that decision-makers explore, the better the final decision is likely to be 

(Samuelson and Zeckhauser, 1988). 

How could all the options be explored? How many possibilities are enough? 

Which possibilities should be explored? Following the example of someone 

traveling from point A to B, should they explore only the highways, or also the 

toll roads, the expressway, the interstate, the boulevards, etc.? Alternatively, 

maybe they should also explore using an off-road vehicle and use the gravel 

roads or rural roads. The answer to this question depends on the scope of the 

problem, the solving time and the techniques selected.  
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Set of objectives 

When options start to emerge, it is necessary to weigh the options according 

to the objectives. What are the good points or bad points of the options? The 

knowledge about the possible outcomes could be quantified in terms of losses 

or utilities (Berger, 2013).  

Before assuming that something is better or worse, decision-makers have 

to select the decision objectives. In the example, the decision objective could 

be the price, the duration, the arrival time, the CO2, and so on. Unfortunately, 

in decision-making there is often no single objective for a problem. Recently, 

there has been a growing interest in multi-objective decision techniques. The 

most important ones are Pareto optimality, desirability function, overlay plots 

and utility functions (Hendriks, et al. 1992) 

A known distribution probability of the outcome 

The rules describing the outcome could be deterministic or non-deterministic. 

The outcome is deterministic if the rules can be described univocally and are 

non-deterministic. The deterministic model could be analysed as a particular 

case of the non-deterministic model, where the outcome has a probability of 

100%. When the outcomes of the options are unknown, at least it is necessary 

to know the distribution probability of the possible outcomes to consider it 

with complete information (Slowiński, 1993). 

In our example to go from point A to point B, it is difficult to make the best 

decision if the duration of the trips depends on the traffic, which changes with 

a certain distribution probability. The decision as to which is the fastest route 

is not trivial. 

Decision-makers with a stable preference structure 

The decision-maker’s preference could change over time. Decision objectives 

for a short time horizon could differ from the long-term horizon objectives. 

However, it is necessary to know how they will change. The proper decision 

horizon is crucial for a decision. The best-selected option according to one 

criterion could be the worst selected decision according to the selected criteria. 

Following the example, in order to go from point A to point B, if the path has 

to be travelled twice a day, we could buy a mountain bike or a car, but if it is 

one single time, maybe it is better to rent a bicycle or a car, or even pay for a 

ride. The long-term benefits may compensate the short term benefits or vice 

versa. 
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There are two polar schools of thought regarding the existence of 

preferences. Traditional thought based on the assumption of existing 

preferences and the emerging constructive processing approach that assumes 

preferences are constructed and based on the task and context factors present 

during choice (Hoeffler and Ariely, 1999). In this work, existing preferences 

will be assumed. 

 

Deciding and valuing 

Two methods are broadly used to construct preference models on favoured 

information from a decision-maker. The first one comes from the use of 

mathematical decision analysis. It consists in building relational models 

among the variables (Roubens and Vincle, 1985). The second one comes from 

artificial intelligence built up via learning from examples (Michalski, 1983). 

In the evaluation phase, the different options are graded to try to obtain as 

much good as possible, in accordance with what has already been decided as 

good or bad (Kahneman and Tversky, 1979). The best option or the option that 

fulfills all the requirements is selected as the solution of the problem. 

Mathematical decision analysis will be used to study the relationship between 

the variables.  

THE DECISION PROCESS 

Different stages of decision models appear in the literature. Simon (1960) 

simplifies the decision process into three stages. “Finding occasions for 

making a decision; finding a possible course of action, and choosing the course 

of action,” Brim (1962) mentioned six stages: identification of the problem, 

obtaining necessary information, production of possible solutions, evaluation 

of such solutions and the  selection of a strategy for performance. 

Dewey (1978) divided the decision stages into five: the felt difficulty, the 

definition of the character of difficulty, suggestion of possible solutions, 

evaluation of the suggestion and further observation and experimentation 

leading to making the decision or not. 

The next generation of authors claims that these phases of the decision 

process could come in a different order. One of the most influential authors of 

this idea is Mintzberg et al. (1976). The three stages of Simon (1960) are 

analogous to the Mintzberg et al. (1976) phases where the identification phase 

is also called the Intelligence, development phase and also called design, and 

the last phase also called choice.  
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In this new view, the decision process consists of phases but these phases 

do not come in a predetermined order (see fig 3.1). They subdivide each phase 

into different activities. The identification process phase is divided into 

recognition and diagnosis. The development phase is divided into design and 

search. Finally, the selection phase is divided into screen, evaluation-choice, 

and authorization. From all the activities, the decision-maker can go back to a 

previous phase or follow different paths to make a decision. 

 

 

Figure 3.1: The relationship between the phases and routines of a decision process (Mintzberg et al. 1976). 

Simon (1960) highlights a problem that companies spend the time and 

intelligence of their executives, from the longest to the shortest time and 

intelligence, on design, intelligence and choice. On the contrary, the decision 

theory has been exclusively concerned with the evaluation choice routine. 

Regardless of the fact that this was highlighted more than 50 years ago, a quick 

overview of the most important journals in the field such as the Journal of 

Operations Management, Management Science, Operation Research, 

Transportation Research, Computers and Operation Research, Manufacturing 

and Service Operation Management, etc. reveals that the trend of high focus 

on the evaluation choice routine continues.  

Despite the fact that it is highly important, other phases should also be 

explored. In the following chapters, a framework that focuses on the first 

stages of the decision is presented.  

 

DECISION-MAKING UNIT  

More than one individual usually makes an industrial decision. Typically, one 

or a few decision-makers and several influencers. The precise mix of decision-

makers’ units change from one company to another, but several roles have 
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been identified (Stock and Zinszer, 1987). The decision-making unit could be 

defined as a group or teams who participate in a decision process. A single 

person could play more than one role, and there are many grey areas and 

intersections in these teams. (See Figure 3.2) 

Webster and Wind (1972) came to the conclusion that only a subset of the 

organizational actors is involved in a decision-making situation. Furthermore, 

they proposed five roles. Bonoma (1982) added one role (initiator) to the five 

roles described previously, which results in the following list: 

 Initiators: They are players who search for opportunities, unsatisfied 

needs or unsolved problems. They are more active at the beginning 

of the buying process than in the later phases.  

 Deciders: They handle making the final deal of the decision. The 

deciders will review the information provided from the other parts 

of organizations, gatekeepers and initiators. They make the actual 

decisions and can do so due to their formal or informal authority 

within the organization.  

 Influencers: They are those who may guide the deciders into a 

decision. They could be internal or external to the organization, such 

as consultants. They could be technical people who know the 

advantage or disadvantages. 

 Gatekeepers: Their functions stop or allow the process to continue 

with their development of the process. During the decision-making 

there could be more than one gatekeeper along the process. They 

control the flux of information.  

 Users: The ones who use the product, once everything is finished. 

Sometimes they initiate the process. 

 Executor: They execute the decision made by the deciders, and 

sometimes they coincide as high-level officers. They have the 

formal responsibility for the implementation of the procedures 

involving the decision-making process.  

 



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

40 

 

Figure 3.2: Decision-Making Units source (Bayle, 2003). 

MEASURING THE EXPECTED IMPACT 

Once the decision-making unit has made the decision, it is necessary to 

measure the impact of that decision. As Peter Drucker said: “What gets 

measured gets managed.” Then decision-makers can compare against similar 

decisions, or with similar companies. Unfortunately, it is difficult since severe 

financial measurements are confidential, and there are no standardized 

measuring methods, and diverse indicators are reported (Davies, 2002). 

Most analyses of decision-making presume that two consequences with the 

same money outcome will be equally preferred. However, if a lower outcome 

were expected the team will be much happier that if a higher outcome were 

expected (Bell, 1985).  

Although the expectation is an important element in the decision, they do 

not enter into the decision in quite the way anticipated by standard theories of 

business behaviour (Cyert, 1958). Then as a first step of this decision-making 

process, it is necessary to set boundaries to the expectation and take a look into 

the literature of one of the reference journals to implement improvements in 

decision-making using operation research techniques. A review of the recent 

issues of the Interfaces journal would provide a better overview of what we 

could expect. This journal was selected since it only presents industry cases 

verified by someone from the company. 

The Interfaces journal’s mission (Interfaces, 2015) is to publish 

manuscripts focusing on the practice of organizations in different areas such 

as operations management, information systems, strategy, and supply chain 
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management, and so on. It is important to highlight that one of the 

requirements for submission is a verification letter from the company where 

the work was developed. 

The 18 issues of the Interfaces Journal that have been published in the last 

three years were reviewed. The papers that for any reason do not measure the 

impact achieved are omitted from this review. Such as non-quantifiable benefit 

or privacy issues. Tutorials, reviews or any other papers that do not measure 

the impact were excluded. Also, non-quantifiable savings papers were 

excluded. After the screening 56 papers were reviewed. 

The analysed papers came from a diversity of the sectors that were reporting 

improvements in the decision-making process, despite Health Care followed 

by logistics being one of the most reported sectors with benefits from 

improvements from decision-making processes (see Table 3.3). 

In Table 3.1 the different papers of the journal are presented. The table is 

divided into 4 sections, with the title, author, sector, and the measured impact 

reported. One of the limitations of this review is that the cost of the 

development and implementation is not reported in the papers reviewed.  

 

 

Figure 3.3: Number of papers in the different sectors of the last three years of Interfaces analysed. 

It is not always easy to quantify and compare the impact of the decision-

making. Some papers such as Guimaraes et al. (2014) or Sullivan & Newman, 

(2014 compare with the original plan. Others compare it with the previous year 

(Gershenfeld, 2015, Keskin et al., 2014, Diz et al., 2014) while others compare 

it with forecast savings (Álvarez-Socarrás et al., 2013, Mahadevan et al., 

2013). 
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 The comparison of a project impact also could be made in different 

companies (Humair et al., 2013) or using different types or financial indicators.  

Moreover, the quantification of non-monetary benefits, e.g. which is the 

impact on revenues of a higher services rate or increase of coverage from 

firefighter services (Akta et al., 2013) is always debatable and subjective. 

Healthcare projects reported lives saved (Anderson et al., 2015), or 

monetary savings such as (Smalley et al., 2015). Despite that, both projects are 

from the same sector, a project that saves lives should not be compared with 

one that saves money. An interesting measure for which it is difficult to 

quantify the impact is presented in Thomas et al., (2013) where they reduce 

the time for bed assignment by 23 percent, and then cite a study from the 

American Advisory Board to estimate the contribution to the margin.  
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Table 3.1: Reported savings of Interfaces Journal. 

Title Author Sector Measured impact 

Physician Scheduling for Continuity: 
An Application in Pediatric Intensive Care 

Smalley et al., 
2015 

Healthcare 18.09% savings compared with hand decision. 

Conjoint Analysis for Ticket Offerings at the 
Cleveland Indians 

Gershenfeld, 
2015 

Operations 16% savings over the previous year. 

Polio Eradicators Use Integrated Analytical 
Models to Make Better Decisions 

Thompson et al., 
2015 

Healthcare $40–$50 billion in net benefits for the countries 
covered. 

Kidney Exchange and the Alliance for Paired 
Donation: Operations Research Changes the Way 
Kidneys Are Transplanted 

Anderson et al. 
2015 

Healthcare 1,000 lives are already saved. 

The Energy Authority Optimizes Water Routing 
and Hydroelectric Generation on the Columbia 
River 

Hu et al., 2015 Energy It is estimated that this project will reap benefits of 
$765–$952 million between 2011 and 2028. 

Transforming Hospital Emergency Department 
Workflow and Patient Care 

Lee et al., 2015 Healthcare $190 million economic impact, which is a large 
amount of the hospital’s $1.5 billion annual economic 
impacts. 

Optimizing Network Designs for the World’s 
Largest Broadband Project  

Ferris et al., 2015 Telecom $AUD 1.7 billion savings in unnecessary construction 
and design costs on this $AUD36 billion project. At 
the beginning of this 10-year project. 

The Who-To-Follow System at Twitter: Strategy, 
Algorithms, and Revenue Impact 

Goel et al., 2015 IT 500 million new connections. Also, more than 15% of  
Twitter’s  active users. 

Decision Support System for PETROBRAS Ship 
Scheduling 

Diz et al., 2014 Transportation This led to a reduction of approximately 7.5 % in the 
company’s operational costs for long-haul transport 
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Title Author Area Improvement 

Optimizing Transportation by Inventory Routing 

and Workload Balancing: Optimizing Daily Dray 

Operations Across an Intermodal Freight Network  

Sun et al., 2014 Transportation Loaded ratio and driver utilization have improved by 

20% since the original implementation. 

Multidepot Distribution Planning at Logistics 

Service Provider Nabuurs B.V 

Demir et al., 2014 Transportation The proactive planning approach reduces costs by 

14.77 %. 

Annual Distribution Budget in the Beverage 

Industry: A Case Study 

Guimarães et al., 

2014 

Management Making it 6.8 percent less than Unicer’s original plan. 

Matching Supply and Demand: Delayed Two-

Phase Distribution at Yedioth Group—Models, 

Algorithms, and Information Technology  

Avrahami et al., 

2014 

IT Average cost savings of 7.55% from implementing 

the model. 

SPRINT: Optimization of Staff Management for 

Desk Customer Relations Services at Hera 

Vigo et al., 2014 Management A reduction of 3% in FTE desk staff employees, in 

conjunction with a demand increase of more than 

25%, maintained a better level of service than that of 

its competitors. 

An Integrated Load-Planning Algorithm for 

Outbound Logistics at Webb Wheel  

Keskin et al., 2014 Transportation Since implementing the load-planning algorithm, 

WW has achieved cost savings of 4.4% over its 

previous load-planning process. 

Relieving Pressure: Optimizing Water Distribution 

Pressure Management at Valley of the Moon 

Water District  

Wasserkrug et al., 

2014 

Maintenance Reduced the number of leaks and bursts by 16% 

compared to the previous year and by 19% compared 

to the average of the previous three years. 
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Title Author Area Improvement 

Analytics for Power Grid Distribution Reliability in 

New York City 

Rudin et al., 2014 Maintenance The reduction in risk for manholes with vented 

covers of 50 %, and a reduction of the risk of the 

surrounding structures by 20 %. 

Business Analytics Assists Transitioning 

Traditional Medicine to Telemedicine at Virtual 

Radiologic 

Körpeoğlu et al., 

2014 

Healthcare System wide the operating costs after adjusting for 

demand growth has in the aggregate been reduced 

by 4% to 5%. 

Scotsburn Dairy Group Uses a Hierarchical 

Production Scheduling and Inventory 

Management System to Control Its Ice Cream 

Production 

Eldon et al., 2014 Scheduling Convert production to units, they had a 3% increase 

in units/hr from 2010 to 2011. 

Hierarchical Decomposition Approach for Crude 

Oil Scheduling: A SINOPEC Case 

Chen et al., 2014 Scheduling Comparison of schedules shows that the number of 

changeovers of pipelines, tanks, and CDUs was 

reduced by 19.05 % ($30 million cost savings). 

Global Sourcing Approach to Improve Cash Flow 

of Agribusiness Companies in Brazil  

Hamad & Gualda, 

2014 

Management The methodology generated processes that helped 

one company reduce its logistic cash outflow by 49 % 

and its logistics costs by $10 million. 

Cyclic Consumption and Replenishment Decisions 

for Vendor-Managed Inventory of Multisourced 

Parts in Dell’s Supply Chain 

Katariya et al., 

2014 

Management Reduced the total error in meeting PSAs from 23% to 

12%, improve fill rate from 77.3 % to 100 %, and 

reduced inventory by 6.4%.  

Extraction and Backfill Scheduling in a Complex 

Underground Mine 

Sullivan & 

Newman, 2014 

Mining This has resulted in c.120kt at 13 % ZnEq of extra ore 

now being included in the revised LOM Schedule. 
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Title Author Area Improvement 

Medium-Term Rail Scheduling for an Iron Ore 

Mining Company 

Singh et al., 2014 Mining 89 kilotonnes more in five months of 2010, and 416 

kilotonnes more than the manual plan for all of 2011.  

Therefore, 505 kilotonnes of additional iron ($114 

million of additional income). 

Economically Efficient Standards to Protect the 

Netherlands Against Flooding  

Eijgenraam et al., 

2014 

Environmental Approximately 7.8 billion euros in cost savings. 

Operations Research Transforms Baosteel’s 

Operations  

Tang et al., 2014 Steel Provided an annual economic profit of 20 million, 

which represents a 17% improvement. 

Optimizing Chevron’s Refineries Kutz et al., 2014 Oil and Gas The value that these efforts bring to Chevron now 

approaches $1 billion annually. 

Dell’s Channel Transformation: Leveraging 

Operations Research to Unleash Potential Across 

the Value Chain  

Martin, et al., 

2014 

Management The OR solutions have delivered an impact of $140 

million by reducing markdown expenditures, 

improving online conversion rates, increasing ocean 

shipments, and enhancing customer satisfaction. 

Kroger Uses Simulation-Optimization to Improve 

Pharmacy Inventory Management 

Zhang et al., 2014 Management An increase in revenue of $80 million per year, a 

reduction in inventory of $120 million, and a 

reduction in labour cost of $10 million per year. 

Supply Chain Scenario Modeler: A Holistic 

Executive Decision Support Solution 

Katircioglu et al., 

2014 

Management Since this effort began in 2009, McKesson 

Pharmaceutical division has reduced its committed 

capital by more than $1 billion. 
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Title Author Area Improvement 

Redesigning Midday Meal Logistics for the 

Akshaya Patra Foundation: OR at Work in Feeding 

Hungry School Children 

Mahadevan et al., 

2013 

Logistic The annual cost savings are US$75,000, which would 

add 2,400 more children to the programme. When 

the program is implemented, it is estimated that the 

annual cost savings will be about US$1.96 million. 

Optimization Models for Production Planning in 

LG Display 

Chang & Chung, 

2013 

Planning MRM optimization outperforms the MRM heuristic 

by an average of 31%. All the reductions were 

estimated as $50 million annually for the two sites. 

A Specialty Steel Bar Company Uses Analytics to 

Determine Available-to-Promise Dates 

Pajouh et al., 

2013 

Planning A higher-margin sales generate over $300,000 per 

year. Moreover, it saves $200,000 per year by 

reducing yield loss throughout the company and its 

labour-cost savings to be $85,000 per year. 

Incorporating Stochastic Lead Times Into the 

Guaranteed Service Model of Safety Stock 

Optimization 

Humair et al., 

2013 

Planning Savings of $100 million by P&G, $50 million by HP, 

and $20 million by Kraft Foods; a 26% inventory 

reduction by Boston Scientific; and a 25% finished 

goods inventory reduction by Black & Decker. 

Automated Bed Assignments in a Complex and 

Dynamic Hospital Environment 

Thomas et al., 

2013 

Healthcare A 23% reduction in the average time from bed 

request to bed assigned. According to the American 

Advisory Board, an average 300-bed hospital with 

poor patient flow would add $10 million to the 

hospital’s contribution margin if it increases its bed 

utilization by 27% (Luminosity Health 2012). 
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Title Author Area Improvement 

Practice Summary: Enhancing Forecasting and 

Capacity Planning Capabilities in a 

Telecommunications Company 

Álvarez-Socarrás 

et al., 2013 

Telecom Avantel improved its demand forecasting and 

reduced its annual capital investment by almost 10%, 

while significantly reducing its operating expenses. 

Automatic Dwelling Segmentation of the Buenos 

Aires Province for the 2010 Argentinian Census 

Bonomo et al., 

2013 

Planning A reduction of 25 employees working full time for 30 

days. 

A Decision-Making Tool for a Regional Network of 

Clinical Laboratories 

Andrade-Pineda 

et al., 2013 

Healthcare Reducing outsourcing costs above 15% in the first six 

months. 

Trane/Ingersoll Rand Combines Lean and 

Operations Research Tools to Redesign Feeder 

Manufacturing Operations 

 Jensen et al., 

2013 

Production A 13% throughput improvement, 50% cycle-time 

reduction, and higher cell efficiency that led to 

recurring savings of more than $700,000 per year. 

Medcenter Container Terminal SpA Uses 

Simulation in Housekeeping Operations 

Legato et al., 

2013 

Healthcare A reduction of in one week of the additional cost of 

housekeeping operations of about € 10,000. 

Supply Chain Optimization and Planning in 

Heracles General Cement Company 

Dikos & 

Spyropoulou, 

2013 

Logistic There was a reduction of Heracles’ total logistical 

costs by 37% between 2006 and 2009. 

Optimizing Fire Station Locations for the Istanbul 

Metropolitan Municipality 

Akta et al., 2013 Planning 27.3% of savings. The scenario implemented 

increases the city’s fire station coverage from 58.6 % 

to 85.9 %, based on a five-minute response time, 

with an implementation plan that spans three years. 
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CPEL Redesigns Its Land Express Network Zhang et al., 2013 Logistic Savings of more than 20 % in annual operations 

costs.  

Title Author Area Improvement 

Mathematical Programming Guides Air-
Ambulance Routing at Orange 

Carnes et al., 
2013 

Healthcare It is projected that the optimized plans would yield 
savings of approximately 16.5 %. 

Embotelladoras ARCA Uses Operations Research 
to Improve Territory Design Plans 

López-Pérez & 
Ríos-Mercado, 
2013 

Logistic A 15 % reduction from the number of routes. The 
investment savings for trucks was 8 % of the entire 
fleet. The company estimates a 3 % sales increase as 
a direct benefit of the new territory alignment. 

Evaluation of Transportation Practices in the 
California Cut Flower Industry  

Nguyen et al., 
2013 

Logistic A 35 % system-wide transportation cost decrease of 
$20 million per year is estimated if all California cut 
flower growers participate in the consolidation 
centre. 

Optimal Routing and Assignment of Consultants 
for Energy Education, Inc. 

Yu & Hoff, 2013 Logistic In a recent 12-week period, the results of the 
research reduced EEI costs by 24 % and provided 
several qualitative benefits. 

HP Enterprise Services Uses Optimization for 
Resource 
Planning 

Santos et al., 
2013 

Planning Since its deployment in the Bangalore operation, the 
RP tool has enabled resource utilization rates of 90–
95 %, compared with utilization rates of 75–80% 
before its implementation.   

Routing and Scheduling of Cross-Town Drayage 

Operations at J.B. Hunt Transport 

Pazour et al., 

2013 

Scheduling Hunt has documented the annualized cost savings of 

the cross-town heuristic implementation at 

$581,000. 
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IBM Blends Heuristics and Optimization to Plan 

Its 

Semiconductor Supply Chain 

Degbotse et al., 

2013 

Planning On-time deliveries to commit date increased by 15%.  

Asset utilization is increased by 2–4% of costs.  

Inventory decreased by 25–30 %. 

Title Author Area Improvement 

Optimizing Capital Investment Decisions at Intel 
Corporation 

Kempf et al., 
2013 

Finance The velocity program and the framework provided 
Intel with hundreds of millions of dollars in cost 
savings and at least $2 billion in revenue upside 
during a recent period of global economic crisis. 

Hewlett-Packard: Delivering Profitable Growth 
for HPDirect.com Using Operations Research 

Tandon et al., 
2013 

Finance The integration of these solutions into HP’s 
marketing planning and warehouse operations 
processes has helped to generate an additional $117 
million in revenue for HPDirect.com. 

Carlson Rezidor Hotel Group Maximizes Revenue 
Through Improved Demand Management and 
Price Optimization  

Pekgün et al., 
2013 

Finance To date, compliant hotels have increased revenue by 
more than $16 million annually. CRHG anticipates 
that the worldwide incremental revenue from this 
solution will exceed $30 million annually. 

Optimizing Ship Routing to Maximize Fleet 
Revenue at 
Danaos 

Varelas et al., 
2013 

Logistic Danaos Corporation concluded that its 2011 
incremental revenues from using ORISMA were $1.3 
million from timesaving and $3.2 million from fuel 
savings. Danaos’ profitability increased by 7–10 % 
annually.  

Advancing Public Health and Medical 
Preparedness with 
Operations Research 

Lee et al., 2013 Healthcare The rapid dispensing achieved by improved 
throughput can translate to as many as 40 % fewer 
casualties (deaths and hospitalizations) and hundreds 
of millions of dollars in potential savings. 
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Supply Chain–Wide Optimization at TNT Express Fleuren et al., 

2013 

Logistic Total net accumulated savings were 132 million euros 

and the CO2 emissions reduction was 228 million 

kilograms.  
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The savings of governmental actions presented a bigger impact than the 

companies’ papers. For example, the environmental project (Eijgenraam et al., 

2014) reported the highest savings of 7.8 billion euros. Some projects are 

implemented in multiple companies (Humair et al., 2013) or multiple years 

(Hu et al., 2015), meanwhile others are single shots projects (Ferris et al. 2015, 

Bunomo et al. 2013). 

A project could have a significant impact on the increase in production of 

3% (Eldon et al., 2014), two digit savings in the already optimized company 

are difficult to find. The average of the projects that report savings are 15.95% 

with a standard deviation of 9.06, a maximum of 37% and a minimum of 3%. 

The main purpose of this review is for it to be used as a boundary of the 

expected impact of the good decision and avoid disappointment in the 

decision-makers caused by unrealistic expectations. 

THE BENEFITS COST ANALYSIS 

This is one of the techniques used for evaluating an option by comparing the 

benefits with the cost of the option. One of the objectives of benefit-cost 

analysis (BCA) is to make business decisions evaluating the merit of the 

options.  

Benefits 

The estimation of the benefits is an extremely important element of the 

decision-making process. Benefits are obtained after costs are incurred. Then 

they always have to forecast or be intuited, and many times too optimistically 

since the benefits could be severely affected by implementation problems. 

As discussed previously, it is complicated to assign monetary values to lives 

saved, or firefighters’ coverage, or ecological and social impact. It is important 

to review similar projects of the sector, or projects that used similar techniques 

to get an idea of the benefits, to set appropriate boundaries to the expectation 

of the benefits. The results of the benefits of review could be used to get an 

idea of what is likely to be achievable and what is not. 

Costs  

The cost of a decision could be divided into implementation cost and recurrent 

cost. The main costs to take into consideration are the cost of developing new 

decision tools (hardware, software development, software licences, integration 

with existing software organizational change cost, migration from previous 

version and initial training). 
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Turney (2000) emphasises that there are a large number of costs that are 

usually ignored and could affect the result. For example, the cost of 

intervention where the manufacturing process is affected by its normal 

process, the cost of unwanted achievements, the cost of computation, the cost 

of testing several cases, human-computer interaction cost, and the cost of 

program instability. Recurrent costs such as operation expenses, maintenance 

and security cost, should be taken into consideration. Other indirect costs such 

as the cost of resilience to change from the organization are difficult to 

quantify (Posnett and Jan, 1996). 

Evaluation 

The general acceptance criteria are when benefits outweigh the costs; the 

decision is accepted. Despite BCA being a valuable tool for decision-making, 

it forces decision makers to provide quantitative data to support their 

arguments, assigning monetary values to all benefits and costs. Discounting 

BCA is an advanced version of BCA that converts all benefits and costs into 

their value in the present. However, the results are very sensitive to the choice 

of the discount rate.  (Boardman, 2010) 

As all these costs should have been covered by the benefits of a new 

decision system, when the scope of the decision-making process was decided, 

bounding the expectations regarding the benefits should be done to avoid the 

acceptance of options where costs are bigger than benefits. Moreover, keep 

exploring other alternatives, and the also the alternative of not doing anything. 

Sometimes savings of around 3 % (Eldon et al., 2014) are enough to cover 

all the expenses. However, if savings higher than 50%  are necessary maybe 

other options should be explored since the average of the savings reported 

(15.9%) is far from the savings needed to cover the costs, even though some 

exceptional cases are reported. The decision- maker should proceed with 

caution, explore more options and not rely too much on luck. 

CONCLUSION 

This chapter has been dedicated to the decision theory. It started with the basic 

decision theory, and the different points of views from the different disciplines, 

and the two types of decision theory: normative and descriptive  

All the characteristics of a decision with complete information have been 

enumerated. After the characteristics, the decision process has been described, 

followed by the decision-making unit. Then, it is suggested knowing the 

expected impact of a decision compared with the literature. Finally, the 

benefits cost analysis has been analysed.  

 



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

54 

REFERENCE 

Aktaş, E., Özaydın, Ö., Bozkaya, B., Ülengin, F., & Önsel, Ş. (2013). Optimizing fire station locations for the 

Istanbul metropolitan municipality. Interfaces, 43(3), 240-255. 

Álvarez-Socarrás, A. M., Berrones, A., Moreno, G. J., Rodríguez-Sarasty, J. A., & Cabrera-Ríos, M. (2013). 

Practice Summary: Enhancing Forecasting and Capacity Planning Capabilities in a Telecommunications 

Company. Interfaces,43(4), 385-387. 

Anderson, R., Ashlagi, I., Gamarnik, D., Rees, M., Roth, A. E., Sönmez, T., & Ünver, M. U. (2015). Kidney 

Exchange and the Alliance for Paired Donation: Operations Research Changes the Way Kidneys Are 

Transplanted. Interfaces,45(1), 26-42. 

Andrade-Pineda, J. L., Gonzalez-R, P. L., & Framinan, J. M. (2013). A decision-making tool for a regional 

network of clinical laboratories. Interfaces,43(4), 360-372. 

Avrahami, A., Herer, Y. T., & Levi, R. (2014). Matching Supply and Demand: Delayed Two-Phase 

Distribution at Yedioth Group—Models, Algorithms, and Information Technology. Interfaces, 44(5), 445-

460. 

Bayle, L. D. (2003). The Internet’s Influences on Industrial Buying Behavior in Small and Medium Sized 

Enterprises (Doctoral dissertation, Master‘s Thesis, Lulea University of Technology (2003: 233 CIV)). 

Bell, D. E. (1985). Disappointment in decision making under uncertainty. Operations research, 33(1), 1-27. 

Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science & Business Media. 

Boardman, A. E. (2010). Cost-benefit analysis. 

Bonoma, T. V. (1982). Major Sales-Who Really Does the Buying. Harvard Business Review, 60(3), 111-119. 

Bonomo, F., Donne, D. D., Durán, G., & Marenco, J. (2013). Automatic Dwelling Segmentation of the Buenos 

Aires Province for the 2010 Argentinian Census. Interfaces, 43(4), 373-384. 

Brim, O. G. (1962). Personality and decision processes: Studies in the social psychology of thinking (Vol. 2). 

Stanford University Press. 

Cambridge international dictionary of English. Cambridge: Cambridge University Press, 2015. 

Carnes, T. A., Henderson, S. G., Shmoys, D. B., Ahghari, M., & MacDonald, R. D. (2013). Mathematical 

programming guides air-ambulance routing at Ornge. Interfaces, 43(3), 232-239. 

Chang, S., & Chung, J. (2013). Optimization Models for Production Planning in LG Display. Interfaces, 43(6), 

518-529. 

Chen, X., Huang, S., Chen, D., Zhang, Z., Zheng, L., Grossmann, I., & Chen, S. (2014). Hierarchical 

Decomposition Approach for Crude Oil Scheduling: A SINOPEC Case. Interfaces, 44(3), 269-285. 

Cyert, R. M., Dill, W. R., & March, J. G. (1958). The role of expectations in business decision making. 

Administrative Science Quarterly, 307-340. 

Davies, J. E. (2002). What gets measured, gets managed: statistics and performance indicators for evidence 

based management. Journal of Librarianship and information Science, 34(3), 129-133. 

Degbotse, A., Denton, B. T., Fordyce, K., Milne, R. J., Orzell, R., & Wang, C. T. (2013). IBM blends heuristics 

and optimization to plan its semiconductor supply chain. Interfaces, 43(2), 130-141. 

Demir, E., Van Woensel, T., & de Kok, T. (2014). Multidepot Distribution Planning at Logistics Service 

Provider Nabuurs BV. Interfaces, 44(6), 591-604. 

Dewey, John ([1910]1978), How We Think, pp. 177-356 in Middle Works, vol 6. 

Dikos, G., & Spyropoulou, S. (2013). Supply chain optimization and planning in Heracles general cement 

company. Interfaces, 43(4), 297-312. 

Diz, G., Scavarda, L. F., Rocha, R., & Hamacher, S. (2014). Decision Support System for PETROBRAS Ship 

Scheduling. Interfaces, 44(6), 555-566. 

Eijgenraam, C., Kind, J., Bak, C., Brekelmans, R., den Hertog, D., Duits, M., ... & Kuijken, W. (2014). 

Economically Efficient Standards to Protect the Netherlands Against Flooding. Interfaces, 44(1), 7-21. 

Ferris, P., Forbes, C., Forbes, J., Forbes, M., & Kennedy, P. (2015). Optimizing Network Designs for the 

World’s Largest Broadband Project. Interfaces, 45(1), 83-97. 

Fishburn, P. C. (1983). Transitive measurable utility. Journal of Economic Theory, 31(2), 293-317. 

Fleuren, H., Goossens, C., Hendriks, M., Lombard, M. C., Meuffels, I., & Poppelaars, J. (2013). Supply chain–

wide optimization at TNT Express. Interfaces, 43(1), 5-20. 

Gershenfeld, G. (2015). Conjoint Analysis for Ticket Offerings at the Cleveland Indians. Interfaces, 45(2), 

166-174. 

Goel, A., Gupta, P., Sirois, J., Wang, D., Sharma, A., & Gurumurthy, S. (2015). The Who-To-Follow System 

at Twitter: Strategy, Algorithms, and Revenue Impact. Interfaces, 45(1), 98-107. 

Guimarães, L., Amorim, P., Sperandio, F., Moreira, F., & Almada-Lobo, B. (2014). Annual Distribution 

Budget in the Beverage Industry: A Case Study. Interfaces, 44(6), 605-626. 



 

 

 

Raul Pulido. 

 

 

55 

 

Gunn, E. A., MacDonald, C. A., Friars, A., & Caissie, G. (2014). Scotsburn Dairy Group Uses a Hierarchical 

Production Scheduling and Inventory Management System to Control Its Ice Cream 

Production. Interfaces, 44(3), 253-268. 

Hamad, R., & Gualda, N. D. F. (2014). Global Sourcing Approach to Improve Cash Flow of Agribusiness 

Companies in Brazil. Interfaces, 44(3), 317-328. 

Hansson, S. O. (2005). Decision theory: A brief introduction. 

Hendriks, M. M., DEBOER, J. H., Smilde, A. K., & Doornbos, D. A. (1992). Multicriteria decision-making. 

Chemometrics and Intelligent Laboratory Systems, 16(3), 175-191. 

Hoeffler, S., & Ariely, D. (1999). Constructing stable preferences: A look into dimensions of experience and 

their impact on preference stability. Journal of Consumer Psychology, 8(2), 113-139. 

Hu, Z., Putz, J., Sutjandra, Y., Chan, A., Mount, E., & Baker, K. (2015). The Energy Authority Optimizes 

Water Routing and Hydroelectric Generation on the Columbia River. Interfaces, 45(1), 43-57. 

Humair, S., Ruark, J. D., Tomlin, B., & Willems, S. P. (2013). Incorporating stochastic lead times into the 

guaranteed service model of safety stock optimization. Interfaces, 43(5), 421-434. 

Jensen, J. B., Ahire, S. L., & Malhotra, M. K. (2013). Trane/Ingersoll Rand Combines Lean and Operations 

Research Tools to Redesign Feeder Manufacturing Operations. Interfaces, 43(4), 325-340. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: 

Journal of the Econometric Society, 263-291. 

Katariya, A. P., Çetinkaya, S., & Tekin, E. (2014). Cyclic Consumption and Replenishment Decisions for 

Vendor-Managed Inventory of Multisourced Parts in Dell’s Supply Chain. Interfaces, 44(3), 300-316. 

Katircioglu, K., Gooby, R., Helander, M., Drissi, Y., Chowdhary, P., Johnson, M., & Yonezawa, T. (2014). 

Supply Chain Scenario Modeler: A Holistic Executive Decision Support Solution. Interfaces, 44(1), 85-

104. 

Kempf, K. G., Erhun, F., Hertzler, E. F., Rosenberg, T. R., & Peng, C. (2013). Optimizing capital investment 

decisions at Intel Corporation. Interfaces, 43(1), 62-78. 

Keskin, B. B., Çapar, İ., Sox, C. R., & Freeman, N. K. (2014). An integrated load-planning algorithm for 

outbound logistics at webb wheel. Interfaces, 44(5), 480-497. 

Körpeoğlu, E., Kurtz, Z., Kılınç-Karzan, F., Kekre, S., & Basu, P. A. (2014). Business Analytics Assists 

Transitioning Traditional Medicine to Telemedicine at Virtual Radiologic. Interfaces, 44(4), 393-410. 

Kutz, T., Davis, M., Creek, R., Kenaston, N., Stenstrom, C., & Connor, M. (2014). Optimizing Chevron’s 

Refineries. Interfaces, 44(1), 39-54. 

Lee, E. K., Atallah, H. Y., Wright, M. D., Post, E. T., Thomas IV, C., Wu, D. T., & Haley Jr, L. L. (2015). 

Transforming Hospital Emergency Department Workflow and Patient Care. Interfaces. 

Lee, E. K., Pietz, F., Benecke, B., Mason, J., & Burel, G. (2013). Advancing Public Health and Medical 

Preparedness with Operations Research. Interfaces,43(1), 79-98. 

Legato, P., Mazza, R. M., & Trunfio, R. (2013). Medcenter Container Terminal SpA Uses Simulation in 

Housekeeping Operations. Interfaces, 43(4), 313-324. 

López-Pérez, J. F., & Ríos-Mercado, R. Z. (2013). Embotelladoras ARCA uses operations research to improve 

territory design plans. Interfaces, 43(3), 209-220. 

Mahadevan, B., Sivakumar, S., Dinesh Kumar, D., & Ganeshram, K. (2013). Redesigning Midday Meal 

Logistics for the Akshaya Patra Foundation: OR at Work in Feeding Hungry School 

Children. Interfaces, 43(6), 530-546. 

Mahdavi Pajouh, F., Xing, D., Zhou, Y., Hariharan, S., Balasundaram, B., Liu, T., & Sharda, R. (2013). A 

Specialty Steel Bar Company Uses Analytics to Determine Available-to-Promise Dates. Interfaces, 43(6), 

503-517. 

Martin, K., Chitalia, P., Pugalenthi, M., Rau, K. R., Maity, S., Kumar, R., ... & Subramanian, S. (2014). Dell’s 

Channel Transformation: Leveraging Operations Research to Unleash Potential Across the Value 

Chain. Interfaces, 44(1), 55-69. 

Michalski, R. S. (1983). A theory and methodology of inductive learning (pp. 83-134). Springer Berlin 

Heidelberg. 

Mintzberg, H., Raisinghani, D., & Theoret, A. (1976). The structure of" unstructured" decision processes. 

Administrative science quarterly, 246-275. 

Mitchell, T. R., & Beach, L. R. (1990). “… Do i love thee? Let me count…” toward an understanding of 

intuitive and automatic decision making. Organizational Behavior and Human Decision Processes, 47(1), 

1-20. 

Nguyen, C., Toriello, A., Dessouky, M., & Moore, J. E. (2013). Evaluation of transportation practices in the 

California cut flower industry. Interfaces, 43(2), 182-193. 

O’Sullivan, D., & Newman, A. (2014). Extraction and backfill scheduling in a complex underground 

mine. Interfaces, 44(2), 204-221. 



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

56 

Pazour, J. A., & Neubert, L. C. (2013). Routing and Scheduling of Cross-Town Drayage Operations at JB Hunt 

Transport. Interfaces, 43(2), 117-129. 

Pekgün, P., Menich, R. P., Acharya, S., Finch, P. G., Deschamps, F., Mallery, K., ... & Fuller, J. (2013). Carlson 

Rezidor hotel group maximizes revenue through improved demand management and price 

optimization. Interfaces,43(1), 21-36. 

Posnett, J., & Jan, S. (1996). Indirect cost in economic evaluation: the opportunity cost of unpaid inputs. Health 

economics, 5(1), 13-23. 

Raiffa, H. (1968). Decision analysis: introductory lectures on choices under uncertainty. 

Roubens, M., & Vincke, P. (1985). Preference modelling, volume 250 of Lectures Notes in Economics and 

Mathematical Systems. 

Rudin, C., Ertekin, Ş., Passonneau, R., Radeva, A., Tomar, A., Xie, B. & McCormick, T. (2014). Analytics for 

power grid distribution reliability in New York City. Interfaces, 44(4), 364-383. 

Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of risk and uncertainty, 

1(1), 7-59. 

Santos, C., Gonzalez, T., Li, H., Chen, K. Y., Beyer, D., Biligi, S., ... & Zhang, A. (2013). HP Enterprise 

Services uses optimization for resource planning. Interfaces, 43(2), 152-169. 

Schoemaker, P. J. (1982). The expected utility model: Its variants, purposes, evidence and limitations. Journal 

of economic literature, 529-563. 

Simon, H. A. (1960). The new science of management decision.  

Singh, G., García-Flores, R., Ernst, A., Welgama, P., Zhang, M., & Munday, K. (2013). Medium-term rail 

scheduling for an iron ore mining company. Interfaces,44(2), 222-240. 

Slowiński, R. (1993). Rough set learning of preferential attitude in multi-criteria decision making. In 

Methodologies for Intelligent Systems (pp. 642-651). Springer Berlin Heidelberg. 

Smalley, H. K., Keskinocak, P., & Vats, A. (2015). Physician Scheduling for Continuity: An Application in 

Pediatric Intensive Care. Interfaces, 45(2), 133-148. 

Stock, J. R., & Zinszer, P. H. (1987). The industrial purchase decision for professional services. Journal of 

Business Research, 15(1), 1-16. 

Sun, X., Garg, M., Balaporia, Z., Bailey, K., & Gifford, T. (2014). Optimizing Transportation by Inventory 

Routing and Workload Balancing: Optimizing Daily Dray Operations Across an Intermodal Freight 

Network. Interfaces, 44(6), 579-590. 

Tandon, R., Chakraborty, A., Srinivasan, G., Shroff, M., Abdullah, A., Shamasundar, B., ... & Dhore, P. (2013). 

Hewlett Packard: Delivering Profitable Growth for HPDirect. com Using Operations 

Research. Interfaces, 43(1), 48-61. 

Tang, L., Meng, Y., Wang, G., Chen, Z. L., Liu, J., Hu, G., ... & Zhang, B. (2014). Operations Research 

Transforms Baosteel’s Operations. Interfaces,44(1), 22-38. 

Thomas, B. G., Bollapragada, S., Akbay, K., Toledano, D., Katlic, P., Dulgeroglu, O., & Yang, D. (2013). 

Automated Bed Assignments in a Complex and Dynamic Hospital Environment. Interfaces, 43(5), 435-

448. 

Thompson, K. M., Duintjer Tebbens, R. J., Pallansch, M. A., Wassilak, S. G., & Cochi, S. L. (2015). Polio 

Eradicators Use Integrated Analytical Models to Make Better Decisions. Interfaces, 45(1), 5-25. 

Varelas, T., Archontaki, S., Dimotikalis, J., Turan, O., Lazakis, I., & Varelas, O. (2013). Optimizing Ship 

Routing to Maximize Fleet Revenue at Danaos.Interfaces, 43(1), 37-47. 

Vigo, D., Caremi, C., Gordini, A., Bosso, S., D’Aleo, G., & Beleggia, B. (2014). SPRINT: Optimization of 

Staff Management for Desk Customer Relations Services at Hera. Interfaces, 44(5), 461-479. 

Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior. Princeton university 

press. 

Wasserkrug, S., Tsitkin, A., & Zadorojniy, A. (2014). Relieving Pressure: Optimizing Water Distribution 

Pressure Management at Valley of the Moon Water District. Interfaces, 44(5), 509-524. 

Weber, M. (1987). Decision making with incomplete information. European Journal of Operational Research, 

28(1), 44-57. 

Webster Jr, F. E., & Wind, Y. (1972). A general model for understanding organizational buying behavior. The 

Journal of Marketing, 12-19. 

Yu, J., & Hoff, R. (2013). Optimal Routing and Assignment of Consultants for Energy Education, 

Inc. Interfaces, 43(2), 142-151. 

Zhang, J., Tang, O., Zhao, J., Huo, J., & Xia, Y. (2013). CPEL Redesigns Its Land Express 

Network. Interfaces, 43(3), 221-231. 

Zhang, X., Meiser, D., Liu, Y., Bonner, B., & Lin, L. (2014). Kroger Uses Simulation-Optimization to Improve 

Pharmacy Inventory Management. Interfaces, 44(1), 70-84. 

 

  



 

 

 

Raul Pulido. 

 

 

57 

 

 

SECTION 2. SURVEY AND MANUFACTURING CASE 

STUDIES. 

Having presented a general introduction to the thesis in section 1, section 2 

starts with an exploration of the integration of the decision-making process. 

After that a car assembly line is analysed, in chapter 5, where a tactical and 

operational decision model based on MILP is presented and in the next chapter 

the functional area of sequencing is added to the model. Then a bigger problem 

is solved using heuristic ant colony optimization. Finally, an aeronautical 

manufacturer using simulation will be analysed.  

Chapter 4: The integration of the decision making process. 

MOTIVATION 

After a discussion of the decision theory, and which are the steps of a decision 

making process, the next step of this research was to learn about the decision 

making in companies. This chapter investigate the decision making process of 

a production planning at shop level in different companies.  

In order to answer the fourth research question: Answering the fourth 

research question of this thesis: What is the managerial theory and implication 

behind the decision models that are currently being used? It is necessary to 

start with the understanding of the industry and organization. As it was 

anticipated in the previous chapter, a survey and interviews were used in this 

part of the research. 

The internal and the external integration of the supply chain have become 

essential for many industries. However, according to a global survey of the 

supply chain: companies have put so much attention about supply chain 

integration that they have forgotten about the internal integration. The 

literature about internal integration defines it as a key element in the 

performance of the company and the entire supply chain. Besides there is a 

problem of misconception of their own level of internal integration. 

Companies could trust to be integrated based in misconceptions or incomplete 

information. This could lead to miss valuable synergies that could reduce the 

overall cost. 

Companies have put a lot of attention to integrate the supply chain, 

companies are using their resources to persuade the integration with their 

supplier and client but they have forgotten the internal integration.   
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Using a survey among production planning practitioners, it was 

investigated the decision-making process of the internal planning, operation 

scheduling and inventory control at the shop level. The degree of integration 

was analysed using the decision-making process and other drivers suggested 

in other studies. One of the findings was that many companies have a 

misalignment in the implementation of their philosophies. Consequently, the 

possibility of enhance was lost by silo decisions and managers should 

implement the internal integration practices in the different areas of the 

production planning.  

INTRODUCTION 

There is substantial scientific and non-scientific literature on supply chain 

collaboration and management and supply chain integration. The literature 

highlights the advantages of this integration; successful cases are reported in 

the different industries, such as manufacturing and automotive (Landry, 1998; 

Akintoye et al., 2009). Some researchers, such as de Souza and Ledur (2011), 

have empirically confirmed a positive relationship between supply chain 

management and operational performance; they assume that creating alliances 

with members of the same chain improves its competitive advantage, reflected 

by a superior performance of all members.  

Unexpectedly, the results obtained in the global supply chain survey 

highlight that “supply chain managers often perceive that their companies are 

more accomplished in external integration efforts than they are in internal 

efforts” (Poirier et al., 2008).  

Integration is a term used in several fields and one of the general meanings 

is “Process of attaining close and seamless coordination between several 

departments, groups, organizations, systems, etc. although they are not 

compounded into an entity” 

Integration could be achieved through interaction or communication 

activities with the functional departments. Other literature characterizes it as 

an act that stimulates teamwork, the share of resources and collective goals.  

Topolsek et al. (2009) highlights the importance of internal integration as a 

prerequisite for successful external integration. Each company must first make 

sure it achieves a high level of internal integration and then integrate itself into 

a competitive company of the supply chain. 
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Figure 4.1: Influences of the internal and external integration adapted from (Topolsek et al 2009). 

Lee (2002) emphasises that information shared through the use of IT and 

tight coordination allow us to control the supply chain efficiently. All this is 

facilitated by the use of the Internet. Despite the news and scientific papers 

about the use of IT decision systems in enterprise that control each area of 

companies and all the integration theories, we wish to investigate the current 

degree of integration of the different departments at shop level.  

Since there is a lack of information about specific types of integration in the 

production planning area (Williams et al., 2013), we wish to research into the 

integration of production planning through a survey in order to know the 

current degree of integration in the industry. An increase in the awareness of 

key structural decisions in internal integration facilitates external integration 

with customers and suppliers (Langowitz, 1988; Millson et al., 1992) 

The aim of this study is to measure the internal integration in the production 

planning area. Using a survey among production planning professionals from 

different industrial sectors, we evaluate the degree of internal integration and 

information-sharing in the different parts of the company. Later, we evaluate 

the effect of the performance of an integrated decision-making process. 

Internal integration 

Internal integration is the core competence derived from linking internal 

activities to best support the (internal or external) client at the lowest cost. This 

total cost concept requires that all the components be managed holistically, 

and they be taken into consideration (Bowersox, 2002). One example is an 

increase in the logistic cost by using air transportation, justified by the decrease 

in the inventory cost, resulting in an overall lower cost. 

Souder and Sherman (1993) defined the goal of integration as “a state of 

high-level values, common objectives, and collaborative values.” and that 
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traditional silo departments should be eliminated to enhance the coordination 

among the areas. 

Internal integration is the missing link in establishing how visibility affects 

the responsiveness of the supply chain. Accurate, timely, and complete 

information is not enough if there is a lack of internal integration (Williams et 

al., 2013). 

Narasimhan and Kim (2001) place great emphasis on the use of strategies 

for information system utilization to persuade integration. Zailani and 

Premkumar (2005) found that traditional managers are concerned about their 

functions inside their departments and about bureaucratic tasks with a 

prejudice against integration. 

Information sharing 

Information sharing refers to the exchange of information among the interested 

users of this information. There is a discussion on the use of IT in different 

areas such as inventory, where Mishra et al. (2013) found evidence that firms’ 

IT capabilities have significant positive effects on their inventory efficiency. 

Lee (1992) warns us regarding the use of inefficient information systems, 

which could cause more losses than benefits. For example, when the retrieval 

and input of information is tedious, laborious, and many manual processes 

exist. Also, when the information is not accurate or is outdated.  

Another problem is data integration and communication among the 

systems. For example, a company using various types of software, and 

programs that do not understand each other highlights the importance of the 

IT system in integration (Lee, 2002) 

Heeks (2002) analyses several failures of information technology 

implementations, giving the design gap as one of the reasons for failure (the 

mismatch between IS and current local user needs). 

Main integration drivers and measurements 

Pagell (2004) developed a model of the drivers for internal integration; he 

claims that a better integration fosters the strength and competencies of the 

firm. He highlights the business structure and the measurements, and rewards 

cross-functional teams, job rotations, top management support, information 

technology, and communications as drivers for performance. 

Frohlich and Westbrook (2001) measure the integration of the supply chain 

using arcs of integration, and eleven years later (Schoenherr and Swink, 2012), 
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continue this study recognizing internal integration as the strength of the 

relationship between outward arcs and other performance indicators.  

OBJECTIVE 

As mentioned in the introduction, proper internal and external integration are 

beneficial for the performance of the company and the entire supply chain. 

However, despite the literature emphasising internal integration for a 

successful external integration, companies have decreased their focus on 

internal integration (Poirier et al., 2008). 

Integration should occur between internal and external functions. Inside the 

organization, the different departments should work together. The focus is on 

the internal planning process. In particular, the survey investigated the 

decision-making processes related to internal planning, operations scheduling, 

and production activity control at shop floor level (be it a job shop/parts 

manufacturing or assembly department). 

Several studies have revealed that some companies fail, despite the fact that 

the different departments are achieving their objectives, because of a “silo 

view” and make decisions in complete isolation without considering other 

departments’ opinions (Capasso and Dagnino, 2012). We want to know if the 

decision-makers in the different stages, share the same department or person. 

A study of the complexity of the organizations performed by Malhotra and 

Mackelprang (2012) warns us that the complexity of organization is 

continually increasing. The issue that obtains an advantage from an integrated 

supply chain is more complex than the research expected.  

One of the keystones of this article is the misalignment between perceived 

integration and real integration. For example, the decision-making process of 

a functional department should take into consideration variables and 

constraints of another functional department to be integrated. 

The objective of this paper is to measure the degree of integration of the 

company through an analysis of the decision-making process, the business 

structure, the information sharing, and the company’s own perception of 

integration. Moreover, we will analyse their impact on the performance. 

Proposition 1. Higher perceived performance should be the result of the 

perceived integration. 

Proposition 2. It is possible to measure the misalignment between the 

perception of the integration of the supply chain and the level of integration 

calculated using the drivers proposed by Pagell (2004). 

Proposition 3. A higher level system of information sharing increases the 

internal integration of the company. 
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Proposition 4: Group orientation could better explain the relationship with 

the production planning performance process. 

METHODOLOGY 

The methodology used to address the hypothesis presented in this research was 

a survey, following the steps proposed by Forza (2002), which could be 

summarized as follows: link to the theoretical level, design, pilot-test, collect 

data for theory testing, analyse the data, and conclude. 

One definition of internal integration is proposed by Zhao (2011) as “the 

degree to which a firm can structure its organizational practices, procedures 

and behaviours into a collaborative, synchronized and manageable process.” 

Also, it includes the use of data and information systems, real-time data, 

integration of the different activities, and cross-functional cooperation. 

Finally, internal integration identifies that the company should not act as a 

functional silo but as an integrated process. 

From the main drivers that are proposed by Pagell (2004), we focus on the 

structure, the measurements and rewards, job rotations, information 

technology, and communications as drivers for performance in order to 

measure the degree of integration of production planning and to get further 

knowledge of the integration of the production, inventory and replenishment 

schedule. 

Past studies (Swamidass and Newell, 1987) have described the difficulty to 

obtain financial measurement, despite the additional difficulty to isolate the 

plant from the other departments and business units. Although it is preferable 

to obtain objective measurements, these are difficult to compare in different 

sectors, and production structures, so we decided to ask for perceptual 

measurements of managerial performance. 

To study the level of internal integration, we decided to give questionnaires 

to production planning specialists regarding their perception of the production 

planning process and its level of integration. 

Questionnaire design 

For data collection, a semi-structured questionnaire was developed that 

contained open-ended and closed-ended questions. The questionnaire survey 

looks at the production planning specialists in different plants (we define 

production plant as the unit of analysis in order to make a better comparison 

for different-size plants) and, in some cases, compares the results among plants 

of the same company. 

We ran a pre-test using a company with several plants; the comments 

received from the pre-tester helped us modify the scales and questions. 
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The questionnaire, accompanied by a cover letter, was sent by two methods: 

e-mail and LinkedIn. In the first method, we emailed different companies and 

then asked them to be forwarded to the head of production planning. The 

second and most successful method was through LinkedIn where we looked 

for groups of professional production planning practitioners and found mainly 

two groups, APICS and POMS. We sent a small personal message that invited 

them to participate in the study. We obtained 72 responses, 56 valid entries, 

and 16 invalid entries since they did not complete the questionnaire. 

This research was considered exploratory. The questionnaire was designed 

to be answered in 15 to 20 minutes. It consisted of 23 questions, with a majority 

of multiple-choice questions and Likert scales, and with 4 long open questions. 

Three versions of the questionnaire (English, Italian, and Spanish) were 

produced to facilitate the answers of the respondents, especially for the open 

questions. The web-based survey tool Typeform© was used. Some scales are 

inspired from Koste et al. (2004) to capture some flexibility attributes. To 

avoid problems with confidentiality issues, and increase the response rate, we 

did not ask for any personal data or financial information of the company and 

all the data was treated anonymously. 

Respondents were asked to describe their decision-making and planning 

algorithms or software that they use, with respect to the following: 

 Characteristics of their production facility (size, workers, products, and 

clients) 

 Degree of perceived integration and performance 

 Decision drivers 

 Business structure (job rotation, goals, philosophy) 

 Information sharing (IT, software, inventory tracking) 

 Decision-making process at shop level (input, variables and constraints 

taken into account) 

DATA ANALYSIS 

Before starting with the analysis, a data cleaning was performed. We 

eliminated 16 incomplete answers and an open question since the majority of 

the answers were extremely basic. Data analyses were undertaken using 

functional language and environment to statistics STATA© and R© 3.0.2. with 

RStudio v0.98. 

 

Characteristics of their production facility 

In this part, the sample is characterized. Multiple questions are used and the 

descriptive statistics are presented in Table 4.1. Table 4.1 contains the 
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composition of the sample based on the size of the production capacity, 

sectors, and the production structure.  

The sample is made up of different sectors with an emphasis on the 

Automotive and car component sector; companies with more than 50 

employees in the production facility represent more than 50% of the sampling. 

Finally, the production structure is more represented by the Job shop but all 

the production structure are represented with at least 17%. 

 

Table 4.1: Sample statistics. 

 

Employees Frequency Percent ValidPercent CumulativePercent 

< 010 employees 14 25,0 25,0 25,0 

< 050 employees 11 19,0 19,0 44,0 

< 250 employees 20 35,0 35,0 80,0 

> 250 employees 11 19,0 19,0 100,0 

Total 56 100,0 100,0  

Sector 

 Frequency Percent Valid Percent Cumulative 

Percent 

Automotive / Components 18 32,0 32,0 32,0 

Defence 5 8,0 8,0 41,1 

Electric 3 5,0 5,0 46,0 

Electronics 8 14,0 14,0 60,0 

Energy 3 5,0 5,0 66,1 

Food and Beverage 7 12,0 12,0 78,0 

Manufacturing 3 5,0 5,0 83,0 

Personal Care 5 8,0 8,0 92,0 

Telecom 4 7,0 7,0 100,0 

Total 56 100,0 100,0  

Structure 

 Frequency Percent Valid Percent Cumulative 

Percent 

Assembly line / Repetitive 

(semi continuous, high 

volume) 

14 25,0 25,0 25,0 

Batch processing (moderate 

volume and variety) 

15 26,0 26,0 51,0 

Job shop (small lots, low 

volume, general equipment) 

17 30,0 30,0 82,0 

Projects (Non routine jobs) 10 17,0 17,0 100,0 

Total 56 100,0 100,0  



 

 

 

Raul Pulido. 

 

 

65 

 

Degree of perceived integration and performance 

We use a Likert scale, to measure the perceived degree of internal integration, 

and performance of the production planning (see Table 4.2), where 1 means 

non-integrated or poor performance and 5 is fully integrated or good 

performance respectively. Where nobody perceives their performance as a 

poor performance, and in general performs highly, the perceived integration 

has a larger standard deviation and range. 

 

Table 4.2: Perceived integration and performance. 

 Mean Std Dev Min Max 

Perceived integration 3.23 1.24 1 5 

Perceived performance 3.63 0.84 2 5 

 

To test our first proposition that higher perceived performance should be 

the result of the perceived integration, we made a regression analysis to explain 

the behaviour of the performance due to the integration (see Table 4.3). The 

perceived integration in not statistically significant at the 0.05 level, although 

the coefficient is positive, which indicates that higher integration is related to 

higher performance. For our proposition 1, we could assume that they are 

correlated, but the integration is not enough to explain the performance. 

 

Table 4.3: Regression analysis. 

Perceived performance Coefficients Std. Err. t P>|t| 

Perceived integration 0.08 0.09 0.89 0.38 

Constants 3.36 0.32 10.54 0.00 

 

Decision drivers 

Business structure. We coded the multiple option questions scale in line with 

the following equivalences- Job rotation was assigned a zero and allowed up 

to 5 points if it was strongly advised. It is interesting to note that only two 

respondents answered that it was strongly recommended. Despite many 

rotation ideas, it is not widely implemented in the companies. For the structure, 

we assigned 5 to the assembly line and 1 to the project base. For the number 

of variants, 5 was for a single product and 1 when each product was different.  

For the philosophy, we assigned 0, 1, or 2 Since LEAN, JIT, TOC persuades 

the integration, we assigned two points if they mentioned it. 1 point was 

awarded for any other and if there was no philosophy or they did not know it, 

0 points.  
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For Goals, if they were based on a single performance we assigned the 

minimum of 1, and if they included more areas we rated the entire company 

up to 5. For the decision-making, we assigned two points if the decision of the 

three areas was performed by the same department but only one if only 2 

shared the department, and zero otherwise. 

Information sharing. For the use of IT/Optimization software, we assigned 

0, 1 or 2 points according to the given software, to measure how efficient one 

of the most common used IT softwares is in production planning. We 

measured the level of integration of the inventory management system by 

assigning 5 points, if it was done automatically, 3 points if it was done 

manually, 2 points if it was done for some products and 1 point if it was not 

done.  

Decision-making process. The most difficult part to incorporate into the 

integration index was the open question because the transformation from text 

to a numeric value is always subjective. The open question asked about the 

schedule, replenishment, inventory, and exception management. We assigned 

one point to the index for each part of the description of the decision-making 

process that took into consideration something that was not from this area (e.g., 

for replenishment, if they provided responses on the constraints related to 

scheduling or production, they were given an integration point. 

The maximum points assigned were 5. We limited the assignment to 5 

mentions per type of answer, since a long answer has more chances of 

mentioning other items as the size of the answers varies a lot. Answers shorter 

that 100 characters were discarded (10 were eliminated). The rest of the scales 

were rated on a five-point Likert scale. 

In Figure 4.2, the scree plot of the factor analysis is displayed. To underline 

the factors that explain these results, and start to test our second proposition, 

we performed an exploratory factor analysis. The eigenvalues of the first 4 

factors were 4.17, 1.49, 0.62 and 0.52. We decided to accept the first two 

components using the typical threshold of 1. The Cronbach alpha test resulted 

in an average inter-item covariance of 0.30 and a reliability coefficient of 0.76. 
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Figure 4.2: Screen plot of eigenvalues after factor. 

To maximize the square of the variance of the two factors that we will 

retain, we will use a Varimax rotation. We will rename Factor 1 as an 

integration factor, and Factor 2 as a complexity factor. 

 

 

Figure 4.3:The plot of the factor loadings after Varimax rotation. 
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Using the two factors obtained in the previous step (complexity and 

integration), the normalized value of the IT score, and the inventory integration 

of the IT, we explain the perceived integration (see Table 4.4). Let us focus on 

the only predictors that are statistically significant at 95% level, which are the 

ones related to IT. Also, the other predictor related to information sharing is 

important for the result. It is interesting that the IT and the inventory 

integration explain the perceived integration instead of the indirect 

measurement of integration and the complexity. The use of an information 

sharing system makes the companies believe that they are integrated without 

evaluating the others factors. For the second proposition, we could measure 

the perceived integration using the different drivers described by Pagell 

(2004). 

Table 4.4: Perceived integration factors. 

Perceived integration Coefficients Std. Err. t P>|t| 

Integration 0.13 0.12 1.12 0.27 

Complexity 0.06 0.13 0.45 0.65 

Score of IT 0.35 0.12 5.24 0.00 

Inventory Integration  0.19 0.10 1.92 0.07 

Constants 0.00 0.10 0.03 0.98 

 

For the third proposition, we want to know if a higher level shared 

information system could increase the internal integration. We assume that one 

of the main influencers in perception of integration was the use of information 

systems (IS) or information technologies (IT). We ran a correlation analysis 

between these two variables and found a strong correlation between the use of 

the information sharing and the IT system (See Table 5). However, many 

authors such as (Gunasekaran and Ngai, 2004) have stated that IS by itself it 

is not enough to guarantee the integral integration of the supply chain. 

However, it is impossible to have it without an IS system. We could therefore 

say that IT is necessary but not sufficient. 

Table 4.5: Correlation between Integration and IT. 

 Perceived integration Information Sharing System Inventory Int 

Perceived integration 1.00   

System InvInt 0.27 1.00  

Information Sharing 0.71 0.13 1.00 

 

Clusters use multiple predictors to explain the relationship between 

variables. To test our fourth proposition, which according to Kaufmann and 

Carter (2006) is related to performance, the data were cluster-analysed using 

principal component analysis. We used the k-mean clustering technique using 
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a Euclidean distance and the number of groups selected was 4, despite the 

proposed limit by Lehman (1979) of between n/30 and n/60, since 2 groups 

oversimplify the explanation and a bigger group gives us few elements in each 

group. 

The clusters were first tested using ANOVA to test the differences in the 

defining variables among the cluster. Secondly, a Scheffe pairwise comparison 

of the mean was performed to determine which pairs were significantly 

different. The results are presented in Table 4.6. which presents the cluster 

means and the standard deviation and the relative ranking of the emphasis of 

the characteristic among the group. The numbers in the parentheses show the 

group number from which this group was significantly different to the other 

groups. 

 

Table 4.6: ANOVA post hoc test. 

  Cluster   F=Value 

 1 2 3 4 (p=probability) 

Perceived Performance 0.89 -0.56 -1.10 0.50 15 (0) 

Pairwise (2,3) (1,4) (1,4) (2,3)  

Std. Dev. 0.31 0.79 0.61 0.79  

Rank 1 3 5 3  

Perceived integration -0.39 -0.75 -0.08 0.81 16.09 (0) 

Pairwise (4) (4) (-) (1,2)  

Std. Dev. 0.94 0.83 0.41 0.62  

Rank 4 5 3 2  

System InventoryInt -0.40 -0.88 -0.04 -0.94 34.42 (0) 

Pairwise (4) (3,4) (2,4) (1,2,3)  

Std. Dev. 0.52 0.48 0.76 0.64  

Rank 5 6 2 6  

System Sharing -1.03 0.33 -1.16 0.44 12.3 (0) 

Pairwise (2,4) (1,3) (2,4) (1,3)  

Std. Dev. 0.74 0.81 0.82 0.77  

Rank 6 1 6 4  

Measure complexity -0.22 -0.65 -0.52 0.85 17.7 (0) 

Pairwise (4) (4) (4) (1,2,3)  

Std. Dev. 0.82 0.22 0.23 0.97  

Rank 3 4 4 1  

Measure integration 0.75 -0.28 0.24 -0.91 3.96 (0.013) 

Pairwise (2,4) (1) (-) (1)  

Std. Dev. 0.72 0.85 0.55 0.68  

Rank 2 2 1 5  

No. Firms 8 20 6 21  

Percent 15% 36% 11% 38%  
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RESULTS AND DISCUSSION 

The four clusters are named according to their characteristic: 

Cluster 1: Highly integrated 

The first cluster accounts for the remaining 15% with 8 units. They perceived 

themselves as high-performance companies. The reason for that is that they 

also achieve a high measure of integration and a medium complexity. They do 

not claim to have a super integrated information sharing system, or everything 

automated, but they manage to overcome these difficulties with other practices 

such as staff rotation, or the philosophies used. 

Cluster 2: High IT 

The second cluster accounts for 36% of the firms, with 20 units. They use 

complex IT systems to result in a highly integrated firm. However, they 

perceived themselves with a low-medium performance, and one of the 

explanations is that they lack communication among their IT systems. Also, 

they recognize this problem because they do not perceive themselves as very 

integrated. 

Cluster 3: Bad performers 

This cluster of 6 units is the least numerous of the three clusters with 11% of 

the population. They are highly integrated but are not performing well since 

they have the lowest information sharing. They only use some inventory 

tracking but the information systems are not spread among the company and 

the decision-makers take the decision in isolation, and in the analysis of the 

open questions they hardly mention any item that is not typical for this area.  

Cluster 4: Misaligned 

This cluster of 21 units is the most numerous of the three clusters with 38% of 

the population. This is the most interesting cluster since they have a high 

complexity, and the majority claim a high degree of integration, but they 

achieve a low score for integration. They do not encourage the main drivers of 

the integration, such as staff rotation. They give incentives mainly in personal 

performance and in the open questions do not mention any concept of other 

areas. They perceive a medium performance of the production planning 

process. This opens an interesting question about if there is also a 

misperception of the performance or they are achieving averagely. 
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Unfortunately, with the information collected we cannot triangulate the 

information to answer this question. 

 

Figure 4.4: Graphs of the four clusters. 

OpCos under the same company. 

From our sample, we have six companies that belong to two groups (similar 

IP address or mail affiliation). Despite being unable to obtain any statistical 

analysis for the number of respondents, we were able to obtain some 

interesting insights that will be analysed in the next part of this research. The 

first interesting part, which was our initial assumption, was that the 

Operational Companies (OpCos) from the same group will behave in the same 

way.  

The only question that was answered fairly similarly was how the goals are 

defined, which at least for all the OpCos of the company are common. For the 

philosophies that they claim to implement, they answer with different theories, 

which despite being similar to Lean or JIT, are not the same. After a detailed 

analysis of the open question, we realize that the answer is as far from each 

other as any other company of the same cluster. 

There are potential synergies that may be realized by combining or 

standardizing activities such as R&D, manufacturing, purchasing or 

distribution. (Dessein et al., 2010). 
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Other possible problems caused by loose synergies is the lack of 

knowledge-sharing since the best practices are not spread around the group. 

Alternatively, if it is wished to spread the knowledge, it is difficult to do so 

because of the lack of standardization. 

 

SUMMARIZING 

For Proposition 1, we used a linear regression to analyse the interaction of the 

perceived integration and perceived performance, which was not enough to 

explain the performance.  

For Proposition 2, we used the drivers proposed by Pagell (2004) to 

measure the internal integration and we used a Factor analysis to make a 

reduction of the variables used. We keep two factors that we named as 

Integration and Complexity. Also, we realized that the perception of 

integration is different to the one that is measured, mainly explained as a 

problem of misperception. 

For Proposition 3, we used a correlation matrix to measure the degree of 

correlation between the perceived performance and the use of an Information 

system, which was very high. 

For Proposition 4, we used a clustering technique to identify the different 

firms. We obtained 4 clusters: a highly integrated one, high IT, Bad performers 

and a misaligned one. We ran a pairwise analysis to measure the difference 

among the groups. 

Implications 

There is a general agreement that competitive supply chains employ the 

internal integrated process, which is frequently misconceived as just the use of 

software. Choosing and integrating the software is a major task that should be 

carried out carefully. However, there are other opportunity areas where we 

could improve the internal integration. 

One that should be highlighted is taking more parties into consideration in 

the decision-making process by inviting the other stakeholders of the other 

process to explain and understand the cost and implication of the changes that 

can help the other functional areas (remember the example of a higher 

transportation cost).  

We were surprised at the results for Job rotation, which apparently is a 

policy that is easy to implement. It was only strongly advised by 12% of the 

companies. The majority of the firms have it but they do not encourage it or it 

is difficult to achieve it. On the other hand, we were pleased to find that the 
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performance of the whole company is part of the goal performance of more 

than 55% of the firms. 

CONCLUSIONS 

The analysis of the open question gave us interesting results that went beyond 

the scope that we assigned. We got a better knowledge of the integration level 

through the accounting of mentions of other variables and constraints of other 

functional areas. Some plants claim a higher integration, but they do not take 

into consideration other decision factors outside their area, in other words, they 

continue with the silo view.  

To get a better understanding of the results obtained through the survey, we 

performed some face-to-face interviews to enrich the perception and get a 

deeper vision than what we got from tables and matrices. 

With one of the plants further interviewed, we realized that they reported 

that they have IT software, lean philosophy, and claimed to be integrated, but 

the interesting fact was that when they explained their decision-making, they 

only reported the constraints and variables of the department; they are still 

pursuing the excellence of their operating silos, not overall performance. The 

biggest problem is that they have the perception of integration. 

It is very interesting when we have multiple answers from the same 

company that there is a misalignment in the internal planning process and 

decision-making activities in all the operational companies (OpCos) of the 

group. We expected the same decision pattern to be kept among the group. 

However, we realized that at a group level, there is no clear and unifying vision 

of how the internal planning process should be taken. We suggest that the 

contribution of all internal companies could help devise a similar map that 

would help the sharing of knowledge and good practices. 

A great opportunity area is to try to obtain more information from the IT / 

Optimizer used and what information it contains. Unfortunately, many 

answers are proprietary system, or even the ones that use specific software like 

SAS© do not detail which modules they use, and so it was impossible to give 

a better score for the use of IT. Only the use of IT in industry is the subject of 

many researches. 

 Another opportunity area is the open question, which gives us really 

valuable information for a deeper analysis of the decision-making process of 

the different companies, where a content analysis or data mining techniques 

could help us extract more information. 

The main limitation is sample size, which does not allow examining if this 

behaviour depends on the geographic location of the plant, since we do not 

have enough data for each subgroup to make a proper analysis. 
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In the next stage of this research, we are planning to launch a second wave 

of the survey request to obtain a larger sample in order to generalize this 

conclusion to different sectors, and countries. Another interesting step of this 

research is to conduct a study inside big companies and to gain an insight into 

the behaviour and integration of the different Operational Companies. 

Creating a bigger database of the differences will enable many managerial 

insights to be obtained. An immediate feedback tool based on other results will 

increase the response rate. 
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Chapter 5: Car assembly lines, first integration step 

MOTIVATION 

In the previous chapter, using a survey and interviews, it was found that many 

companies believe they are integrated, but they are not. As the second step of 

this research, the first research question was studied: Using current knowledge 

and computational power, is it possible to develop models that deal with the 

increase in complexity for joint decision-making in an efficient and effective 

manner? 

Usually as part of the diagnosis, the matching phenomenon is found. The 

decision-maker may be reluctant to act on a problem for which he sees no 

apparent solution, similarity he may hesitate to use an idea that does not deal 

with a difficulty, but when there is a matching with the problem he is more 

willing to initiate the decision-making action (Mintzberg et al. 1976). Then 

there is a trend to define the scope of the problem in the same way that others 

have defined it. An additional phase after the diagnosis, called the definition 

of the scope, is added to identify the different size of the scope. 

 

 

Figure 5.1: The relationship between the phases and routines of a decision process adapted from Mintzberg 

et al. (1976). 

 

To evaluate the impact of the change of scope, it must be decided if it is better 

to integrate or keep it separate. A model that combines operational and tactical 

decisions in the replenishment of a car assembly line was developed. This 

model compares the results of joint decisions with sequential decisions The 

joint model has a higher complexity than the sequential model (see Figure 5.2).  
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Figure 5.2: Complexity of the decisions. A higher number of blocks implies a higher complexity. 

 

A car assembly line usually produces hundreds of cars every day and each 

workstation in the assembly line needs car components to perform its task. The 

replenishment of components is a critical issue for the assembly line to operate 

properly. In a multi-model assembly line, this task becomes more complicated 

than in a single model assembly line. A lack of inventory could cause some 

problems in the production line but excess inventory could also create it.  

The inbound logistics for feeding the workstation inside the factory 

represent a critical issue in the car manufacturing industry. Nowadays, this 

issue is even more critical than in the past since more types of cars are being 

produced on the assembly lines. Consequently, as workstations have to install 

many types of components, they also need to have an inventory of the different 

types of components in a usually compact space. The replenishment of the 

inventory is a critical issue since a lack of it could cause line stoppage or 

reprocessing. On the other hand, an excess of inventory could increase the 

holding cost or even block the replenishment paths. The decision of the 

replenishment routes cannot be made without taking into consideration the 

inventory needed at each station during the production time, which will depend 

on the production sequence plan sent by the central office. This problem deals 

with medium-sized instances, and is solved using online solvers.  

INTRODUCTION 

Today’s customer looks for a specific configuration of cars, which has 

encouraged car manufacturers to offer a wide range of options for each item 

of the cars. Car manufacturers have changed from offering a single model to 

offering a huge number of model configurations. These car manufacturers 
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have evolved from selling one model of one car as Ford did, with his Model-

T, to offering many options (Ghosh and Roger, 1989).  

For instance a single visit to a car manufacturer’s web page, such as 

Mercedes Benz, allows us to customize a car by choosing each component, 

such as rims, engine, tyres, the design of the interior and exterior, steering, 

radio, safety, colour, the engine size, seats, and so on. This creates more 

theoretical configurations than the actual ones that could be produced in one 

year. 

Today’s factories use car assembly lines in which the setup times between 

models can be ignored, and so the mixed model line approach is used.  

This flexibility is provided by the development of the interactions between 

humans, machines, equipment, robots, transportation systems, and so on. In 

this paper, we focus on the interaction of routing and the replenishment of 

components. However, this flexibility increases the complexity of the 

replenishment of components. 

Assembly lines are flow-oriented production systems, which are still typical 

for the production of high quantity standardized commodities and they are 

even gaining importance in the low volume production of a customized 

product (Becker and Scholl, 2006). One of the most complex products that are 

built on assembly lines is cars and trucks. The assembly lines are a way to 

mass-produce cars quickly and efficiently. Mass production relies on the 

ability to assign easy tasks to humans and robots and move parts from one 

worker to another until the car is finished. Different tasks require certain 

machine equipment, worker skills and components to be utilized. For the 

single model line (see Figure 5.3), this was easy to solve because the 

requirements were periodic and homogeneous.  

The place used to store the components next to the assembly line is limited. 

An increased use of space necessitates reconfiguring the assembly line while 

keeping the components in a different place implies that someone or something 

should do that additional task. 

Providing the components as soon as they are needed creates many 

transportation problems and a high cost for the factory. 

The Oxford Dictionary defines “replenishment” as “restore (a stock or 

supply) to a former level or condition.” The core issue is determining what the 

proper level is and in which order the station will be replenished. This creates 

two problems; the inventory problem, and the routing problem. 
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Figure 5.3: Different types of assembly lines source (Kazemi, 2011). 

The vehicle routing problem. 

Delivering the components to the workstations involves several transportation 

vehicles whose use and purchase have a direct affect on the cost. Therefore, it 

is necessary to try to minimize the number of vehicles used and the distance 

they travel. The vehicle routing problem was described by Laporte (1992) as 

the problem of designing optimal delivery or collection routes from one or 

several depots to some customers.  

Campbell (1998) presents an extension called the Inventory Routing 

Problem (IRP), which is based on the usage of products instead of orders. IRP 

deals with the repeated distribution of products to a set of customers, taking 

into consideration the capacity of the vehicles and a penalty for a stock out. 

There is a different version of this problem with added features and adjustment 

for different types of industry, such as oil and gas (Gronhaug, 2010), or the use 

of genetic algorithms for a distribution network (Moin, 2011 and Archetti, 

2012). 

The IRP is the starting point for studying the integration of different 

components of the logistics value chain, i.e. inventory management and 

transportation (Campbell, 1998).  

Nevertheless, those approaches do not take into consideration the 

deterministic consumption over time (since the production sequence is 

known), nor the cost of storage close to the assembly line. 

The inventory problem (line-side storage) 

Inventory policies where the number of components that should be replenished 

for each customer (workstation) is one of the most studied questions in 

Operations.  

The traditional inventory policies, such as Reorder Point, Min/Max, Lot for 

Lot or demand flow, or item location, are not suitable for this kind of problem 

since many types of the same components are installed at the same 

workstation, so storage space is limited. Carrying zero inventory and stocking 

less production (Hall, 1983) is not possible because the replenishment time is 
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constrained by the routes. In this problem, it is assumed that the number of 

vehicles is lower than the number of workstations.  

The replenishment of the car production line also presents some 

singularities since the size of some of the components is large, and many items 

depend on the type of car that is being assembled.  

An excess of inventory induces an increase in the cost of interest on 

working capital, space cost, and the risk of material obsolescence. A high 

inventory level on the assembly line is a big cost contributor. Some of the car 

manufacturer’s objectives are keeping low stock levels, performing the 

replenishment of the production line, and providing the required components 

at the right time (Monden, 1983). On the other hand, if there is a lack of 

components, there is a risk of incurring rework costs or even the stoppage of 

the line. 

Two methods of components replenishment are used in the industry. The first 

and widely extended is the line-side storage next to the workstation, where the 

workers take the components that they will install for the current vehicle. The 

transportation (material handling) vehicle replenishes all the components 

before they are needed. 

 The other system used in the car-manufacturing environment for the 

replenishment of components is the Set pallet system (SPS) that is used in 

some Toyota plants, which consists of changing the line-side storage or flow 

racks for a moving pallet or for dollies traveling with the cars being assembled. 

Given that the size of the dolly is not enough to carry all the components 

needed to assemble one car, the dolly needs to be changed in different parts of 

the assembly line, and the transport of the dollies from the warehouse to the 

connection points also requires routing techniques. Albeit being conceived to 

work in plants adopting traditional material handling systems, the model 

presented in this paper could be adapted to deal with this material handling 

approach. 

Integration of production and logistics 

There are several papers in the literature that deal with the integration between 

production and logistics decisions at the strategic level, but almost nothing has 

been done to integrate production and logistics problems at the operational 

level for daily decisions (Jin, 2008). Kaminsky (2003) proposed a two-stage 

model of the manufacturing supply chain, called the “2 Stage Production 

Distribution Problem” (2SPDP). Eskigun (2005) considers the outbound 

supply chain as the solution to minimize the fixed costs of facility location and 

transportation costs using a Lagrangian heuristic. The two key flows in such 

relationships are material and information. Prajogo (2012) addresses the 
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integration of the relationship between material and information while Volling 

(2013) focuses on the planning of capacities and orders. 

Traditionally, these two problems have been dealt with separately. It is 

expected that improvements may be obtained by coordinating inventory 

policies and transportation, but it is less obvious how to make these 

improvements. The replenishment of the production line is critical for the 

proper operation of the assembly line. An excess of inventory creates an 

increase in the cost of interest on working capital, space cost, and the risk of 

material obsolescence. On the other hand, a lack of components will probably 

result in rework costs or even result in the stoppage of the line. 

MODELLING ASSUMPTIONS 

In the car assembly line being investigated, the production sequence has been 

decided for a planning period. The car has to go through N stations to be 

assembled. Each station installs a different type of component that needs to be 

close to the assembly line before it is needed. All the components required for 

the production day are in one single warehouse. The transportation vehicles 

carry these components from the warehouse to the Stations (see Figure 5.4). 

A “route” is defined as the course taken by a homogenous transportation 

vehicle and its arrival time at the workstations to get from the warehouse to 

the stations and back again. A transportation vehicle could have an empty 

route.  

 

 

Figure 5.4: Description of the vehicle routing problem and inventory problem. 
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The assembly line already exists, and no changes to the production capacity 

or number of stations can be made.  

Each model has a set of characteristics, such as engine, rims, tyres, steering, 

an so on. These components could have different trims (Low or High). All the 

models are different from other models in at least one type of component (see 

Table 5.1). 

 

Table 5.1. Type of different models 

Model Rims Engine … Component n 

A Low Low … Low 

B Low Low … High 

… … …  … … 

N High Low  … High 

 

The components required to assemble the products are stored next to the 

workstation. This storage space is capacitated. A holding cost will be imputed 

for every component that is stored in this area. As Grave (1987) suggests for 

nondeterministic displacement times and the high cost of the line stoppage, a 

safety stock is kept to deal with a possible delay in the replenishment of the 

components.  

The transportation vehicles that bring the components to the stations are 

capacitated and homogeneous. An early arrival of the component causes space 

problems with the buffers of the production lines while a late arrival can cause 

several problems on the production line. The components needed for the 

operation of a station are delivered as a kit. Dispatching only with a just-in-

time policy increases the transportation cost and the green impact of the 

production line. It is necessary to select the route and the number of required 

components to get the lowest cost.  

The final solution consists in designing routes for the transportation 

vehicles and the number of each component that needs to be transported to 

replenish the components, thus minimizing the total cost. 

The model contemplates safety stock to mitigate the risk due to any 

uncertainty; the level of the safety stock is determined by company policy and 

can be set to zero. 

PROBLEM FORMULATION 

In this section, we begin by introducing the sets, parameters and decision 

variables (see Table 5.2). Later, we present the objective variables and the 

requirements. 
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Table 5.2: Sets, parameters and decision variables. 

Index Set 

𝑅 all homogenous transportation vehicles that could perform 

a route 

𝐿 all locations (workstations and warehouse) 

𝑀 all car model configurations 

𝐶 all car components 

𝐴 trim levels 

𝐽 characteristic J ⊆all car components × trim levels 

𝜏 discretized production time 

Parameters 

𝑅𝑚𝑗 1 if the model m ∈ M requires characteristic j∈ J 

𝑌𝑚𝜏𝑙  
1 if model m ∈ M is processed during cycle τ ∈ T in location 

l ∈ L 

𝑆𝑇𝑗𝑙  
safety stock corresponding to characteristic j ∈J in location 

l ∈ L 

𝑆𝑇𝑜𝑗𝑙  
initial stock corresponding to characteristic j ∈J in location 

l ∈ L 

𝐴 amortization per transportation vehicle; it has to be paid if 

the transportation vehicle is used at least once 

𝑇𝐶 traveling cost per distance unit 

𝐻𝐶𝑗 
unitary holding cost of component corresponding to 

characteristic j ∈J per time unit 

𝑀𝐶 unitary moving cost of component 

𝑇 number of cycles to be planned T=|τ| 

𝐶𝐴𝑃 maximum capacity of kits in a transportation vehicle 

𝑇𝐷𝐼𝑆𝑙𝑙′ displacement time from l ∈ L to l’∈L 

M a large scalar value 

Variables 

𝑤𝑟𝑙  1 if route r ∈ R attends l ∈ L; 0 otherwise 

𝑥𝑟𝑙𝑙′ 1 if l ∈ L immediately precedes l' ∈ L, on route r ∈ R; 0 

otherwise 

𝑡𝑟𝑙 
discrete time in which the router ∈ R arrives to the location 

l ∈L 

𝑑𝑒𝑚𝑗𝜏𝑙  demand for component corresponding to characteristic j ∈J 

in cycle τ ∈τ, in location l ∈ L 

𝑑𝑒𝑚𝑗τl
𝑎𝑐  

accumulated demand for the component corresponding to 

characteristic j ∈J at the beginning of cycle τ ∈τ in location 

l ∈ L 

𝑐𝑗𝑙𝑟𝜏 amount of component replenished with characteristic j ∈J 

required in location l ∈ L, in route r∈R in cycle τ ∈τ. 

𝑐𝑗𝑠𝑟τ
𝑎𝑐  

Accumulated amount of component replenished with 

characteristic j ∈J required in location l ∈ L, in route r∈R in 

cycle τ ∈τ. 

𝑠𝑡𝑗𝜏𝑙  Stock of component corresponding to characteristic j ∈J in 

location l ∈ L at the beginning of cycle τ ∈ T 

𝛼𝑟 1 if the router ∈ R is used for the replenishment; 0 otherwise 
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𝛽𝜏𝑟𝑙  1 if 𝑡𝑟𝑙 = 𝑜𝑟𝑑(𝜏) , 0 otherwise 

𝑞𝑗𝑙′𝑟  
amount of component required with characteristic j ∈J in 

station l’∈ Lin router ∈ R  

𝑓𝑗𝑙𝑙′𝑟  The flow of component corresponding to characteristic j ∈J 

between l and l’' ∈ L in router ∈ R 

 

The MIP problem minimizes the total cost of replenishment and inventory. 

 

𝑚𝑖𝑛. ∑ 𝑇𝐶 × 𝑇𝐷𝐼𝑆𝑙𝑙′ × 𝑥𝑙𝑙′ + MC ∑ 𝑓𝑗𝑙𝑙′𝑟𝑗𝑙𝑙′𝑟 + 𝐴 × ∑ 𝛼𝑟𝑟𝑟𝑙𝑙′ + ∑ 𝐻𝐶𝑗 × 𝑠𝑡𝑗𝜏𝑙𝑗  (1) 

 

The model is subject to the constraints equations (2) to (26). Equation (1) 

is the objective functions. Equations (2, 3, 4) ensure that each location is served 

by one route. Equation (5) ensures that the route has a predecessor except for 

the warehouse. Equation (6) forces that if a route reaches a location, the route 

departs from that location. Equations (7, 8) set the number of routes equal to 

the number of vehicles. Equation (9) accounts a route if the vehicle visits at 

least one location. Equation (10) assigns first vehicle number 1. Equation (11) 

limits the number of vehicles used to the available ones. Equations (12, 13) 

define the arrival time for each location. Equation (14) has the constraint that 

a number of materials should be lower than the capacity. Equation (15) sets 

the demand for certain characteristic only when the car requires this 

characteristic. 

Equation (16) defines a number of components that are left at the station. 

Equation (17) sets the accumulated demand. Equations (18, 19) set the 

accumulated components required. Equation (20) defines the stock. Equation 

(21) establishes the safety stock. Equations (22, 23, 24) establish that the 

required amount of components will be equal only to the replenished 

components when the replenishment occurs. Finally, equations (25, 26) define 

the time of the replenishment. 

 

∑ 𝑥𝑟𝑙𝑙′𝑟𝑙|𝑙≠𝑙′ = 1  ∀ 𝑙′ ∈ 𝐿 \ {𝑊𝐻}      (2) 

∑ 𝑥𝑟𝑙𝑙′𝑟𝑙′|𝑙′≠𝑙 = 1  ∀ 𝑙 ∈ 𝐿  \{𝑊𝐻}      (3) 

∑ 𝑤𝑟𝑙𝑟 = 1  ∀ 𝑙 ∈ 𝐿 \ {𝑊𝐻}       (4) 

𝑤𝑟𝑙 = ∑ 𝑥𝑟𝑙𝑙′𝑙′|𝑙′≠𝑙  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙 ∈ 𝐿 \ {𝑊𝐻}     (5) 

∑ 𝑥𝑟𝑙𝑙′𝑙 = ∑ 𝑥𝑟𝑙′𝑙𝑙  ∀ 𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅      (6) 

∑ 𝑥𝑟 𝑙 𝑤ℎ𝑟𝑙 = ∑ 𝛼𝑟𝑟         (7) 

∑ 𝑥𝑟 𝑤ℎ 𝑙′𝑟𝑙′ = ∑ 𝛼𝑟𝑟         (8) 

∑ 𝑥𝑟𝑙𝑙′𝑙𝑙′ ≤ 𝑀 × 𝛼𝑟  ∀ 𝑟 ∈ 𝑅       (9) 

𝛼𝑟 ≥ 𝛼𝑟+1  ∀ 𝑟 ∈ 𝑅                   (10) 

∑ 𝛼𝑟𝑟 ≤ |𝑅|                    (11) 

𝒊𝒇 𝒍 = 𝒘𝒉  𝑡𝑟𝑙′ ≥ 𝑇𝐷𝐼𝑆𝑙𝑙′ − 𝑀(1 − 𝑥𝑟𝑙𝑙′) − 𝑀(2 − 𝑤𝑟𝑙−𝑤𝑟𝑙′)  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙, 𝑙′ ∈ 𝐿       (12) 

𝒆𝒍𝒔𝒆  𝑡𝑟𝑙′ ≥ 𝑡𝑟𝑙 + 𝑇𝐷𝐼𝑆𝑙𝑙′ − 𝑀(1 − 𝑥𝑟𝑙𝑙′) − 𝑀(2 − 𝑤𝑟𝑙−𝑤𝑟𝑙′)  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙, 𝑙′ ∈ 𝐿       (13) 

∑ 𝑓𝑗 𝑤ℎ 𝑙𝑟𝑗𝑙 = 𝐶𝐴𝑃  ∀ 𝑟 ∈ 𝑅                  (14) 
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𝑑𝑒𝑚𝑗𝜏𝑙 = ∑ 𝑅𝑚𝑗𝑌𝑚𝜏𝑙𝑚    ∀𝑗 ∈ 𝐽, ∀𝜏 ∈ 𝑇, ∀ 𝑙 ∈ 𝐿                (15) 

𝑓𝑗𝑙𝑙′𝑟 − 𝑓𝑗𝑙′𝑙′′𝑟 ≥ 𝑞𝑗𝑙′𝑟 − 𝑀(1 − 𝑥𝑟𝑙𝑙′) − 𝑀(1 − 𝑥𝑟𝑙′𝑙′′) − 𝑀(3 − 𝑤𝑟𝑙 − 𝑤𝑟𝑙′ −

𝑤𝑟𝑙𝑙′′)    ∀𝑗 ∈ 𝐽, ∀ 𝑙, 𝑙′, 𝑙′′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅                 (16) 

𝑑𝑒𝑚𝑗𝜏𝑙
𝑎𝑐 = 𝑑𝑒𝑚𝑗𝜏−1𝑙

𝑎𝑐 − 𝑑𝑒𝑚𝑗𝜏𝑙    ∀ 𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀ 𝜏 ∈ 𝑇\{1}              (17) 

𝒊𝒇 𝝉 = 𝟏  𝑐𝑗𝑙′𝑟𝜏
𝑎𝑐 = 𝑐𝑗𝑙′𝑟𝜏   ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇 = {1}              (18) 

𝒆𝒍𝒔𝒆 𝑐𝑗𝑙′𝑟𝜏
𝑎𝑐 = 𝑐𝑗𝑙′𝑟𝜏−1

𝑎𝑐 + 𝑐𝑗𝑙′𝑟𝜏   ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇\{1}              (19) 

𝑠𝑡𝑗𝜏𝑙 = 𝑆𝑇𝑜𝑗𝑙 − 𝑑𝑒𝑚𝑗𝜏𝑙
𝑎𝑐 + ∑ 𝑐𝑗𝑙𝑟𝜏

𝑎𝑐
𝑟  ∀ 𝑗 ∈ 𝐽, ∀ 𝜏 ∈ 𝑇\{1}, ∀𝑙 ∈ 𝐿               (20) 

𝑠𝑡𝑗𝜏𝑙 ≥ 𝑆𝑇𝑗𝑙  ∀ 𝑗 ∈ 𝐽, ∀ 𝜏 ∈ 𝑇, ∀𝑙 ∈ 𝐿                     (21) 

𝑐𝑗𝑙′𝑟𝜏 ≥ 𝑞𝑗𝑙′𝑟 − 𝑀(1 − 𝛽𝜏𝑟𝑙) − 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′𝑙 ) ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇          (22) 

𝑐𝑗𝑙′𝑟𝜏 ≤ 𝑞𝑗𝑙′𝑟  ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇                (23) 

𝑐𝑗𝑙′𝑟𝜏 ≤ 𝑀 × 𝛽𝜏𝑟𝑙  ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇                (24) 

𝑡𝑟𝑙 ≤ 𝜏 + 𝑀(1 − 𝛽𝜏𝑟𝑙) + 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′)𝑙  ∀𝑟 ∈ 𝑅, ∀𝑙′ ∈ 𝐿, ∀ 𝜏 ∈ 𝑇                (25) 

𝑡𝑟𝑙 ≥ 𝜏 − 𝑀(1 − 𝛽𝜏𝑟𝑙) − 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′)𝑙   ∀𝑟 ∈ 𝑅, ∀𝑙′ ∈ 𝐿, ∀ 𝜏 ∈ 𝑇              (26) 

COMPUTATIONAL STUDY 

The AIMMS 3.13 modelling software was used and the Gurobi 5.5 standard 

solver was used to obtain the solution to the problem. To deal with a bigger 

instance, the Gurobi was used at the NEOS server (Czyzyk, 1998, Gropp, 

1997, and Dolan, 2001).  

The specification of the neos-2 and neos-4 are Dell PowerEdge R410 

servers with the following configuration: 

• CPU - 2x Intel Xeon X5660 @ 2.8GHz (12 cores total), HT Enabled, 64 

GB RAM. 

For neos-3 and neos-5 are Dell PowerEdge R420 servers with the following 

configuration: 

• CPU - 2x Intel Xeon E5-2430 @ 2.2GHz (12 cores total), HT Enabled, 

and 64 GB RAM. 

There are no public instances in the literature. The data for the 

experimentation was based on Car Sequencing instances from Regin & Puget 

(1997) instance #1, #2, and #3. The instances are public at Car Sequencing 

Problem Lib (www.csplib.org). From this sequence, we made up the missing 

data. First we tested the current instances; then we duplicated the number of 

stations (extended instances) keeping the same production ratio. Each instance 

had 100 cars. A stopping criterion of 3600 sec was set for all the instances (see 

Table 6.3).  

The holding cost, as was stated before, represents the cost of the opportunity 

to have the space used to keep inventory instead of production activities. 
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Table 5.3: Instances to be tested. 

Instances NCar Mod Stations 

Regin & Puget #1 100 22 5 

Regin & Puget #2 100 22 5 

Regin & Puget #3 100 25 5 

Regin & Puget #1(ext) 100 22 10 

Regin & Puget #2(ext) 100 22 10 

Regin & Puget #3(ext) 100 25 10 

 

In Table 5.4 the displacement time between stations is displayed. The 

acceleration, travelling time, deceleration, and the unloading of the 

components make up the displacement time. The travelling time is only 

relevant when the distance is greater than 5 stations. 

The algorithm was compared with a traditional constraint vehicle routing 

problem (CVRP) with optimal routes, keeping in consideration the production 

and capacity of the vehicle. Once the route is obtained, the intrinsic cost of the 

inventory is calculated. A fixed cost of €266 for the use of the transportation 

vehicle, plus a holding and moving cost of components. 

Table 5.4: Displacement time between stations. 

Station WH S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

WH  2 2 2 2 2 3 3 3 3 3 

S1 2  2 2 2 2 2 3 3 3 3 

S2 2 2  2 2 2 2 2 3 3 3 

S3 2 2 2  2 2 2 2 2 3 3 

S4 2 2 2 2  2 2 2 2 2 3 

S5 3 2 2 2 2  2 2 2 2 2 

S6 3 3 2 2 2 2  2 2 2 2 

S7 3 3 2 2 2 2 2  2 2 2 

S8 3 3 3 2 2 2 2 2  2 2 

S9 3 3 3 3 2 2 2 2 2  2 

S10 3 3 3 3 3 2 2 2 2 2  

 

The algorithm was compared with a traditional constraint vehicle routing 

problem (CVRP) with optimal routes, keeping in consideration the production 

and capacity of the vehicle. Once the route is obtained, the intrinsic cost of the 

inventory is calculated. A fixed cost of €266for the use of the transportation 

vehicle, plus a holding and moving cost of components. 

We will present the results from the six instances in section 4.3. For 

comparison details, we will examine the instance of Regin & Puget #1(ext). 

This instance has 100 cars, with 22 types of cars, and will be produced in 10 

stations. The experimentation will run with a different travelling cost and 

holding cost ratio. 
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Routing Analysis 

In Tables 5.5 and 5.6 we show the arrival time of the transportation vehicles 

at the stations. Table 5.5 uses the compound approach, and Table 5.6 uses a 

classical CVRP.  

Table 5.5: Arrival time of the transportation vehicles (instance Regin & Puget #1). 

Station WH S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

V1 15   13 11   3 5 8  

V2 23 15 21   2 13    10 

V32            

Table 5.6: Arrival time of the transportation vehicles of a classical CVRP (instance Regin & Puget #1). 

Station WH S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

V1 25 12 19 21 23 14     16 

V2 28      15 25 19 23  

V3            

 

Both routes use only two vehicles; the joint approach uses the first vehicle 

to deliver the urgent components and dispatches the second vehicles later, 

thereby reducing the cost. 

Inventory Analysis 

In Figures 6.5 and 6.6, the inventory levels of station 3 are displayed. The 

holding cost of the instances displayed for high trim is 20 cents per minute and 

10 cents per minute for the low trim. The model adjusts the replenishment to 

minimize the area below the line. 

The replenishment is done as soon as the station reaches the safety stock, 

e.g. the arrival at Station 3 happens at minute 21 instead of minute 13. This 

delay of 8-time units represents 15% savings in the holding cost (see Table 7). 

The safety stock plays an important role in the cost; it is space and money that 

we have dedicated to avoiding logistic problems.  

The maximum stock on the assembly line also decreases from 61 to 56 for 

low trim and from 25 to 22 units for high trim; this decrease of 8 units 

represents 10% of savings in space that can be allocated to other production 

activities. The inventory level is always above the safety stock. 
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Figure 5.5: Stock and Safety Stock at Station 3 of the instance joint model (instance Regin & Puget 

#1(ext)). 

 

Figure 5.6: Stock and Safety Stock at Station 3 of the instance (instance Regin & Puget #1(ext)) of CVRP 

 

Table 5.7: Cost of the stock in the Station 3 (instance Regin & Puget #1(ext)). 

 Join Model CVRP Diff (%) 

High trim 172.4 196.4 13.9 

Safety Stock 60 60.0 0.0 

sub total 232.4 256.48 10.3 

Low trim 203.6 246.8 21.2 

Safety Stock 30.0 30.0 0.0 

sub total 233.6 276.8 18.5 

Total 466 533.2 14.4 
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Cost Analysis 

Table 5.9 shows a comparison between the costs of the 3 instances. In all the 

instances, we obtain savings due to the joint decision, taking into consideration 

the most suitable time to replenish, instead of only the shortest path which 

could provide interesting savings only by changing the route. 

The model of this system has 4 costs (see Eq.1); the fixed cost for the use 

of a transportation vehicle (A), the cost of the distance travelled (TC), the cost 

of carrying the load (MC) and the holding cost (HC). Changing the cost of any 

of the parameters will reflect the routing and replenishment routes of the 

company.  

Table 5.8: Comparison of total cost (instance Regin & Puget #1(ext)). 

 Join Model CVRP Diff(%) 

Route 203.6 246.8 -3.24% 

Inventory Cost 30.0 30.0 11.42% 

Total 7111 7676 7.99% 
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Table 5.9: Comparison of the results of the two approaches. 

Instance MC/ 

HC 

N Mod N Car N Loc N Var 

cont 

N Int 

Var 

Obj 

Joint 

CVRP HC Total 

CVRP 

+HC 

Diff 

(%) 

Regin & Puget #1 0.5 22 100 5 4500 1611 29364 828 32403 33231 13.2 

Regin & Puget #2 0.5 22 100 5 4500 1611 28966 828 30843 31671 9.3 

Regin & Puget #3 0.5 25 100 5 4554 1611 28721 828 31722 32550 13.3 

Regin & Puget #1(ext) 0.5 22 100 10 13548 3366 56151 1611 60687 62298 10.9 

Regin & Puget #2(ext) 0.5 22 100 10 13548 3366 55457 1611 56624 58235 5.0 

Regin & Puget #3(ext) 0.5 25 100 10 13575 3366 57311 1611 65297 66908 16.7 

Regin & Puget #1 5 22 100 5 4500 1611 3678 828 3337 4165 13.24% 

Regin & Puget #2 5 22 100 5 4500 1611 3657 828 3240 4068 11.24% 

Regin & Puget #3 5 25 100 5 4554 1611 3615 828 3084 3912 8.22% 

Regin & Puget #1(ext) 5 22 100 10 13548 3366 7111 1611 6068 7679 7.99% 

Regin & Puget #2(ext) 5 22 100 10 13548 3366 6874 1611 5662 7273 5.80% 

Regin & Puget #3(ext) 5 25 100 10 13575 3366 7047 1611 6134 7745 9.90% 

Regin & Puget #1 50 22 100 5 4500 1611 1117 828 334 1162 4.0 

Regin & Puget #2 50 22 100 5 4500 1611 1111 828 324 1152 3.7 

Regin & Puget #3 50 25 100 5 4554 1611 1110 828 309 1137 2.4 

Regin & Puget #1(ext) 50 22 100 10 13548 3366 2149 1611 607 2218 3.2 

Regin & Puget #2(ext) 50 22 100 10 13548 3366 2133 1611 567 2178 2.1 

Regin & Puget #3(ext) 50 25 100 10 13575 3366 2161 1611 652 2263 4.7 
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A good example of the problem (see Table 5.8) of considering the problem 

separately is that CVRP selects the best route for all the instances of the same 

number of stations for the same total demand of components. However, the 

demand over the time is different, and consequently the stocks are different.  

When the moving cost is more representative for the model (MC>HC), 

savings decrease since the CVRP achieves the optimal, and the impact on the 

holding cost is not so important. On the other hand, when the holding cost 

becomes more important (MC<HC) this model presents bigger savings than 

the separate decision. For all the instances, we obtain a better result with the 

joint decision than with the separate approach. 

All the CVRP and HC problems were solved up to optimality. For the joint 

model only the small instance and the instance that got a ratio of HC/MC of 

50 was solved to optimality. The extended instances required the stopping 

criterion of one hour. 

In Table 5.10 the result of the ANOVA analysis is displayed. We set the 

type of instance and the different results and obtain a p=0.950. Then we 

assume that the results are the same for the different instances, since the 

moving cost of the components is the same for high or low trim, and the only 

difference is the difference of the holding cost of the components. 

 

Table 5.10: ANOVA comparison among different mix of demands. 

Source DF SSC MS F P 

Instance 2 408247 204124 0.00 0.999 

Error 15 3.23E+9 2.16E+E8   

Total 17 3.23 E+9    

s=14688 r-sq=0.01% r-sq(adj)=0.00% 

 

CONCLUSIONS 

In this work, the inventory and the routing problems have been solved jointly. 

The routing model should consider more factors than just the transportation 

cost; also, the inventory should consider more factors than replenishment when 

a level is reached. The main factor in the delivery of material should not only 

be the decrease of the transportation costs but also the decrease of the holding 

cost of the components. 

The selection of the routes and the inventory levels should consider the 

specific requirement of materials over time to decrease the cost. 
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The cost of space is an amplifier of the savings of the model. When there 

are restrictions in the space closest to the assembly line, the model tries to keep 

the lowest inventory along the planning period. The replenishment is made 

before the inventory level reaches the safety stock. Following the Lean idea, it 

is possible to decrease the safety stock until it reaches zero safety stock, always 

keeping in mind the risk of any delays, which could lead to the stoppage of the 

assembly line. 
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Chapter 6: Car assembly lines, using MILP and ACO 

approach 

MOTIVATION 

In the previous chapter, the operational area and tactical area of a car assembly 

line were combined. Interesting results were found, but the complexity of the 

problems increases. In this chapter, another functional area is added to the 

scope of the problem (see Figure 6.1) increasing the possible options but also 

the complexity increases. The decision-making units also have to change. In 

this example the scheduling, replenishment and inventory of the car assembly 

line will be combined. In a separate approach, the decision-maker is the 

manager of each department, and the users are the workers of that department. 

In the joint approach, there are more decision- makers, influencers and 

gatekeepers that could have a conflict of interest. As the complexity increases 

the solving time of the MILP also increases, therefore it is necessary to use 

heuristics as ant colony optimization (ACO) to solve bigger instances.  

In this chapter, a comparative of the ACO system and MILP to deal jointly 

with sequencing, routing, and line-side storage problems in a mixed model car 

assembly line is presented.  

In today’s market, customers demand an even wider range of car models. 

Consequently, the majority of car manufacturers have changed from having a 

single model assembly line to mixed-model assembly lines, generating 

enormous challenges for the operation of the assembly line. Taking a holistic 

look at car production (i.e. considering sequencing, routing, and line-side 

storage) allows us to study the performance optimization of the production 

process. 
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Figure 6.1: Complexity of the decisions. A higher number of blocks implies a higher complexity. 

 

We started with a review of the existing algorithms. We could not find any 

papers addressing this problem jointly so a MILP formulation was developed. 

We developed an ACO to deal with bigger instances. The mathematical model 

for the operation of the assembly line was based on the approach of sequence 

rules, whereby an assembly line can handle a pre-determined production rate 

for each option. The approach to the inventory and sequence part was an 

extension of the Inventory Routing Problem, whereby the inventory and 

transportation costs are minimized. In our tests, we prove that the benefits of 

the joint decision are larger when the value of space is higher than in a low-

cost facility. The main thrust of this work consists in the development of the 

MILP and ACO systems and a discussion of the managerial insights into 

production and replenishment. Additionally, the change of the modelling 

approach from single problems to a joint approach is suggested. 

INTRODUCTION 

The increase in car manufacturing complexity due to the globalization of 

business and the immense variety of models being produced makes it 

necessary to take the time to consider more than one part of the production 

process at a time. Car manufacturers have evolved from selling only one model 

of one car, as Ford did with his Model-T. Nowadays, a representative case is 

BMW, which theoretically offers 1032 configurations of their cars, out of 

which tens of thousands have been demanded (Meyr 2009).  
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Effective scheduling of the assembly line could allow good control of the 

entire system. A mixed-model manufacturing facility is done by setting the 

production schedule (Miltenburg et al. 1990). The assembly line is the drum 

that sets the rhythm for this orchestra, and the suppliers and all of their related 

activities should follow them. Some parameters, such as production capacity 

and production ratio, are “almost” fixed, but the scheduling, the inventory, and 

ways to replenish are not fixed. 

The scheduling should persuade the smoothing of the requirements for 

components to facilitate the entire operation of the supply chain (Drexl and 

Kimms 2001). A related problem is an inventory necessary for this operation. 

A high inventory level on the assembly line is a big cost contributor. The car 

manufacturer’s objective is to keep low stock levels, performing the 

replenishment of the production line and providing the required components 

at the right time (Monden 1983). If the shipment arrives too early, there may 

be no place to store it; if the shipment arrives too late, the car assembly line 

has to be stopped. 

The problem with the scheduling of the car assembly line is not new, 

although using a holistic view of car production (i.e. considering sequencing, 

replenishment, and routing) allows us to study the performance optimization 

of the production process. There is growing interest in solving multi-objective 

problems, which has led the researcher to combine algorithms and create an 

extension of the classical algorithms to achieve their objectives (López-Ibáñez 

and Stützle 2010).  

The novel contribution of this chapter consists in the proposal and testing 

of a joint model to decide the sequencing of the assembly line and obtain routes 

that optimize the replenishment and the line-side storage of the automotive 

assembly line. We developed a Mixed Linear Integer Programming (MILP) 

formulation and Ant Colony Optimization (ACO) to deal with the bigger 

instances. The idea behind those algorithms is that instead of addressing the 

scheduling, routing, and inventory problems separately, we could obtain a 

better solution with a joint approach. 

After a preliminary analysis that involved factory tours of as many as a 

dozen car assembly manufacturing plants around Europe and Japan, we 

believe that the problem presented in this paper is still relevant in today’s 

manufacturing environment. The material handling to provide components to 

the workstations is done using forklifts, towing train (trailer) or any other 

transportation vehicles, but the proper routing for the replenishment vehicles 

is still necessary. 



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

96 

The present work is a continuation of an earlier study on car assembly lines 

meant to explore the advantage of the joint decision in planning and 

scheduling. In the previous chapter, we developed an MILP for the routing and 

inventory problem. In this work, we deal jointly with the sequencing, routing, 

and inventory problems. Since only very small instances can be solved using 

MILP, we developed an Ant Colony Optimization algorithm to deal with larger 

instances. 

The vehicle routing problem and inventory problem reviewed in the last 

chapter will be combined with the car sequencing problem. 

Car sequencing problem 

Dincbas et al. (1998) define the sequencing problem as the selection of the 

appropriate order in which cars are produced. Sequencing problems have been 

discussed in the literature for many years. As they are NP problems with high 

complexity, it is necessary to find proper sequences because it is unreasonable 

to require an assembly line to move slowly enough to allow every option to be 

put on every car. A set of consecutive cars is subject to sequencing rules that 

restrict the maximum number of occurrences of certain characteristics in a 

sequence. The line can handle a predetermined quota of cars for each option. 

The algorithm searches for a sequence of models that meets the demand 

without violating any rules (Boysen et al. 2009). The sequencing rules are 

typically of type  : , which means that out of  successive models, only 

 may contain the option O (Drexl and Kimms 2001). An interesting model 

is presented by Giard and Jeunet (2010), who offer the option of hiring utility 

workers to avoid any infeasibility of the solution, which results in more colour 

grouping.  

ACO literature review 

From the literature review, we found that the majority of algorithms for the 

CSP have a single objective of minimizing the violations, while the CSPLib 

and Roadef are the reference instances. Recently the use of multiple 

pheromones has given good results. For the inventory routing problem (IRP) 

or vehicle routing problem, (VRP) with extensions, more approaches that are 

multi-objective appear and multiple ant colonies. 

 The multiple ant colonies present promising results. The test instances for 

the VRP problem is out of our context because they use a test instance of tens 

of thousands of visited cities, and no car-manufacturing plan has this number 

of workstations (see Table 6.1). 
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Table 6.3: Review of the CSP and IRP problems using ACO. 

Paper 
Type of 

problem 
Data 

ACO 

Type 

Multiple 

Objective 

Multiple 

Pheromone 

Gottlieb et al. 2003 CSP CSPLib classic No No 

Gravel et al. 2005 CSP CSPLib classic No No 

Gagné et al. 2006 CSP Roadef classic No No 

Solnon 2008 CSP Roadef classic No Yes 

Morin et al. 2009 CSP CSPLib ACS-3D No Yes 

Solomon 1987 VRP Own ACS No No 

Gambardella et al. 1990 VRP Solomon ACS No No 

Barán and Schaerer 2003 VRP Solomon multiple Yes Yes 

Bell et al. 2004 VRP Christofides multiple Yes No 

Huang and Lin 2010 IRP Solomon modified Yes No 

 

Following a classical approach, we started with the MILP, and we followed 

with a heuristic approach. The choice of the heuristic was Ant Colony 

Optimization introduced by Dorigo et al. (1996) since it has offered good 

results for these kinds of problems (Gottlieb et al. 2006; Silvia et al. 2008). 

PROBLEM DESCRIPTION 

Based on the characteristic defined in the introduction, we will define the 

assembly process, the Car Sequencing Problem (CSP) approach, and then the 

travelling to replenish the components. The present problem is an extension of 

the CSO proposed for the Roadef challenge in 2005, where we also considered 

the inventory level and the replenishment of these components. 

The assembly process of a car requires the car’s chassis (body in white) to pass 

through several workstations. We define a car as being assembled when it has 

passed through all the workstations that install the different components. 

The takt time is the amount of time that must elapse between two 

consecutive cars. Since some car configurations require more than one takt 

time at the workstation to carry out the tasks assigned to that workstation. 

Other car configurations require less time to assemble. Since the assembly line 

cannot slow down to meet the longer takt time, we use the CSP approach of 

interspersing cars with a longer takt time with cars with a lower takt time. The 

different production rates are defined for the trim level of the components that 

will be installed. To make the trim level clearer, in the workstation where the 

radio is installed, high trim could mean a hi-fi radio/MP3/DVD and a low trim 

could mean an FM radio. To find sequences that maintain the production rate 
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in each workstation, each time the production rate is above this number, it is 

considered a rule violation.  

Each model has a set of unique characteristics, such as types of wheels and 

tyres, radio, sunroof, car seat, and so on. As detailed above these components 

can have different trim levels. The combination of components and trims gives 

us the characteristics. In every workstation, a specific kit of components is 

installed. All the components required for the workstation have to be 

replenished from a warehouse before that they are required. 

The holding cost is a figurative cost or penalty for having an excess of line-

side storage for the following reason: the probability of damage or loss of a 

component increases with the time that the component itself remains in line-

side storage. The holding cost of high trim components will be higher than that 

of low trim components. The second reason for this cost is the limited space 

of the line-side storage, but an excess of inventory could obstruct the proper 

operation of the line. When there is an excess of components, the operator 

spends more time searching and selecting among them. 

When considering the forklift or the towing train (trailer), we have to 

consider the so-called displacement time. The displacement time is the sum of 

the acceleration time, the travel distance, the breakage time, and the time to 

unload the components. The displacement times between stations are similar 

since the only time that is distance dependent is the travelling time, and then it 

only influences the result if the distance is considerable. 

 

 

 

Figure 6.2: Displacement time of transportation vehicle. 
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JOINT FORMULATION 

The engine of a car supply chain is the assembly line; it keeps the rhythm of 

the orchestra. Using the traditional car assembly line approach, the production 

planning department obtains the best car sequence. From the best sequence, 

the best routing is calculated, and from the best routing the best inventory is 

calculated (see Figure 6.3). The joint approach searches among all possible 

combinations to obtain better solutions. This is possible since we can have 

many similar costing car sequences, replenishment routes, and inventory 

levels. If we play with the combination, we can obtain a better solution. We 

will follow this approach in the MILP and ACO formulation. 

Figure 6.3: Instead of solve the scheduling, then the replenishment and after the inventory, a joint model 

solves it together using an MILP or an ACO. 

MILP FORMULATION 

In this section, we begin by introducing the notation needed to formulate the 

problem. Afterwards, we present the mixed integer linear programme for the 

joint solution of the problem. 

 

Table 6.4: Set, parameters, and variables. 

Name Description  

 Sets 

𝑅 homogenous transportation vehicles that could perform a route 

𝐿 locations (workstations and warehouse); 

𝑀 car model configurations; 

𝐶 car components; 

𝐴 trim levels; 

𝐽 characteristic J ⊆ all car components × trim levels; 

𝜏 discretized production time; 
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 Parameters 

𝐷𝑚 total demand of model m ∈ M; 

𝑅𝑚𝑗 1 if the model m ∈ M requires characteristic j ∈ J; 

𝐴VH amortization cost (per period) per transportation vehicle;  

𝑇𝐷𝐼𝑆𝑙𝑙′ displacement time from l ∈ L to l’
 
∈ L; 

𝑇𝐶 traveling cost per distance unit; 

𝑀𝐶 moving cost of component; 

𝐶𝐴𝑃 maximum capacity of kits in a transportation vehicle; 

𝐿𝐸𝑁 maximum length of the route; 

𝐻𝐶𝑗 holding cost of component corresponding to characteristic j ∈ J per time unit; 

𝑆𝑇𝑗𝑙  safety stock with characteristic j ∈ J in location l ∈ L; 

𝑆𝑇𝑜𝑗𝑙  initial stock for characteristic j ∈ J in location l ∈ L; 

𝐻𝑗: 𝑁𝑗 at most 𝐻𝑗 of 𝑁𝑗successively sequenced cars may have characteristic j ∈ J; 

𝑉𝐶𝑗 violation rule cost per characteristic j ∈ J; 

M a large scalar value; 

 Variables 

𝑤𝑟𝑙  1 if route r ∈ R attends l ∈ L; 0 otherwise; 

𝑥𝑟𝑙𝑙′ 1 if l ∈ L immediately precedes l' ∈ L, on route r ∈ R; 0 otherwise; 

𝑦𝑚𝜏𝑙  1 if model m ∈ M is processed on cycle τ ∈ T in location l ∈ L, 0 otherwise; 

𝑡𝑟𝑙  discrete time in which the route r ∈ R arrives to the location l ∈ L; 

𝑑𝑒𝑚𝑗𝜏𝑙  demand for component of characteristic j ∈ J in cycle 𝜏 ∈ T, in location l ∈ L; 

𝑑𝑒𝑚𝑗τl
𝑎𝑐  accumulated demand for the component with j ∈ J at cycle 𝜏 ∈ T in l ∈ L; 

𝑐𝑗𝑙𝑟𝜏  amount of component replenished with j ∈ J required in l ∈ L, in ∈ R in 𝜏 ∈ T; 

𝑐𝑗𝑠𝑟τ
𝑎𝑐  accumulated amount of component with j ∈ J in l ∈ L, in r ∈ R in cycle 𝜏 ∈ T;  

𝑞𝑗𝑙′𝑟  amount of component required with characteristic j ∈ J in l’∈ L in route r ∈ R; 

𝑠𝑡𝑗𝜏𝑙  Stock of component to characteristic j ∈ J in l ∈ L at cycle 𝜏 ∈ T; 

𝛼𝑟 1 if the route r ∈ R is used for the replenishment; 0 otherwise; 

𝛽𝜏𝑟𝑙  1 if 𝑡𝑟𝑙 = 𝑜𝑟𝑑(𝜏) , 0 otherwise; 

𝑓𝑗𝑙𝑙′𝑟  flow of component with characteristic j ∈ J between l and l’' ∈ L in r ∈ R; 

 

 

The objective function 

 

𝑚𝑖𝑛. ∑ 𝑇𝐶 × 𝑇𝐷𝐼𝑆𝑙𝑙′ × 𝑥𝑙𝑙′ + MC ∑ 𝑓𝑗𝑙𝑙′𝑟𝑗𝑙𝑙′𝑟 + 𝐴𝑉𝐻 ×𝑟𝑙𝑙′

∑ 𝛼𝑟𝑟 + ∑ 𝐻𝐶𝑗 × 𝑠𝑡𝑗𝜏𝑙 + ∑ 𝑉𝐶𝑗 × 𝑧𝑗𝜏𝑗𝜏𝑗   

(1) 

 

The objective function minimizes the cost of the displacement of the 

transportation vehicles, the cost of moving each component, the amortization 

of the transportation vehicles, the holding cost and the cost of violating a 

production rule (see Equation 1), which is subject to the following restrictions: 
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subject to  

∑ 𝑦𝑚𝜏𝑙𝜏 = 𝐷𝑚  ∀ 𝑚 ∈ 𝑀, ∀ 𝑙 ∈ 𝐿  (2) 

∑ 𝑦𝑚𝜏𝑙𝑚 ≤ 1  ∀ 𝜏 ∈ 𝑇, ∀ 𝑙 ∈ 𝐿 \{𝑊𝐻} (3) 

𝑦𝑚𝜏𝑙 = 𝑦𝑚 𝜏−1 𝑙−1  ∀ 𝑚 ∈ 𝑀, ∀ 𝜏 ∈ 𝑇, ∀ 𝑙 ∈ 𝐿 \{𝑊𝐻} (4) 

∑ ∑ 𝑅𝑚𝑗
𝜏+𝑁𝑗−1

𝜏′−𝜏
𝑦𝑚𝜏′𝑙𝑚 ≤ 𝐻𝑗 + 𝑀𝑧𝑗𝜏   ∀ 𝑗 ∈ 𝐽, ∀ 𝜏 ∈ 𝑇, ∀ 𝑙 ∈ 𝐿 

\{𝑊𝐻} 

(5) 

∑ 𝑥𝑟𝑙𝑙′𝑟𝑙│𝑙≠𝑙′ = 1  ∀ 𝑙′ ∈ 𝐿  {𝑊𝐻}  (6) 

∑ 𝑥𝑟𝑙𝑙′𝑟𝑙′|𝑙′≠𝑙 = 1  ∀ 𝑙 ∈ 𝐿  \{𝑊𝐻}  (7) 

∑ 𝑤𝑟𝑙𝑟 = 1  ∀ 𝑙 ∈ 𝐿 \ {𝑊𝐻}  (8) 

𝑤𝑟𝑙 = ∑ 𝑥𝑟𝑙𝑙′𝑙′|𝑙′≠𝑙  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙 ∈ 𝐿 \ {𝑊𝐻}  (9) 

∑ 𝑥𝑟𝑙𝑙′𝑙 = ∑ 𝑥𝑟𝑙′𝑙𝑙  ∀ 𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅  (10) 

∑ 𝑥𝑟 𝑙 𝑤ℎ𝑟𝑙 = ∑ 𝛼𝑟𝑟   (11) 

∑ 𝑥𝑟 𝑤ℎ 𝑙′𝑟𝑙′ = ∑ 𝛼𝑟𝑟   (12) 

∑ 𝑥𝑟𝑙𝑙′𝑙𝑙′ ≤ 𝑀 × 𝛼𝑟  ∀ 𝑟 ∈ 𝑅  (13) 

∑ 𝑥𝑟𝑙𝑙′𝑙𝑙′ = 𝐿𝐸𝑁 ∀ 𝑟 ∈ 𝑅  (14) 

∑ 𝛼𝑟𝑟 ≤ |𝑅|  (15) 

𝒊𝒇 𝒍 = 𝒘𝒉  𝑡𝑟𝑙′

≥ 𝑇𝐷𝐼𝑆𝑙𝑙′ − 𝑀(1 − 𝑥𝑟𝑙𝑙′)

− 𝑀(2 − 𝑤𝑟𝑙 − 𝑤𝑟𝑙′)  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙, 𝑙′ ∈ 𝐿 

(16) 

𝒆𝒍𝒔𝒆  𝑡𝑟𝑙′ ≥ 𝑡𝑟𝑙 + 𝑇𝐷𝐼𝑆𝑙𝑙′ − 𝑀(1 − 𝑥𝑟𝑙𝑙′)

− 𝑀(2 − 𝑤𝑟𝑙 − 𝑤𝑟𝑙′)  ∀ 𝑟 ∈ 𝑅, ∀ 𝑙, 𝑙′ ∈ 𝐿 

(17) 

∑ 𝑓𝑗 𝑤ℎ 𝑙𝑟𝑗𝑙 = 𝐶𝐴𝑃  ∀ 𝑟 ∈ 𝑅  (18) 

𝑑𝑒𝑚𝑗𝜏𝑙 = ∑ 𝑅𝑚𝑗𝑦𝑚𝜏𝑙𝑚    ∀𝑗 ∈ 𝐽, ∀𝜏 ∈ 𝑇, ∀ 𝑙 ∈ 𝐿  (19) 

𝑓𝑗𝑙𝑙′𝑟 − 𝑓𝑗𝑙′𝑙′′𝑟 ≥ 𝑞𝑗𝑙′𝑟 − 𝑀(1 − 𝑥𝑟𝑙𝑙′) − 𝑀(1 − 𝑥𝑟𝑙′𝑙′′) −

𝑀(3 − 𝑤𝑟𝑙 − 𝑤𝑟𝑙′ − 𝑤𝑟𝑙𝑙′′)    ∀𝑗 ∈ 𝐽, ∀ 𝑙, 𝑙′, 𝑙′′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅  

(20) 

𝑑𝑒𝑚𝑗𝜏𝑙
𝑎𝑐 = 𝑑𝑒𝑚𝑗𝜏−1𝑙

𝑎𝑐 − 𝑑𝑒𝑚𝑗𝜏𝑙   ∀ 𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀ 𝜏 ∈ 𝑇\{1} (21) 

𝒊𝒇 𝝉 = 𝟏  𝑐𝑗𝑙′𝑟𝜏
𝑎𝑐 = 𝑐𝑗𝑙′𝑟𝜏  ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇 = {1} (22) 

𝒆𝒍𝒔𝒆 𝑐𝑗𝑙′𝑟𝜏
𝑎𝑐 = 𝑐𝑗𝑙′𝑟𝜏−1

𝑎𝑐 + 𝑐𝑗𝑙′𝑟𝜏  ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀ 𝑟 ∈ 𝑅, ∀ 𝜏

∈ 𝑇\{1} 

(23) 

𝑠𝑡𝑗𝜏𝑙 = 𝑆𝑇𝑜𝑗𝑙 − 𝑑𝑒𝑚𝑗𝜏𝑙
𝑎𝑐 + ∑ 𝑐𝑗𝑙𝑟𝜏

𝑎𝑐
𝑟  ∀ 𝑗 ∈ 𝐽, ∀ 𝜏 ∈ 𝑇\{1}, ∀𝑙 ∈ 𝐿  (24) 

𝑠𝑡𝑗𝜏𝑙 ≥ 𝑆𝑇𝑗𝑙  ∀ 𝑗 ∈ 𝐽, ∀ 𝜏 ∈ 𝑇, ∀𝑙 ∈ 𝐿 (25) 

𝑐𝑗𝑙′𝑟𝜏 ≥ 𝑞𝑗𝑙′𝑟 − 𝑀(1 − 𝛽𝜏𝑟𝑙) − 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′𝑙 ) ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈

𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇  

(26) 

𝑐𝑗𝑙′𝑟𝜏 ≤ 𝑞𝑗𝑙′𝑟 ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇 (27) 

𝑐𝑗𝑙′𝑟𝜏 ≤ 𝑀 × 𝛽𝜏𝑟𝑙 ∀ 𝑗 ∈ 𝐽, ∀𝑙′ ∈ 𝐿, ∀𝑟 ∈ 𝑅, ∀ 𝜏 ∈ 𝑇 (28) 
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𝑡𝑟𝑙′ ≤ 𝜏 + 𝑀(1 − 𝛽𝜏𝑟𝑙) + 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′)𝑙  ∀𝑟 ∈ 𝑅, ∀𝑙′ ∈

𝐿, ∀ 𝜏 ∈ 𝑇  

(29) 

𝑡𝑟𝑙′ ≥ 𝜏 − 𝑀(1 − 𝛽𝜏𝑟𝑙) − 𝑀(1 − ∑ 𝑥𝑟𝑙𝑙′)𝑙   ∀𝑟 ∈ 𝑅, ∀𝑙′ ∈

𝐿, ∀ 𝜏 ∈ 𝑇  

(30) 

 

Eq. (2) warrants that the demand is satisfied. Eq. (3) allows only one car at 

one station. Eq. (4) makes sure that the car passes to the next station. Eq. (5) 

is the production ratio rule. Eq. (6), Eq. (7), and Eq. (8) ensure that each 

location is served by one route. Eq. (9) obeys the route to have a predecessor 

except for the warehouse. Eq. (10) forces the situation where if a route reaches 

a location, the route departs from that location. Eqs. (11, 12) set the number of 

routes equal to the number of vehicles. Eq. (13) accounts for a route if the 

vehicle visits at least one location. Eq. (14) sets the maximum length of the 

route. Eq. (15) limits the number of vehicles used to the available ones. Eqs. 

(16, 17) define the arrival time for each location. Equation (18) sets the 

maximum capacity of the route. Eq. (19) sets the demand for certain 

characteristics only when a car requires this characteristic. Eq. (20) defines the 

number of components that are left at the station. Eq. (21) sets the accumulated 

demand. Eqs. (22, 23) set the accumulated components required. Eq. (24) 

defines the stock. Eq. (25) establishes the safety stock. Eqs. (26, 27, and 28) 

establish that the required amount of components will be equal only to the 

replenished components when the replenishment occurs. Finally, equations 

(29, 30) define the time of the replenishment. 

ANT COLONY OPTIMIZATION 

In this subsection, we describe the ACO algorithm that we developed to deal 

with the joint problem describe above. We use the following notation. The 

problem is defined by a 10-tuple ( , Class, ,

,V, ) that is explained in Table 6.3.  

 

Table 6.5: 10-tuple parameters explanation for the ACO formulation. 

Name Description 

𝐶  = {𝑐1, … , 𝑐𝑚} is the set of cars to be produced; 

Class the set of all different cars sharing the trim level for all components; 

𝑂 = {𝑜1, … , 𝑜𝑚} is the set of different components; 

𝐴 trim levels; 

 𝐽 characteristic 𝐽 ⊆ 𝑂 × 𝐴; 

𝑆 = {𝑠1, … , 𝑠𝑚} is the set of stations to install the different components; 
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𝐻𝑗: 𝑁𝑗 at most 𝐻𝑗 of 𝑁𝑗, where Nj successive cars may have characteristic j; 

𝑟𝑖𝑗  C × O →{0, 1}, 𝑟𝑖𝑗  =1 if in station 𝑠𝑖 the component with the 

characteristic 𝐻𝑗 is installed, 𝑟𝑖𝑗 = 0 otherwise; 

V defines a maximum number of transportation vehicles; 

𝑇𝐷𝐼𝑆𝑠𝑠′ defines displacement times from station 𝑆𝑖 to station 𝑆𝑗. 

 

 

The following notation is used to denote the change of sequences:  

 

 a sequence is noted 𝜋 = {𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑘} ; 

 the unique set of options required by a car is a class 𝑐𝑙𝑎𝑠𝑠 𝑂𝑓(𝑐𝑖) =

{ℎ𝑗𝜖𝐻|𝑟𝑖𝑗 = 1}; 

 a route is defined as a nonempty subset of stations attended by each 

vehicle, 𝑅𝑣𝑖
= {𝑠0, 𝑠1, … , 𝑠𝑚+1} where 𝑠0 = 𝑠𝑚+1 denotes the 

depot; 

 the set of all sequences that may be built is 𝜋𝑐; 

 the concatenation ⊕ of two sequences is the first followed by the 

second; 

 a sequence π1 is a subsequence of another π2 , π1 ⊆ π2, if there are 

another two sequences that can be concatenated to π1 to create π2; 

 τ cycle (takt) time; and 

 the cost of the sequence π and the route 𝑅 depend on the number of 

violated constraints, the vehicles used, the distance traveled by each 

vehicle, and the amount of stock in the assembly line (see equation 

32).  

 

The problem is solved when a production plan is found that minimizes the 

total cost of violating the sequence rules, the cost of the routes for replenishing 

all the components, and the holding cost of line-side inventory meeting all the 

constraints. 
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Each route will be attended by only one transportation vehicle. A 

production plan will be defined as the set of production sequences and the 

routes for the vehicles that permit replenishment of the components for the 

given production requirements. The solution is driven by four main costs: the 

cost of using utility workers to overload the station due to a violation of the 

sequence rule (33), the use of transportation vehicles (34), the distance 

travelled by the transportation vehicles (35), and the inventory cost of the 

components (36).  

 

𝑐𝑜𝑠𝑡(𝜋, 𝑅) = ∑ ∑ violation(π𝑘, 𝑂𝑖) ×𝜋𝑘𝜋𝑜𝑖∈𝑜

vioCost + ∑ (travelCost(Vn)𝑛 + 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑈𝑠𝑒𝑑(𝑉𝑛) × 𝐶𝑜𝑠𝑡) +

∑ holdingCost(𝑠𝑚)𝑚   

(32) 

where  

violation(π𝑘, 𝑂𝑖) = 0 𝑖𝑓 ∑ 𝑟𝑙𝑗 ≤ 𝐻𝑗𝑐𝑙𝜋𝑘
 , 0 otherwise (33) 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑈𝑠𝑒𝑑(𝑉𝑛) = 0 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑(𝑉𝑛) = 0, 1 

otherwise 

(34) 

travelCost(Vn) = ∑ TDIS𝑙𝑙′ 𝑙∈𝑅 × 𝑢𝑛𝑖𝑡𝐶𝑂𝑠𝑡𝐾𝑚  (35) 

holdingCost(𝑠𝑚) = ∑ stockjτ × 𝑢𝑛𝑖𝑡𝐶𝑜𝑠𝑡𝑆𝑡𝑜𝑐𝑘𝑗𝜏   (36) 

 

ACO Algorithm 

Following the ACO scheme, each part of the problem is modelled as the search 

for a best Hamiltonian path (each vertex is visited exactly once) in the graph. 

We will give a brief outline of how the algorithm works and in the appendix 

we give a detailed formulation of the construction algorithm following the 

ideas of Dorigo et al. (1996). The Ants cooperate using pheromones that ants 

deposit on when they select the edge of the graph. The levels of pheromones 

determine the attractiveness of the path increasing the probability of it being 

used by other ants.  

Solutions are constructed probabilistically using a pheromone model, and 

then the solutions are used to update the pheromone values. As we use utility 

workers for the sequence part, all the sequences are feasible by definition. 

Nevertheless, sequences not respecting the takt time or workload balancing 

will have to bear the extra cost. A big enough set of transportation vehicles is 

defined to ensure that all the routes are feasible and capable of delivering the 

components when needed.  

The transportation vehicles depart from the depot with a load of 

components that (on average) equal the number of vehicles, v, divided by the 
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number of stations, s, times the number of cars produced, n, always respecting 

vehicle capacity (see Eq. 37).  

 
v ×  n 

s
≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑂𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 (37) 

Each vehicle from the replenishment route departs from the warehouse

, visits the stations, and goes back to the warehouse again at the end 

of the route. The transportation time includes travelling from station  to 

station 
 

and unloading the components. In order to promote the exploration 

of different solutions, each routing ant starts the exploration from a different 

point; we multiply the probability matrix for Eq. 38 as a factor of the selection 

of the  in ACO algorithm. 

 

(ord(ant)  +  1) 

total N number Of Ants
 (38) 

 

The algorithm uses two types of ants: sequencing ants and routing ants. The 

sequencing ant will be complete when the ant contains a full production 

sequence of cars. A routing ant will have terminated its path when all the 

stations are visited.  

First, pheromone trails are initialized, and then at each cycle, sequence ants 

construct a full sequence and a full route from an empty sequence and an empty 

route. Cars are iteratively added until the sequence is completed. At every step, 

car candidates are restricted to the ones that generate the minimum cost, which 

means that the choice is restricted only to cars that create minimum extra cost. 

With this set of candidates the next car is chosen using transition 

probability Eq. (39 or 40). The sequencing ants keep doing this until all the 

cars are sequenced. Then the demand over the time is calculated and, the 

routing ant replenishment route is built. In order to build the route, we start 

from an empty route. The depot is duplicated a number of times to equal the 

number of transportation vehicles. We start to add stations from the non-

attended locations  among the ones that generate the minimum cost 

and for each vehicle we choose the one that adds the minimum cost. The 

probability Eq. (41) will depend on  and  values. Once all stations have 

been attended, we decrease the number of vehicles and repeat the creation of 

routes unless that number of vehicles cannot attend all the stations on time. We 

should keep the best solution to lay pheromones. Finally, we repeat the entire 

process. The algorithm stops iterating after a maximum number of cycles has 

been performed. 
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The method of building the car sequence, taking into consideration the 

classes of the cars is inspired by the one described by Solnon (2006), in section 

6, for combining two pheromones. The vehicle routing is inspired by the 

approach of Baran and Schaerer (2003). The first colony minimizes the number 

of vehicles while the second colony minimizes the inventory cost. Both 

colonies use independent pheromones and collaborate in sharing a global best 

solution. This solution is used to update the pheromones.  

  

p(c𝑖, candCar, π) =
[𝜏1(𝑐𝑗,𝑐𝑖)]

𝛼1[𝜏2𝑐𝑙𝑎𝑠𝑠𝑂𝑓(𝑐𝑖)]𝛼2

∑ [𝜏1(𝑐𝑗,𝑐𝑖)]𝑐𝑘∈𝑐𝑎𝑛𝑑
𝛼1

[𝜏2𝑐𝑙𝑎𝑠𝑠𝑂𝑓(𝑐𝑖)]𝛼2
  if the last 

car of π is cj 

    (39) 

p(c𝑖, candCar, π) =
[𝜏2𝑐𝑙𝑎𝑠𝑠𝑂𝑓(𝑐𝑖)]𝛼2

∑ [𝜏2𝑐𝑙𝑎𝑠𝑠𝑂𝑓(𝑐𝑖)]𝛼2
𝑐𝑘∈𝑐𝑎𝑛𝑑

  if π is empty (40) 

p(s𝑖, candS, 𝑅𝑣𝑖
) =

[𝜏3(𝑠𝑖,𝑠𝑗)]
𝛼3[(𝑠𝑖,𝑠𝑗)]

𝛽

∑ [[𝜏3(𝑠𝑖,𝑠𝑗)]
𝛼3

[(𝑠𝑖,𝑠𝑗)]
𝛽

]𝑠𝑘∈𝑐𝑎𝑛𝑑𝑆

  if sj  

candS, 0 otherwise 

(41) 

 

Where 𝛼1, 𝛼2, 𝛼3 and 𝛽 are respectively the relative weights for the 

pheromone and heuristic values. A full solution is defined as the sequence and 

the route of vehicles to replenish the components. After each iteration, we 

obtain a full feasible solution to the problem that is improved after each 

iteration. A decrease in the use of the vehicle is given after several iterations 

where vehicles could select the “nil” route (stay at the warehouse). 

Pheromones.  

The three proposed pheromone structures achieve complementary goals; the 

first aims to identify a good sequence, the second aims to identify critical cars, 

and the third aims to identify vehicle routes that can deliver the components 

on time.  

 pheromone 𝜏1. Ants lay an amount of pheromone 𝜏1(ci,cj ) on a couple 

of cars (ci,cj) ∈ C×C, which represents the past experience of sequence 

car cj after ci. This pheromone is bounded with [Tmin, Tmax] and is 

initialized at Tmax for every couple.  

 pheromone 𝜏2. Ants lay pheromones on car classes cc ∈ Classes(C) and 

the amount of pheromone 𝜏2(cc) represents the past experience with 

the car sequence of this class without violating any constraints. This 

pheromone is bounded with [Tmin, Tmax] and is initialized at Tmin.  
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 pheromone 𝜏3. Ants lay pheromones on the path between the current 

location and the possible location (si,sj) ∈ S and the amount of 

pheromone levels of 𝜏3(si,sj), indicating how proficient it has been in 

visiting station j after i. This pheromone is bounded with [Tmin, Tmax] 

and is initialized at Tmin.  

 heuristic η(si sj). The dynamic attractiveness of the arc (i,j) will be: η(si 

sj) = 1/stockj. It will be computed dynamically depending on the 

inverse of the stock level in each station at each time.  

Pheromones Update.  

Each pheromone will be laid and updated according to its characteristics.  

Updating Pheromone  Once every sequence ant has constructed a 

sequence, the quantity of pheromone in all pheromone trails is decreased in 

order to simulate evaporation, multiplying every arc by (1−ρ1). Then the best 

ant deposits along its path a trail of pheromones inversely proportional to the 

total cost generated by the violated constraints. If the resulting pheromone 

value is lower or higher than the range, it will be adjusted to the closest 

boundary.  

Updating Pheromone  Ants lay pheromones on car classes during the 

construction; when no more cars can be scheduled without breaking any 

production rule, some pheromone is laid on the classes of the cars that have 

not been scheduled. The pheromone update occurs during the construction 

step. Every ant adds pheromones, not just the best ant. In order to simulate 

evaporation, each class is multiplied by (1 − ρ2).  

Updating Pheromone  First, local updating is conducted by reducing 

the amount of pheromones on all visited arcs by multiplying current 

pheromone levels by (1 − ρ3). Global trail updating is performed for all the 

arcs included in the best route found by one of the ants.  

ACO parameters tuning 

In this stage, we identified and controlled the correct combination of values 

for the algorithm. The ACO was tuned, using as starting values those suggested 

by Dorigo et al. (1996) and Solnon (2008) but taking into consideration that 

there are no universal values that can solve each ACO problem (Eiben et al. 

1999). We tested the different values of the parameter with all small instances 

solved with MILP. We fixed the rest of the parameters and fluctuated the 

examined parameter, and then we repeated this process with the rest of the 
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parameters. Table 6.4 presents the values of the parameters that performed 

better. 

Table 6.6: ACO Parameter settings. 

 𝛽 𝛼𝑛 𝜌𝑛 𝜏𝑚𝑖𝑛  𝜏𝑚𝑎𝑥  Note 

Pheromone 1  3 1% 0.01 4 the experience of carj after cari 

Pheromone 2  6 2% 1 10 critical models 

Pheromone 3  2 0.5 0.1 5 the experience of loc2 after loc1  

Heuristic 𝜂 5     heuristic info 

COMPUTATIONAL STUDY 

The MILP was modeled in AIMMS 3.13, and the standard solver Gurobi 5.5 

was used to obtain the solution to the problem. The ACO was programmed in 

C++ using Code::Blocks. The computational experience was performed on a 

machine with an Intel Core i3-2350 processor M 2.30 GHz 6 Gb RAM running 

under Windows 7. 

As there are no public instances in the literature for the joint problem, we 

based all the experimentation on the instances used in Regin & Puget (1997); 

these amounted to instances #1, #2, #3, and #4, which have been widely used 

in other articles. These instances are public at car sequencing problem lib 

(www.csplib.org). From those production sequences, we made up the missing 

data to obtain some small, medium and large instances. We created a reduced 

instance (R#No.r) that contains the first 50 cars of the instances. Furthermore, 

an extended instance was created, duplicating the number of stations (R#No.e) 

and keeping the same production ratio. For the instances of 200 or more cars 

found in the literature, the MILP is not able to build the model. As no 

comparison point for this problem exists, no experimentation was performed 

with bigger instances. A terminating criterion of 3,600 seconds was set for all 

the instances. 

There are two typical ownership options for the transportation vehicles that 

were experimented. The first one is when the car manufacturer is the owner of 

the fleet and each transportation vehicle generates an amortization, travelling, 

and moving cost. The second one is used as a material handling company, in 

this case only where travelling and moving costs exist. 

In Table 6.5 the computational results are presented. The first four columns 

present the instances and their characteristics. The following columns present 

the solution for the car sequencing (a), vehicle routing problem (b), and the 

holding cost (c). Column (d) presents the sum of these costs. Column (e) 

presents the total cost of the Joint Approach solved with the MILP. The next 

column, (f), is the difference between the MILP joint approach and the separate 
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approach. Column (f) shows the mean of the 50 ACO runs; the next column is 

the standard deviation of 50 ACO runs. The last column presents the difference 

between the ACO and the separate approach. The solutions of the car 

sequencing R#1, R#2, and R#4 are the same as the best known in literature; 

however, in the case of R#3 our algorithm could not achieve the best known 

solution in the given time. Despite the fact that the ACO could not achieve the 

optimal solution, with the exception of the small instances, better results were 

obtained within all the instances than with the MILP using the one-hour stop 

criterion; in all cases, the results were seen in less than two minutes, especially 

for the extended instance where the gap is bigger.  
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Table 6.7: Computational results of car manufacturing ownership of transportation vehicles. 

Instance 
No 

mod 
No car No loc 

Car 

seq 

(a) 

VRP 

 

(b) 

HC 

 

(c) 

Total 

(d)= 

a+b+c 

Obj 

Joint 

(e) 

∆  

% 

d-e 

aco 

𝜇 

(f) 

aco 

𝜎 

 

∆f 

% 

d-f 

∆f 

% 

e-f 

R#1.r 9 50 5 500 458 910 1868 1740 6.8 1803 37.8 3.5 -3.6 

R#2.r 7 50 5 0 458 912 1370 1235 9.8 1307 43 4.6 -5.8 

R#3.r 8 50 5 300 458 1001 1759 1564 11.1 1565 58.1 11 -0.1 

R#4.r 10 50 5 600 458 893 1951 1841 5.6 1899 29.4 2.6 -3.2 

R#1 22 100 5 0 828 3192 4020 3632 9.6 3625 125 9.8 0.2 

R#2 22 100 5 600 828 2887 4315 4050 6.14 3954 42.3 8.4 2.4 

R#3 25 100 5 400 828 3324 4552 4072 10.5 4099 154 9.9 -0.7 

R#4 23 100 5 200 828 3213 4241 3963 6.5 3876 76.2 8.6 2.2 

R#1.e 22 100 10 0 1650 6214 7864 7759 1.34 7464 194 5.0 3.8 

R#2.e 22 100 10 1200 1650 6332 9182 9038 1.57 8785 179 4.3 2.8 

R#3.e 25 100 10 800 1783 6427 9010 8810 2.22 8442 139 6.3 4.18 

R#4.e 23 100 10 400 1650 6174 8224 8113 1.35 7808 168 5.1 3.8 
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Table 8.6: Computational results from using a material handling company. 

Instance 
No 

mod 
No car No loc 

Car 

seq 

(a) 

VRP 

 

(b) 

HC 

 

(c) 

Total 

(d)= 

a+b+c 

Obj 

Joint 

(e) 

∆  

% 

d-e 

aco 

𝜇 

(f) 

aco 

𝜎 

 

∆f 

% 

d-f 

∆f 

% 

e-f 

R#1.r 9 50 5 500 510 866 1876 1781 5.06 1812 43.8 3.4 -1.7 

R#2.r 7 50 5 0 514 926 1440 1295 10.07 1342 62.7 6.8 -3.6 

R#3.r 8 50 5 300 522 961 1783 1613 9.53 1708 75.1 4.2 -5.9 

R#4.r 10 50 5 600 505 995 2100 1855 11.67 1955 61.5 6.9 -5.4 

R#1 22 100 5 0 1189 2918 4107 3887 5.36 3932 89.6 4.3 -1.2 

R#2 22 100 5 600 1192 3002 4794 4399 8.24 4410 102.5 8.0 -0.3 

R#3 25 100 5 400 1194 3153 4747 4460 6.05 4443 80.7 6.4 0.4 

R#4 23 100 5 200 1194 3134 4528 4339 4.17 4278 55.3 5.5 1.4 

R#1.e 22 100 10 0 5120 6373 11493 11491 0.02 11074 126.1 3.6 3.6 

R#2.e 22 100 10 1200 4530 5836 11566 11485 0.70 11135 138.2 3.7 3.0 

R#3.e 25 100 10 800 4522 6642 11964 11841 -0.65 11381 107.5 3.3 3.9 

R#4.e 23 100 10 400 3992 6170 10562 10489 0.69 10148 149.2 3.9 3.3 
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In Table 6.6, the computational results of using a material handling 

company are presented. The joint approach obtains better results or in the 

bigger instances similar results. When the bigger instances are solved, the size 

of the model does not allow the solver to explore all the branches of the tree. 

In one instance (R#3.e), the joint approach was 0.6% below the traditional 

approach, but in the rest of the cases, it achieves at least the same results, and 

the majority of the results are better. In this approach, the routing cost in the 

big instances becomes more relevant than in the first approach because of its 

intense use of material handling and no discount for intensive use is modelled.  

The aim of this paper is not to discuss whether to outsource material 

handling, but to discuss the benefits of the joint approach and ACO in the two 

cases. The outsourcing decision will depend on the strategy of the company. 

The purpose of experimentation with the two approaches is to highlight what 

makes sense with a joint approach in both cases. Therefore, the resultant costs 

of Table 5 and Table 6 are not comparable since the transportation cost is 

highly dependent on the negotiation of the contractual terms with suppliers and 

workers. 

Finally, we analysed the stock. It can be noticed that the stock level 

decreases until it reaches the level of the safety stock before replenishment, 

which opens the opportunity to manage the risk of working without safety 

stock in order to realize the possible saving, and also manages the possibility 

of incurring a cost if there is any delay in the transportation.  

MANAGERIAL INSIGHTS 

According to our expectations, the integration of the decision has resulted in 

the achievement of better results. The fact that one part of the organization 

achieves the best possible performance might not be beneficial for the entire 

organization, so the decision-making process should be done in conjunction 

with the other stakeholders in the process. Unfortunately, this is not always 

possible since real-life problems are far more complicated than this model. 

However, as can be seen in Table 4, the goal of the decision-maker with regard 

to scheduling, routing, and inventory should be to reduce the total cost, not 

only the cost associated with the process they are responsible for, and this 

cannot be achieved without a compound approach. 

When we model with a Joint approach, we allow the decision model to 

choose from among several options, which increases the possibility of 

achieving a better solution. Unfortunately, as we expect from the MILP, the 

computational cost in some cases is excessive with regard to the savings and 
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then the only possibility is to use the ACO, which, despite not achieving the 

optimal, gives us good quality results.  

Comparing the Afshin et al. (2012) review of the paper that deals with more 

than one part of the supply chain against the number of papers for each echelon 

of the supply chain, there is a lack of compound approaches from the 

researchers. On the other hand, the industry is using decision systems such as 

Oracle E-Business SCM, SAP SCM, i2, IBM, or LogicTools, which, despite 

their inability to give the global optimal since they give solutions in seconds 

or minutes, give solutions that pursue an integrated optimization. 

The last but not least of these managerial insights. After a literature review 

the majority of the papers still focus on one of the specific problems that face 

a production plant, such as scheduling or routing. They integrate new solving 

methods, techniques or cuts and find the optimum for many isolated problems. 

In parallel, the IT industries have developed fast solvers and great 

computational power. In the vision of the authors the next natural step 

incorporates more problems together to achieve a better solution. 

In the heuristic arena, the different algorithms are concerned with avoiding 

being trapped in a local optimum, but as we continue modeling specific parts 

of the problem with a “silo view”, the majority of the solutions are a local 

optimum of the entire solutions, since we do not model the entire problem. 

With the actual modelling techniques and solvers, we should try to follow a 

holistic view of the modelling not only on the assembly line with the 

sequencing, routing, and line-side storage problem, but as a goal of the 

majority of our models. 

The advantage of joint decision-making becomes more important when the 

cost of space is higher than in a low-cost facility. The production space is a 

limited resource; it has to be used in an activity that adds value to the product 

and decreases the holding space. This becomes a key factor in factories where 

the inventory is limited, and there is no possibility to store more than one or 

two hours’ inventory.  

CONCLUSIONS 

The first contribution of this paper is the development of a mixed integer 

programming model for solving an inventory routing problem to satisfy the 

sequence requirements, since this kind of model is not reported in the literature 

and the authors believe that this could be an interesting research area. 

This paper uses the natural cooperative behaviour of ants to obtain a 

solution to combined problems. The second contribution of this work consists 
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in the development of a collaborative ant colony optimization system to obtain 

a high-quality solution for problems that cannot be solved to optimality, and 

the joint solution to the problem using ACO, to the best of the authors’ 

knowledge, has not been described throughout the literature.  

The results yield savings of around 7% on all costs in the instance tested 

with respect to the solution obtained using a separated approach. It is expected 

that larger instances will maintain the same performance (or better) in terms 

of savings since the decisions are taken independently. Factories with a 

reduced production space should be more interested in this kind of approach. 

This would justify the investment in more computational power or the design 

of other solution methods. 

We believe that the results tested in the small- and medium-sized cases are 

promising. The decrease in the number and use of transportation vehicles, 

reduction in inventory next to the assembly line, and minimization of the 

number of utility workers to handle violations of the sequencing rules could 

be interesting for future research. Therefore, making an industry-sized model 

could be justified. 

The limits to this approach are that the instances from which we can 

compare the results are too small and the incorrect balance between costs that 

could depend on the specific real case, but the solution is sensitive to this 

balance of costs. Finally, the inabilities to suggest structural changes in 

management policies (e.g. Outsourcing the material handling) since the costs 

are also case dependent. 

For future research, given that this is an NP-hard problem and since the 

subproblem of routing is NP-hard, the overall problem is NP-hard. From this 

point, many research paths could be followed. The first one is to try to add 

cutting planes or decomposition methods to handle real-life problems. The 

other option is to implement other metaheuristics different to ACO that could 

provide a good solution in a short period with average computational power. 

In the ACO line, the focus could be placed on larger problems, combining 

different techniques, like additional types of pheromones, ranking methods, 

and different construction strategies for the route, such as a local exchange or 

candidate list. For the modelling part, we could also add some “ad-hoc” 

features to customize the model to better represent a client reality, with 

discounts for excess use or nonlinear holding costs. 
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Chapter 7: Aeronautical manufacturing plant, using 

simulation 

MOTIVATION 

Several manufacturing processes rely on the use of hoist, crane or some 

material handling device to change the work in progress from one workstation 

(tank) to another. Two main decisions have to be made. The first one is the 

proper sequence of the parts that are manufactured and the second one is the 

route of the material handling device to move this work in progress.  

Hoist scheduling is a typical problem in the operation of different processes 

arising in the aerospace and electroplating industries. This problem includes 

several hard constraints that should be considered: single shared hoist, 

heterogeneous recipes, eventual recycle flows, and no buffers between 

workstations. 

This problem is an example of a problem where obtaining an optimal 

solution to one part of the problem does not lead to an optimal overall solution, 

in some cases not even to a feasible solution. If the optimal schedule is 

obtained to minimize the processing time of the orders that will be produced, 

maybe the hoist will not be able to find any path that could make the 

movements when they are required by the production sequence. The other 

option is to solve everything together as Aguirre et al., (2011) did, but it 

requires a lot of time and assumptions. For this reason, we implemented a 

simulation that used heuristics to take everything into consideration, and 

despite the optimal not being found, good and feasible solutions were obtained. 

Two operational decisions were made jointly (see Figure 7.1). The use of 

discrete simulation using heuristics lets us obtain a feasible solution in a 

reasonable amount of time, in addition to being able to easily model 

breakdowns that are difficult to simulate with exact methods, and visualize the 

change in the interest variables over time. 
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Figure 7.1: Complexity of the decisions. A higher number of blocks implies a higher complexity. 

The aim of this chapter is to simulate and optimize the design and operation 

of a complex manufacturing system with a reasonable computational effort. 

The simulation model is able to consider heterogeneous recipes, possible 

recycle flows and no buffers between workstations simultaneously. 

In addition, we present heuristic–based strategies to find interactively and 

improve the solution generated over time. Due to the nature of the chemical 

process, the residence time in each tank is bounded by strict limits. All the 

transfer activities in the system are executed by a single hoist that can carry a 

single unit at a time. The product will be defective if any of these constraints 

are violated. Different heuristics were tested by using real-world data taken 

from the surface-treatment process of metal components of an aerospace 

industry to minimize the total production cost.  

INTRODUCTION 

The solution of complex real-world scheduling problems has attracted the 

attention of researchers and practitioners for many years. Flow shop 

scheduling considers that a set of jobs has to be transferred through several 

stages, by using a shared automated transfer device (hoist). Each job is 

processed in a sequence of units, with a flexible processing time, where every 

machine can only perform one job at a time and cannot be interrupted. Flow-

shop problems are usually focused on finding the best processing job sequence 

that minimizes the completion time of the last job in the system, which is 

widely known as the makespan (MK) criterion.  



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

118 

The new market conditions for products have led to a flexible design of the 

production line that can produce many job types. Each product type differs 

from the sequence of stages that are visited and in the time spent in each one 

(Aguirre et al. 2008; Aguirre et al. 2011). The analogy to that in chemical 

processing is the order in which the components visit the different tanks and 

the duration of the chemical treatment, which should be between a minimum 

and a maximum of time for quality reasons (Kujawski and Swiatek 2011). 

Scheduling the jobs and controlling the handling device (hoist) is crucial for 

the system performance. Often the plating process is a major bottleneck, and 

the hoist scheduling problems are very complex. 

These kinds of problems are commonly found in electroplating lines that 

are used to cover parts with a metal coating. These machines can be found in 

many types of industries such as the manufacture of printed circuits boards, in 

the automated wet-etch station in the semiconductor industry, in the chemical 

treatment of aeronautical parts, and in household electrical appliances, etc. 

(Manier and Block 2003). 

The current work is focused on the critical surface treatment process of 

large metal components in the manufacturing industry (Paul and Chanev 

1998). The scheduling of heavy aircraft parts is characterized by a higher 

complexity than a typical flow-shop problem. This process involves a flow 

through a series of chemical tanks, in which a material-handling tool is in 

charge of the transfer movements between the different tanks, including the 

input and output of the system. Not reaching the minimum processing time, or 

exceeding the maximum allowed time may cause not only material waste but 

also loss of the critical resource of production time. It is important to remark 

that transfer times are directly related to the initial position of the hoist, the 

actual position of the component and the next stage of the component. Thus, 

the handling device has to transfer heavy parts at low speed through the 

production line. The tanks can only contain one part, and so it is necessary for 

the next tank to be idle before the movement is made. This problem has been 

addressed in the literature, which gives priority to the most advanced item in 

the production line. However, there are cycles in the sequences that the parts 

should follow, making the scheduling for the decision- maker even more 

complex. 

The hoist works during the entire shift moving from one tank to another, 

loading and unloading heavy and big parts in an aggressive chemical 

environment. This can cause the hoist to become stuck until an operator 

unblocks it. This may happen several times per day and after a few minutes 

the hoist is working again. This is an important issue, especially when the 

optimal work in process (WIP) needs to be determined. If only one part is 
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allowed to be in the system, the scheduling of the hoist is very simple since the 

hoist only has to wait for the part outside the tank and transport it to the next 

stage. In this case, the resulting throughput is unacceptable. In the event that 

the hoist becomes stuck, it could be easily repaired without any damage to 

production. On the contrary, if something goes wrong a high WIP may cause 

several pieces to be damaged. Furthermore, generating a scheduling with a 

high WIP without defective parts is extremely complex and will probably take 

more time than the shift where it is to be performed. 

The main objective of this work is to develop a discrete simulation model 

to evaluate, analyse and design the operation of electroplating for the 

aerospace industry based on the hoist scheduling problem. Also, a sensitivity 

analysis is performed to assess how different input parameters affect the 

variable response of the decision model. In this way, it seeks to find different 

proposals to minimize the makespan and increase the productivity levels of the 

line and the efficiency of the overall system by minimizing the defective parts 

(waste). 

The model is developed in SIMIO (Thiesing et al. 1990), which is a modern 

simulation software belonging to the category of discrete simulation 

languages. This type of software is widely used to simulate systems of high 

complexity. The proposed model provides a 3D user-friendly graphical 

interface that easily allows evaluating the operation of the system over time. 

The methodology used in this simulation is described in Figure 7.2. 

 

Figure 7.2: Methodology of discrete simulation. 

PROBLEM STATEMENT 

The electroplating process consists of jobs that are chemically processed in 

different chemical tanks for a range of time. The jobs are transported from one 

tank to another by a single automated hoist. The electroplating line can process 

different jobs, which should follow different recipes. A recipe is defined as the 

combination of the different stages that an item must follow and the specific 

time window that the job should be in the tank.  

Contextualization of the 
entire process

Definition of the objective of the 
simulation study
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simulation
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suggestions
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In practice, jobs vary in size or other properties and require different 

sequences or processing times. Each produced item type has its sequence of 

visiting workstations, processing intervals, and so on. In the case of the 

electroplating industry, usually metal elements are coated with noble metals 

e.g. nickel, chrome. 

The Hoist Scheduling Problem also occurs in other industries, such as the 

production of printed circuit boards and food processing (Aguirre et al. 2014). 

In practice, production lines manufacture multiple item types because either a 

line was designed to perform multiple technological processes or within a 

single technological process (e.g. chroming), jobs vary in size or other 

properties and require different sequences or processing times. 

The hoist is capable of transferring only one item at a time from one 

chemical tank to another. The transfer time of the hoist consists of the 

travelling time from the actual position of the tank, the loading time, the 

travelling time to the destination tank, and the unloading time. The loading and 

unloading times are constant and known in advance. The travelling time 

depends on the distance between the tanks. The processing time starts when 

the hoist unloads the item in the tank and finishes when the hoist picks up the 

item. If the duration of the processing time is below or above the time window, 

the item becomes defective. 

Each tank operates independently and has a unary capacity. Also, there is 

no buffer between adjacent workstations. That is to say, the item has to be 

moved to its next tank after the processing time is finished but before the upper 

bound of the time window. Some critical tanks have a null time window, which 

implies that as soon as the processing time is finished, the item should be 

moved immediately.  

An example (MxN=4x3) which represents the main features of this 

problem is shown in Figure 7.3. 

 

 

Figure 7.3: Automated job-shop system with heterogeneous recipes. 
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Different conflicts  

When the hoist problem is solved, it needs to be assured that feasible schedules 

are generated. When the work-in-progress (WIP) of the system is higher than 

1, three types of conflicts can arise (Yih, 1994). 

1. Conflict by tank availability: a conflict may occur when a job finishes its 

processing in one stage and the next tank in the recipe is busy. In this case, 

the hoist must first serve the job that is in the destination tank before 

moving the first job. Unfortunately, this is not always possible because 

when the second tank is released the job in the first tank may be defective. 

The worst version of this conflict is when the destination tank of job A is 

the current location of job B, and destination tank of job B is the current 

location of job A (see Fig. 7.4). 

2. Conflict by hoist availability: a conflict may occur when a job is ready to 

be transported, and the hoist is being used by another job. The job should 

wait until the hoist is idle but sometimes it is too late. This becomes more 

critical when the minimum and maximum processing times are equal 

because there is no extra time to wait for the hoist. For this reason, it was 

needed to develop an algorithm to verify the status of both the robot and 

the jobs waiting for it. 

3. Conflict by hoist location: a conflict may occur when a job needs to be 

transported but the hoist is too far and when the hoist arrives it is too late. 

This conflict is more common when the hoist is unloading at one end of 

the transportation line. 

 

Figure. 7.4: Conflict by tank availability. 
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PROPOSED SIMULATION MODEL 

Most of the real-world systems are highly complex and virtually impossible to 

solve by using purely mathematical approaches. The increasing availability of 

simulation language, the increase of computational power, and the 

development of simulation techniques have made simulation an appropriate 

tool to deal with this kind of problem (Banks et al. 2004). In contrast to 

optimization methods, simulation models are “run” rather than solved, 

allowing the model to be observed.  

Simulation allows organizations from different sectors to experiment and 

analyse the different operation areas of their organization. They can model 

their process in virtual settings, reducing the time and cost requirements 

associated with physical testing. Therefore, complex systems operations can 

be assessed by developing a discrete event simulation. 

Moreover, the proposed simulation model provides a 3D user-friendly 

graphical interface that allows obtaining a better visual experience of the world 

of simulation models. It provides rich 3D objects to make the simulation look 

more realistic than 2D simulations. Also, simulation models can be easily 

tweaked and adjusted, providing rapid responses to even the most abstract 

situations. Therefore, to represent the operation of the electroplating line, a 

computational model was developed by using the SIMIO modelling 

environment. The following components are considered in the model: 

 Tanks / workstation: where different chemical processes are performed, 

e.g. anodized sulphuric aluminium, chromic anodized, passivation, 

chroming by immersion, cleaning and so on. 

 Jobs: multiple item types are produced in this process. 

 Input / Output of the line 

 Hoist: device materials are handling charge transfer items between 

workstations. 

Model in SIMIO 

In the proposed SIMIO-based simulation model, each physical component of 

the real process, such as jobs or workstations, is represented by an object with 

a predefined behaviour. As shown in Figure 7.5 source, server, and sink 

objects, connected by multiple time path objects, have been used to build the 

whole simulation, model. The objects used belong to the Standard Library. In 

Figure 7.5, 2D and 3D animation views of the developed model are given. A 
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detailed description of how the electroplating line has been modelled is 

explained below. 

 

Figure 7.5: 2D and 3D SIMIO model of the electroplating line. 

Jobs 

All the aeronautical parts that are to be produced are called Jobs. As shown in 

Figure 7.6, they are the dynamic entities processed on the line. The model 

entities are the types of jobs that are processed in the tanks. Each job has a 

unique recipe associated with it, which is specified in ModelJob properties and 

a sequence table. Each recipe establishes the path to be followed through the 

different tanks, and the minimum and maximum residence time that is allowed 

in each tank. Different labels are assigned during the process to allow the Jobs 

to follow their paths and to track them to obtain useful output data. 

In Table 7.1 an example of anodized sulphuric Titanium is presented. The 

different recipes could vary in the path or in the processing times of each tank. 

A tank could be visited more than once (tank 6 is visited in stages 5 and 8). A 

job could move backwards in the line (tank 22 is followed by tank 16), and not 

all tanks are visited for all recipes. The difference between the maximum and 

minimum times could be zero, i.e. fixed and exact processing time (stage 10). 



 

 

Analysing the complexity of the model-based decision making processes within the industrial 

management context 

 

 

 

124 

 

Figure 7.6: Dynamic entities, their properties and sequence table. 

 

Table 7.1: The recipe for anodized sulphuric Titanium. 

Stage Tank Minimum Time (min) Maximum Time (min) 

1 5 10 15 

2 6 5 6 

3 13 1 2 

4 12 5 5.5 

5 16 3 10 

6 21 10 15 

7 22 10 15 

8 16 3 10 

9 20 5 20 

10 3 20 20 

 

All jobs are generated by a Source Object called "OrderGenerator"(see 

Figure 7.7). In this step, the scheduling is done because the jobs are created 

according to a recipe table ("Recipes.JobType") and an Arrival Time Property 

("ArrivalTimeProperty"). The different arrival times are created using 

different heuristics that will be explained later. The jobs enter the line by a 

"Server Object" which is constantly evaluating the work in process (WIP), the 

availability of the first tank of the recipe, and the availability of the hoist to 

enter the system. 

Finished jobs are moved to the output of the line by the hoist. A sink object 

is used to model the behaviour of the output of the planting system (Figure 

7.7). The response variables are updated in this module. 
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Chemical Tank 

A Server Object is used to represent the chemical tanks (see Figure 7.8). Tanks 

operate independently, they do not have buffers (No intermediate Storage), 

and they never have faults. The processing time of the tank is determined by 

the minimum processing time of each job (Table 7.1); after this period the job 

could stay until it reaches its maximum processing time. After this time, the 

job will become defective.  

Figure 7.7: 2D and 3D SIMIO model (Input / Outputs of the line). 

 

 

Figure 7.8: 2D and 3D SIMIO model (chemical tanks). 
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When a job is processed in the tank, this job transmits all its properties 

(minimum and maximum processing time and next tank) to the workstation 

and the MyTank_DestroyTwin process is performed. Then, the 

"MyTank_Processing" process is carried out. Also, the jobs could be in four 

states according to the current processing time and the job properties. As 

shown in Figure 7, the jobs do not have to pass through all the states. 

• State 1: job has not yet reached its minimum processing time in the tank, 

and has not reached the minimum time required for the hoist to pick it up. 

Then, the job does not request the hoist. 

• State 2: job has not yet completed its minimum processing time in the tank 

but it has reached the minimum time required for the robot to pick it up. 

So, job requests the robot with a high priority. 

• State 3: job has reached its minimum processing time but is in its tolerance 

range (between the minimum and maximum processing time). Also, it has 

not yet reached the threshold time required to be considered urgent. Job 

requests the robot with a medium priority to avoid becoming defective.  

• State 4: the job is in the most critical state because it has completed its 

processing and has reached the threshold time to be considered urgent. In 

this way, it has the highest priority to request the hoist. 

Note that if the Job is not serviced by the hoist before reaching its maximum 

processing time, it must be discarded because of the high-quality standards for 

aeronautical components. In the diagram (see Figure 7.9) the parameter 

“WarningT” is a threshold that the hoist needs to move from any point of the 

line to the other end of the tank. “Tmin” is the minimum processing time and 

“Tmax” is the maximum time before becoming defective. “Wait” and “Job 

processing” make references to record the time passing. When the model 

requests this, the hoist idles and also checks if the next tank is available. 

The request from the hoist is made with the creation of a twin job that goes 

to the loading part of the tank, and when the hoist arrives and the original parts 

complete its processing time, both parts are loaded on the hoist, and the twin 

job is destroyed when the hoist arrives at the next tank. 
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Figure 7.9: Flow chart of the states of the chemical tanks. 

Automated material-handling device / hoist 

Controlling and optimizing the hoist is crucial for the system performance 

since a wrong order to move the different jobs among the stages could 

significantly change the throughput and the number of defective parts. The 

behaviour of the automated material-handling device / hoist is modelled as a 

Vehicle Object. The hoist attends any job that requires transportation. Also, 

the robot travels along a rail that is modelled as a TimePath Object, the loading 

and unloading time of the jobs being constant. When the hoist is idle it should 

park in the middle of the line at an intermediate node called “Home.” 

Moreover, several processes are performed, within the tanks and the line 

input, to verify the status of the robot (idle or available) and order requests 

waiting to seize it. In Figure 7.10, a diagram of the process to evaluate the 

maximum priority is displayed. This is a crucial part of the logic of the model. 

It consists in only allowing one job in the entire system to request the hoist. 

Only when the hoist is idle, will the job with the highest priority and with the 

destination tank available be able to make the request. The interval between 

hoists could fail if modelled as an exponential distribution with mean (4 

hours), with a recovery time of a uniform distribution of 1 to 2 minutes. 
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Figure 7.10: Hoist decision diagram. 

Model assumptions  

The major assumptions for constructing the simulation model were: 

• There are N types of jobs following a given production sequence (recipe). 

They have to be processed by a sequence of chemical tanks from the input 

buffer to the output buffer (some tanks may be skipped in the process). 

There are re-entrant and possible recycle flows to the same unit. Each 

stage has specific time windows of processing time in each tank. Products 

will become spoiled if the processing time falls outside the time window. 

• There are M workstations (chemical tanks), each of which has a specific 

functionality, has a single production unit per stage, never breaks down 

and there is no intermediate storage between stages. 

• There is a single automated material-handling device (hoist), which 

transports jobs between the tanks. Its loading / unloading speeds are 

constants. Its capacity is one. The travelling speed is constant. The hoist 

can experience breakdowns. 

Heuristics 

After many experimentations and suggestions from the operator of the real-

world system, the following heuristics were implemented in the simulation 

model to define the input sequence. The sequence that follows the jobs will be 

created by using the following heuristics: 

 •Heuristic 1: Order the jobs according to the total production time, starting 

with the smaller total processing time. 

 •Heuristic 2: Order the jobs according to the total production time. 

Sequence a short job followed by a long job, and repeat. 
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 •Heuristic3: Identify the tank that is visited most times and disperse the 

jobs that use that “critical” tank for all orders. 

 •Heuristic 4: Identify the two most common ending tanks (A and B), and 

intercalate one of A, followed by one of B, and then any other, and repeat 

until all the jobs have been sequenced. 

 •Heuristic 5: Use OptQuest to identify which is the best sequence of the 

system. OptQuest could select which order will be taken by each job. 

EXPERIMENTAL CASE ANALYSIS 

A key stage of a simulation project is the verification and validation of the 

model. The verification process was done to assure that it was properly 

codified, and then it was validated with the available data. Banks et al. (2004) 

highlights that the goal of validation is double: firstly to produce a model that 

represents the real behaviour as accurately as possible, and increase the 

model’s level of credibility so the model could be used by the decision-makers. 

The next step is to perform a sensitivity analysis. 

The electroplating line of the aeronautical manufacturing system comprises 

30 chemical tanks and one hoist. There are 24 types of jobs; each one with its 

specific sequence. The input and the output of the line are in the front part of 

the production line. The jobs might require visiting the same tank more than 

once. 

Sensitivity Analysis  

Once the model is verified and validated, decision variables are identified to 

make a design of the experiments (see Figure 7.11). The Experiment Mode in 

SIMIO defines a set of scenarios and performs a sensitivity analysis. The major 

goal is to evaluate more variables of the control variables and their impact on 

the response variables. 
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Figure 7.11: Optimization by simulation for the electroplating line. 

 

Control variables 

The following input variables are used in this simulation of the case study: 

• Max_WIP: Maximum number of jobs that could simultaneously be in the 

system.  

• Input_Order: It is the order in which the jobs enter the system; it is defined 

by the different proposed heuristics. 

• Interarrival_Time: Minimum period between the inputs of two orders. 

• Priority: Three different methods were used to assign the priority to 

request the hoist. The first takes into consideration the time to become 

defective, assigning highest priority to the jobs about to expire. It is 

similar to the first method, but it assigns the highest priority to the jobs 

that are more advanced. The third method takes into consideration the 

time that the job has exceeded the minimum processing time.  

Output variables 

Moreover, performance indicators are defined to evaluate the different 

experiments: 

• Makespan: The time in which the last job is completed. 

• Job Finished / Defective: The number of non-defective jobs that are 

completed and the defective jobs. 

• Cost: It is the total cost to produce all the orders. It is computed as the sum 

of the operation cost of the line plus the cost of the defective units. 
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RESULTS AND ANALYSIS 

The control variables were combined to create all the possible scenarios. Each 

scenario was run 5 times. Table 7.2 presents the best results obtained. There 

are no significant differences in the behaviour of the different Input orders 

when the Max WIP is 3, but when it is increased to 4, the only sequence that 

does not present a defective job is Heuristic 4. 

A maximum WIP below 3 jobs, increases the cost since the system is too 

slow. Maximum WIP above 5 increases the cost since the defective units 

increase. Finding a feasible sequence with a WIP of 3 is not so complicated; 

however, with a WIP of 4 it is difficult (only one was found) but presents the 

best performance. The second priority rule gives the highest priority to the job 

that is closest to becoming defective. 

Table 7.2: Results obtained for different scenarios from simulation model. 

 

Scenario 

Control Variables  Results 

Input  

Order 

Max  

WIP 

Interarrival 

Time 
Priority 

Cost Makespan Defective  

Jobs 

1 4 4 12 2  189.176 18.9176 0 

2 4 3 13 2  195.042 19.5042 0 

3 1 3 13 2  195.209 19.5209 0 

4 2 3 13 2  195.209 19.5209 0 

5 3 3 13 2  195.209 19.5209 0 

6 1 3 12 2  195.237 19.5237 0 

7 2 3 12 2  195.237 19.5237 0 

8 3 3 12 2  195.237 19.5237 0 

9 4 3 12 2  195.309 19.5309 0 

10 4 3 14 2  195.376 19.5376 0 

 

The simulation was also used to obtain the best range of the inter-arrival 

times between jobs. Since the system behaves similarly to the first 3 heuristics 

only heuristic 1 will be compared with heuristic 4 (see Figure 7.12).  
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Figure 7.12: Inter-arrival time. 

A type “2” priority and a max WIP of 3 is used in this experimentation. It 

can be seen that as we increase the inter-arrival time, the performance of the 

line improves because fewer defective units appear, until there is a dip of 12 

to 13 minutes, and then the cost starts to increase again because of the cost 

associated with a longer use of the production line. 

After evaluating all the results, the best configuration that minimizes both 

the makespan and the number of defective products is shown in Figures 7.13 

and 7.14. The jobs schedule is given in Figure 7.13 while the hoist schedule is 

depicted in Figure 7.14.  

Note that the results reported by simulation runs are represented graphically 

by using a user graphical interface. This interface is integrated with the 

simulation model for quickly evaluating simulation results and helping the 

decision-making process.  

 

 

Figure 7.13: Jobs Schedule. 
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Figure 7.14: Hoist Schedule. 

CONCLUSIONS 

An innovative discrete event simulation modelling tool has been used to 

evaluate different parameters and priority-based heuristic policies for a hoist 

scheduling problem.  

These types of systems are used commonly in the manufacture of printed 

circuit boards (PCBs) in electroplating plants and also in the automated wet-

etch stations (AWS) in semiconductor manufacturing systems. Simulation is a 

proper approach to solving this challenging scheduling problem. Despite not 

finding the optimal solution, this strategy was capable of offering a good 

solution in a short period. The aim is to find the best jobs sequence that allows 

minimizing the total makespan while the number of defective products is 

reduced. Different heuristics were integrated into the simulation model to test 

the different jobs sequences to be processed on the line. 

A flexible simulation framework plays a key role in this complex system. 

The schedule of 24 jobs, with an average of 15 chemical stages each one, 

implies more than 360 movements of big heavy parts by using a shared hoist 

across the production line. Moreover, hoist failures are explicitly represented 

in the simulation tool.  

We observed that the capacity of the built-in optimizer OptQuest was fairly 

limited for dealing with this complex system. When apart from the control 

variables, the optimizer must deal with the schedule of the parts, the solution 

takes several hours, generating a poor solution when the time limit is reached. 

For this reason, we embedded heuristics based on the knowledge of the 

operators and several numbers of experimentations. 

Another of the advantages when solving these kinds of problems by 

simulation is that the decision-maker may easily evaluate the impact of 

increasing the WIP in terms of the number and cost of the defective parts. 

Interesting ideas coming from the decision-makers such as changing the 

chemical for the non-used tanks to the highly used tanks could be easily tested 

knowing the cost of the change and the improvement of the performance. 

According to the simulation results, the line performance is mainly affected 

by the initial order of the jobs. For this reason, other methods to build 

sequences should be evaluated. However, the line performance is also affected 
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by WIP, interval time and priority. The proper selection of these parameters 

could be done by using simulation. 

The proposed simulation model allows the decision-makers to evaluate 

future improvements in the system design, such as a second hoist, faster hoists 

and more tanks. This work can also be extended to be connected with Excel, 

to the proprietary system of the company or with a meta-heuristic to help the 

model build a better initial processing sequence. 
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SECTION 3. HEALTH CARE INDUSTRY 

In the last section, the integration of the decision-making process was 

analysed, and then we integrated tactical and operational decisions, after which 

we added other functional areas. As the size of the problem increased some 

heuristics were used, while in the last chapter of the section, we simulate an 

aeronautical manufacturing process. In section 3, we move the research to the 

health care sector, which also faces multiple decision-making problems, but 

with different names. In Chapter 8, we analyse the decision-making process in 

a hospital, for the assignation of operating rooms, and the surgeries that should 

be performed and by who. Then, in chapter 9, we work with a teaching 

hospital, which in addition to the normal considerations for assigning 

operating rooms, should prepare the surgeons of the future, and deal with the 

pressure of delivering a quality service. 

Chapter 8: Operating Rooms Optimization 

MOTIVATION 

Despite manufacturing facilities and hospitals looking like two different 

worlds, managers have to make decisions that impact the overall performance 

of the hospital. The solutions require good coordination, the same priorities, 

good decision-making, and expertise. One example is the operating rooms, 

which are the engine of the hospitals. The proper management of the operating 

rooms and its staff represents a great challenge for managers and its results 

impact directly on the budget of the hospital since management is one of the 

major costs of a hospital.  

To solve this problem the hospital also has its decision-making units (see 

Figure 8.1), where the initiators are the doctors that detect the problem, the 

influencers are doctors from other hospitals and suppliers that tell them their 

experience, the surgeons are the users, the gatekeepers are the heads of the 

operating rooms that ensure that the requirements are fulfilled, the service 

heads are the deciders and the executors the ones that implement the solution. 
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Figure 8.1: Decision-Making Units for the operating room assignment base on (Bayle, 2003). 

In the decision-making process at the moment the scope of the decision is 

changed, the decision making unit grows. Instead of having only one head of 

medical services in charge to decide about a surgery that will be performed in 

a time slot assigned to them, the decision is made together to persuade the best 

overall decision for the hospital. In the first part of the chapter, a deterministic 

approach is used and later a stochastic approach.  

This chapter presents a MILP model for the efficient scheduling of multiple 

surgeries in Operating Rooms (ORs) during a working day. This model 

considers multiple surgeons and ORs and different types of surgeries. 

Stochastic strategies are also implemented for taking into account the uncertain 

in surgery duration (pre-incision, incision, post-incision times). Also, 

heuristic-based methods and a MILP decomposition approach is proposed for 

solving large-scale OR scheduling problems in a computationally efficient 

way. All these computer-aided strategies have been implemented in AIMMS, 

as an advanced modelling and optimization software, developing a user-

friendly solution tool for operating room management under uncertainty. 

INTRODUCTION 

Nowadays, hospitals managers are focusing on providing a greater use of their 

resources with the reduction of operating costs. In this context, operating 

theatres represent a critical area due to the direct impact of any improvement 

on the hospital budget (Souki, 2011). Operating theatres usually contain a set 

of surgical and recovery rooms with a limited number of beds and personnel, 

such as nurses, surgeons and anaesthetists. Therefore, the best way to improve 
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the performance of operating theatres is by trying to synchronize surgery in a 

better way, as planning and scheduling surgery seems to be the most useful 

and efficient strategy for this purpose. 

Many contributions to operating theatre planning and scheduling have been 

developed in the literature. A few contributions break down the problem of 

planning and scheduling decisions into two levels. In the first one, surgical 

cases are first assigned to a particular time-block in a week (date) whereas in 

the second level daily surgical cases are scheduled (see Augusto et al., 2010; 

Cardeon et al., 2010; Fei et al., 2010). 

Similarly, we could compare the block scheduling strategy where surgeries 

are pre-assigned to surgeons according to the surgical service and have to be 

scheduled in blocks prior to the working day, to the open scheduling strategy 

where surgeries submit a request for OR time and a detailed schedule is 

generated during the day of surgery. The latter strategy is common, for 

example, in Neurosurgery operations where a patient list is only known 24h 

before a surgical day. This flexible scheme avoids unfilled blocks in a working 

day. Also, urgent/emergent surgeries should not be delayed until an available 

surgeon is free. This strategy eliminates the OR idle times when surgeons have 

already finished (Denton et al., 2007). 

A real application problem appears in Batun et al. (2011) where they study 

the impact of different operating costs in the ORs. They suggested accounting 

a negative operating cost of an operating room when not in use by the staff and 

accounting the overtime as a penalty cost. Also considered is the operating cost 

of the surgeons when they are idle or waiting for another surgery. 

This problem has attracted the attention of numerous researchers and 

practitioners in recent years. In 2013, the optimization modelling competition 

MOPTA selected this problem as a relevant one for study in the operational 

research community (MOPTA, 2013). According to the participants and 

organizers, this kind of problem commonly appears in many hospitals in 

different countries where the scheduling process is carried out without any 

support system. 

In this paper, we consider the scheduling problem of daily surgical cases in 

the operating theatre presented in MOPTA 2013. Thus, we will study the 

situation where a hospital is already working, and the number of ORs and 

surgeons are given. Due to the hospital administration having decided to use 

their ORs more efficiently, the manager needs to allocate and sequence a set 

of already planned surgeries in a given number of available ORs and surgeons 

in each particular surgical day. Therefore, we have to find the best sequence 

of surgeries that minimize the total surgical cost made up of OR idle time and 
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OR overtime and surgeons’ waiting times. To do this, let us assume that the 

set of surgeries to be scheduled is known 24h in advance of the surgical day, 

and the number of available ORs and surgeons are fixed. Then, all planned 

surgeries will have been done during the surgical day. Also, we must consider 

that all the surgeries can be performed in any of the ORs and surgeries could 

be performed by any of the surgeons. In our case the surgical operation 

durations (pre-incision, incision and post-incision times) are also imprecise 

and have to be modelled as a random distribution. Finally, surgeons move 

between ORs performing surgeries until all are finished. 

Then, based on the principal ideas of global precedence (Méndez and 

Cerdá, 2003), we formulated a MILP model for the scheduling of multiple 

surgeries in homogeneous ORs with several available surgeons. This problem 

can be tackled as a generalized scheduling problem with multiple resources, 

as was presented in Capónet al. (2007). Other formulations have been 

developed previously for a similar problem by Batun et al. (2011) but they do 

not exploit the real strengths of precedence concepts (Méndez et al., 2006) and 

also take a priori decisions as surgeries are pre-assigned to surgeons. 

Thus, the main contribution of this work is the development of a tightened 

model in terms of integer and continuous variables that allow us to take into 

account all the features of this problem without considering predefined 

decisions. This model is formulated taking into account a single surgeon or 

multiple surgeons working in several ORs and can also consider different types 

of surgeries during a normal working day. Also, based on this model, a 

stochastic strategy and a decomposition approach were proposed to solve the 

problem considering the uncertainty in the duration of surgical operations. 

Finally, all these approaches were implemented in the AIMMS advanced 

modelling and optimization software widely used for industrial and 

educational applications. Therefore, we created a user-friendly interface for 

hospital managers, where they can easily configure the basic parameters and 

obtain a reliable solution in a short computational time.  

Daily Surgical Scheduling problem in Operating Theatres 

This work studies the scheduling problem of surgical cases arising in operating 

theatres. This problem assumes that multiple homogeneous ORs and surgeons 

are available to perform surgical activities, like pre-incision, incision and post-

incision operations. According to this, surgeries must be scheduled in order to 

minimize the total surgical cost formed by OR vacant cost, surgeon waiting 

cost and OR overtime (see Table 8.1). 
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Table 8.1: Hourly Cost. 

OR Vacant Cost Surgeon Waiting Cost OR Overtime Cost 

CV CW CO 

$1,209.60 $1,048.80 $806.40 

 

The set of planned surgeries to be scheduled is known in advance on the 

surgical day, the number of available ORs, and the surgeons are given. Thus, 

different types of surgeries (A-J) must be performed during the surgery time 

horizon defined by T between 4-12 hours. Each surgery type is characterized 

by its preparation time (TP), surgery time (TS) and cleaning time (TC). The 

complete set of data related to the preparation, surgery and cleaning times of 

different types of surgeries can be found in MOPTA 2013. Then, according to 

the number of surgeries to be performed, the type of surgeries and the time 

horizon, a set of problem instances are defined (see Table 8.2). 

Table 8.2: Sequencing Instances. 

Instance T (in hours) 
No. 

Surgeries 

Surgeries to be Sequenced (by Type) 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

1 4 4 A A C J        

2 4 5 A A G H J       

3 4 5 A D G G J       

4 8 6 A B F G G H      

5 8 7 C D F H J J J     

6 8 10 A A A C D G I J J J  

7 8 11 A A F F G H H I I J J 

8 12 7 A B D E G G J     

9 12 10 A A B D G G I I J J  

10 12 11 A A C E E F G H I I J 

 

General MILP Formulation 

In this section, we present a general MILP continuous time formulation for the 

daily surgical scheduling problem in operating theatres with the uncertainty in 

the surgery durations. This model takes into account the surgeries s, s’, of each 

type i, to be scheduled during a surgical day and also, considers the set of 

available surgeons and operating rooms denoted by k, k’ and r. The set of 

scenarios to be solved is presented by the w index. The following Table 8.3 

provides the full notation about sets, parameters and variables used by the 

model. 
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Table 8.3: Notation of sets, parameters and variables. 

Index Set 

𝑆 surgeries to be scheduled in a surgical day (𝑠, 𝑠′) 

𝐼 type of surgery (𝑖) 

𝐼𝑠 subset of surgeries s of type i(𝑖𝑠) 

𝐾 surgeons(𝑘, 𝑘′) 

𝑅 operation rooms (𝑟) 

𝑊 scenarios(𝑤) 

Parameters 

𝑇𝑃𝑖𝑤 preparation time of type of surgery i ∈ I in scenario w ∈𝑊 

𝑇𝑆𝑖𝑤  surgery time of type of surgery i ∈ I in scenario w ∈𝑊 

𝑇𝐶𝑖𝑤  clean-up time of type of surgery i ∈ I in scenario w ∈𝑊 

𝐶𝑉 cost per minute of having an OR vacant 

𝐶𝑊 cost per minute of having the surgeon waiting 

𝐶𝑂 cost per minute of using an OR beyond the normal shift length 

T normal shift length 

𝑀 large scalar value much more longer than the normal shift length 

Variables 

𝑥𝑠𝑟  binary variable, 1 if surgery s ∈ S is done in room r ∈R; 0 otherwise 

𝑦𝑠𝑠′𝑘 binary variable, 1 if s∈ S precedes s’∈ S in surgeon k ∈ K, 0 

otherwise  

𝑧𝑠𝑠′𝑘𝑘′ binary variable, 1 if s precedes s’∈ S  and it is done by different 

surgeon k and k’∈ K, 0 otherwise 

𝑞𝑠𝑘 binary variable, 1 if surgery s ∈ S is done by surgeon k ∈ K, 0 

otherwise 

𝑡𝑠𝑠𝑤  start time of the surgery s ∈ S in scenario w ∈ W 

𝑡𝑠𝑆𝑘𝑤  start time of the surgeon k ∈ K in scenario w ∈ W 

𝑚𝑠𝑅𝑟𝑤 makespan of room r ∈ R in scenario w ∈ W 

𝑚𝑠𝑆𝑘𝑤  makespan of surgeon k ∈ K in scenario w ∈ W 

𝑣𝑡𝑟𝑤 vacant time of room r ∈ R in scenario w ∈ W 

𝑜𝑡𝑟𝑤 overtime of room r ∈ R in scenario w ∈ W 

𝑤𝑡𝑘𝑤 waiting time of surgeon k∈ K in scenario w ∈ W  

𝑡𝑐 total surgical cost 

 

The principal aim of this MILP model is to minimize the expected total 

surgical cost represented by tc for a set of selected scenarios w. According to 

this, two sets of decision variables need to be evaluated. First, the assignment 

binary variable xsr that determines the allocation of surgery s in operation unit 

r while qsk provides information about if surgery s in done by surgeon k, both 

adopting value 1. And then, sequencing binary variables, using precedence-

based ideas are proposed to determine if surgery s is done after or before s’ by 

the same surgeon k or by different surgeons k,k’ by  yss’k or zss’kk’ respectively. 
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Note that all continuous variables associated to the start times of surgeries 

tssw and surgeons tsSkw, completion time of rooms msRrw and surgeons msSkw 

and operating times, such as operation room vacant time vtrw and overtime otrw, 

and surgeon waiting time wtkw, depends on w and so take a specific value for 

each scenario. 

The main equations of this model are explained as follows. Equation (1) 

represents the mean total surgical cost (tc), formed by the overtime cost, vacant 

time cost and waiting time cost to be minimized by the model for the 

considered scenarios W. Equation (2) shows that each surgery must be 

performed in only one OR r by xsr=1. Equation (3) ensures that each surgery 

is supported by a single surgeon k by adopting qsk=1. Sequencing and timing 

constraints in the same OR and also by the same surgeon are presented by 

equations (4-5) and equations (8-9) by using binary variables yss’k. Also binary 

variable zss’kk’ is introduced in order to consider the sequencing and timing 

decisions of surgeries performed by different surgeons but in the same OR, as 

shown in equations (6-7). Equation (10) defines the completion time of the 

operating rooms msRrw while equation (11) estimates the completion time by 

the surgeons msSkw. After that, equations (12-13), it is proposed to determine 

the initial time of each surgery tss wand surgeon tsSkw in the system, 

respectively. In addition, the overtime otrw, vacant time vtrw, and waiting time 

wtkw variables are calculated in equations (14-16) by using the information of 

the initial and the completion time of surgeries and surgeons in the system. 

 

𝑚𝑖𝑛. 𝑡𝑐 =
𝐶𝑂

||𝑊||
∑ 𝑜𝑡𝑟𝑤 +

𝐶𝑉

||𝑊||
∑ 𝑣𝑡𝑟𝑤𝑟𝑤 +

𝐶𝑊

||𝑊||
∑ 𝑤𝑡𝑘𝑤𝑘𝑤𝑟𝑤     (1) 

∑ 𝑥𝑠𝑟 = 1                            ∶  ∀𝑠 ∈ 𝑆𝑟       (2) 

∑ 𝑞𝑠𝑘 = 1   𝑘                          ∶ ∀𝑠 ∈ 𝑆       (3) 

𝑡𝑠𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 + 𝑇𝐶𝑖𝑠𝑤  ≤                                           𝑡𝑠𝑠′𝑤 − 𝑇𝑃𝑖
𝑠′𝑤 +  𝑀(1 − 𝑦𝑠𝑠′𝑘) + 𝑀(2 −

𝑥𝑠𝑟 − 𝑥𝑠′𝑟) + 𝑀(2 − 𝑞𝑠𝑘 − 𝑞𝑠′𝑘)   : ∀𝑠, 𝑠′, 𝑟, 𝑘, 𝑤| (𝑠′ < 𝑠)   (4) 

𝑡𝑠𝑠′𝑤 + 𝑇𝑆𝑖
𝑠′𝑤 + 𝑇𝐶𝑖

𝑠′𝑤 ≤ 𝑡𝑠𝑠𝑤 − 𝑇𝑃𝑖𝑠𝑤 + 𝑀(𝑦𝑠𝑠′𝑘) + 𝑀(2 − 𝑥𝑠𝑟 − 𝑥𝑠′𝑟) + 𝑀(2 − 𝑞𝑠𝑘 −

𝑞𝑠′𝑘)   : ∀𝑠, 𝑠′, 𝑟, 𝑘, 𝑤| (𝑠′ < 𝑠)      (5) 

𝑡𝑠𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 + 𝑇𝐶𝑖𝑠𝑤 ≤ 𝑡𝑠𝑠′𝑤 − 𝑇𝑃𝑖
𝑠′𝑤 + 𝑀(1 − 𝑧𝑠𝑠′𝑘𝑘′) + 𝑀(2 − 𝑥𝑠𝑟 − 𝑥𝑠′𝑟) + 𝑀(2 −

𝑞𝑠𝑘 − 𝑞𝑠′𝑘)          ∶ ∀𝑟, 𝑠, 𝑠′, 𝑘, 𝑘′| (𝑠′ < 𝑠), (𝑠′𝑘′) ∧ (𝑠𝑘)    (6) 

𝑡𝑠𝑠′𝑤 + 𝑇𝑆𝑖
𝑠′𝑤 + 𝑇𝐶𝑖

𝑠′𝑤 ≤ 𝑡𝑠𝑠𝑤 − 𝑇𝑃𝑖𝑠𝑤 + 𝑀(𝑧𝑠𝑠′𝑘𝑘′) + 𝑀(2 − 𝑥𝑠𝑟 − 𝑥𝑠′𝑟) + 𝑀(2 − 𝑞𝑠𝑘 −

𝑞𝑠′𝑘)  : ∀𝑟, 𝑠, 𝑠′, 𝑘, 𝑘′| (𝑠′ < 𝑠), (𝑠′𝑘′) ∧ (𝑠𝑘)    (7) 

𝑡𝑠𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 ≤ 𝑡𝑠𝑠′𝑤 + 𝑀(1 − 𝑦𝑠𝑠′) + +𝑀(2 − 𝑞𝑠𝑘 − 𝑞𝑠′𝑘) ∶ ∀𝑠, 𝑠′, 𝑘, 𝑤| (𝑠′ < 𝑠) 

          (8) 
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𝑡𝑠𝑠′𝑤 + 𝑇𝑆𝑖𝑠′𝑤 ≤ 𝑡𝑠𝑠′𝑤 + 𝑀(1 − 𝑦𝑠𝑠′) + 𝑀(2 − 𝑞𝑠𝑘 − 𝑞𝑠′𝑘) ∶ ∀𝑠, 𝑠′, 𝑘, 𝑤| (𝑠′ < 𝑠) 

          (9) 

𝑚𝑠𝑅𝑟𝑤 ≥ 𝑡𝑠𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 + 𝑇𝐶𝑖𝑠𝑤 − 𝑀(1 − 𝑥𝑠𝑟): ∀𝑠, 𝑟, 𝑤                    (10) 

𝑚𝑠𝑆𝑘𝑤 ≥ 𝑡𝑠𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 − 𝑀(1 − 𝑞𝑠𝑘) ∶ ∀𝑠, 𝑘, 𝑤               (11) 

𝑡𝑠𝑠𝑤 ≤ 𝑇𝑃𝑖𝑠𝑤  ∶ ∀𝑠, 𝑤                  (12) 

𝑡𝑠𝑆𝑘𝑤 ≤ 𝑡𝑠𝑠𝑤 + 𝑀(1 − 𝑞𝑠𝑘) ∶ ∀𝑠, 𝑘, 𝑤                (13) 

𝑜𝑡𝑟𝑤 ≥ 𝑚𝑠𝑅𝑟𝑤 − 𝑇  ∶ ∀𝑟, 𝑤                 (14) 

𝑣𝑡𝑟𝑤 ≥ 𝑚𝑠𝑅𝑟𝑤 − ∑ ((𝑇𝑃𝑖𝑠𝑤 + 𝑇𝑆𝑖𝑠𝑤 + 𝑇𝐶𝑖𝑠𝑤) × 𝑞𝑠𝑘)𝑠 ∶  ∀𝑟, 𝑤             (15) 

𝑤𝑡𝑘𝑤 ≥ 𝑚𝑠𝑆𝑘𝑤 − 𝑡𝑠𝑠𝑘𝑤 − ∑ (𝑇𝑆𝑖𝑠𝑤 × 𝑞𝑠𝑘)𝑠 ∶  ∀𝑘, 𝑤                (16) 

 

DETERMINISTIC PROBLEM 

In this section different approaches are tested using deterministic data for 

surgical activities. First, we present some heuristic approaches to obtain an 

initial solution of this problem by considering two operating rooms Ors (|r|=2) 

and a single surgeon (|k|=1) with the information of the average scenario 

(|w|=w). Then, we will compare the solutions of these heuristic approaches 

with the ones provided by the full-space MILP model presented above. 

Dispatching rules-based heuristic algorithms 

In this section, five dispatching rules are evaluated in order to provide the 

hospital manager with a fast and reliable solution to be implemented. These 

heuristics are inspired by Iser et al. (2008) and Souki (2011). The principal aim 

of these quick heuristics is to evaluate the solution of the system without using 

an optimization tool. The first four heuristics, in Algorithms 1-4, are based on 

a simple sorting criterion ordering the surgeries according to their preparation 

times (TP) and/or surgery times (TS). The heuristics have been named as 

“parameter to sort” / type of sorting (A for ascending or D for descending). 

Finally, we have developed a more accurate heuristic specially proposed for 

this problem structure. This heuristic named as “Ad-Hoc Heuristic” is 

described as follows in Algorithm 5. 

 

Algorithm 1: Heuristic TS/A  

Step 1: Surgeries I of the instance is ordered in ascending order of incision 

time 𝑇𝑆𝑖𝑤.  
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Step 2: The surgeon in which every surgery is realized is decided by taking 

into account the sequence previously obtained in the Step 1.  

 

Algorithm 2: Heuristic TS/D  

Step 1: Surgeries I of the instance is ordered in descending order of incision 

time 𝑇𝑆𝑖𝑤.  

Step 2: The surgeon in which every surgery is realized is decided by taking 

into account the sequence previously obtained in the Step 1.  

 

Algorithm 3: Heuristic (TS+TP)/A  

Step 1: Surgeries I of the instance is ordered in ascending order of the addition 

of the incision time 𝑇𝑆𝑖𝑤and the preparation time 𝑇𝑃𝑖𝑤.  

Step 2: The surgeon in which every surgery is realized is decided by taking 

into account the sequence previously obtained in the Step 1.  

 

Algorithm 4: Heuristic (TS-TP)/A  

Step 1: Surgeries I of the instance is ordered in ascending order of the 

subtraction of the incision time 𝑇𝑆𝑖𝑤minus the preparation time 𝑇𝑃𝑖𝑤.  

Step 2: The surgeon in which every surgery is realized is decided by taking 

into account the sequence previously obtained in the Step 1.  

 

Algorithm 5: Ad Hoc Heuristic 

Create two ascending ordered lists using the 𝑇𝑆𝑖𝑤and 𝑇𝑃𝑖𝑤 

repeat 

 in the first OR, the surgery with the longest 𝑇𝑆𝑖𝑤is selected 

 if the surgery has been sequenced before, then 

  it is eliminated from the 𝑇𝑆𝑖𝑤list.  

 else 

  the surgery is assigned and eliminated from the 𝑇𝑆𝑖𝑤list 

 end if  

 in the second OR, the surgery with the longest 𝑇𝑃𝑖𝑤 that has not been 

 sequenced is assigned and that surgery is eliminated from the list 

 if the surgery has been sequenced before, then 
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  it is eliminated from the 𝑇𝑃𝑖𝑤list  

 else 

  the surgery is assigned and eliminated from the 𝑇𝑃𝑖𝑤list  

 end if  

until no more than one surgery is left in the lists 

if both lists are empty then 

 finish 

else 

 this surgery is assigned in the OR which will be available first 

end if  

finish 

 

Results 

The heuristics and the MILP model presented above were modelled using 

AIMMS 3.13 (Bisschop and Roelofs, 2011). The solver used was Gurobi 5.0 

Optimization (2012) in a PC with Intel Core i3-2350M 2.30 GHz with 6 Gb 

RAM under Windows 7. The termination criterion was imposed in 3600 sec. 

in order to provide good-quality results in reasonable CPU time for the hospital 

manager. 

Solutions obtained in Table 4, demonstrate that in all instances our model 

solves up to optimality in only a few seconds or minutes. For eight of the ten 

cases analysed the CPU time was less than 1 minute and only for the most 

complex instances (7 and 10) our model takes more time (3 min. and 6 min.). 

Model size is reported in this table by the number of variables and constraints 

while the complexity of the solution is demonstrated by the number of nodes 

and iterations explored. The performance of the model is measured by the 

relative gap between the initial and final solution and also by the CPU time 

consumed. The initial solution was reported in all cases in less than 5 seconds. 

And the relative gap between the initial and final solution was less than 7.0 

percent for all cases analysed. 
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Table 8.4: Results of the deterministic problem using (2R,1k). 

Instan

ce 

Total 

Cost 

CPU 

Time 

Binary 

Var 

Cont. 

Var 

Equat

ions 
Nodes Iterations 

Initial 

sol 

1 480 0.02 14 34 68 193 893 480 

2 449 0.03 20 41 98 524 2123 449 

3 261 0.03 20 41 98 493 2238 261 

4 630 0.06 27 49 134 2378 8845 630 

5 943 3.61 35 58 176 98451 376165 943 

6 2,165 17.65 65 91 338 547572 2162232 2,299 

7 6,186 82.3 77 104 404 2688876 10712959 6,583 

8 983 0.87 35 58 176 21767 90654 983 

9 1,915 18.34 65 91 338 466586 2098862 2,007 

10 4,363 359.2 77 104 404 11043003 44030805 4,701 

 

Our formulation provides a reduced number of binary sequencing variables 

in comparison to other MILP formulations reported in the literature up to now, 

e.g., Batun et al., (2011). Our model is much more tightened due to the fact 

that it associates a single general precedence variable to the surgeon when in 

other formulations the sequencing variables are proposed for each OR using 

the concepts of unit-specific precedence-based representation. So, the number 

of sequencing variables grows with the number of ORs and the number of ORs 

is always greater than or equal to the number of surgeons. In addition, the unit-

specific precedence formulation has to consider all the combinations between 

two different surgeries s,s’ where s≠s’ and the number of alternative 

sequencing decisions for each OR should be |S|*|S|-1. In our model, the 

number of sequencing decisions for each surgeon is reduced by half. 

Figure 8.2 shows the model behaviour for the most complex instance 10 

(2R,1k) of the deterministic problem, drawing the lower bound and the upper 

bound solutions over time. As we can see in Figure 1, the lower bound was 

initialized at zero. This is a critical point in the solution performance since our 

model was able to find good-quality initial feasible results in only a few 

seconds but required a lot of time to assure the optimality of the solution found. 

Then based on the behaviour of our model, we were able to offer optimal 

solutions within a few minutes, or if the instance is small or there is not enough 
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time, you can select an upper time limit. A detailed schedule and costs of this 

particular instance 10 using (2R, 1K) is reported in Figure 8.3. 

 

 

Figure 8.2: Solution behaviour of the MILP for instance 10 using (2R, 1k). 

 

 

Figure 8.3: Solution Schedule of instance 10 using (2R,1k). 

 

Table 8.5 shows the results of the heuristics by using the mean scenario. 

Both, “Heuristic TS/A” and “Heuristic (TS+TP)/A”, present better solutions 

than the others (“Heuristic TS/D” and “Heuristic (TS-TP)/A”) while our “Ad-

Hoc Heuristic” provides the best result for each instance. Despite this, the 

solutions reported by heuristics are still far from the optimal ones obtained for 

each particular problem instance (see Table 5). In conclusion, heuristic 

methods based on a simple sorting criterion have poor performance but are fast 

and can be implemented even by hand.  
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Table 8.5. Result comparison for problem (2R,1k). 

Instance TS/A TS/D (TS+TP)/A (TS-TP)/A Ad Hoc MILP 

1 2,222 3,710 2,222 3,028 1,569 480 

2 3,236 3,538 3,236 4,095 1,098 449 

3 4,116 3,836 4,116 4,348 1,059 261 

4 5,408 7,531 5,440 5,432 2,359 630 

5 6,456 6,853 6,456 5,772 1,470 943 

6 9,759 14,440 9,759 15,391 9,362 2,165 

7 16,832 18,303 16,760 19,654 9,018 6,186 

8 8,615 10,168 8,615 9,302 3,362 983 

9 10,918 11,870 10,918 13,866 2,495 1,915 

10 18,730 20,809 17,877 20,484 7,930 4,363 

 

Our MILP model could be used to address multiple surgeons and ORs 

simultaneously but in this work we only present the case of a single surgeon 

and multiple OR problems. 

STOCHASTIC PROBLEM 

In this section we will study the problem in which the duration of surgical 

activities, closely linked to the type of surgery, is uncertain. All the input data 

provided by MOPTA 2013 Competition represents historical information 

which is assumed to be independent and can be modelled by a standard 

probabilistic distribution with its own parameters. So, no correlations exist 

among the duration of the pre-incision, the incision, and the post-incision times 

for each surgery type. According to this, a good solution for a stochastic model 

will be the one that minimizes the expected total cost for all scenarios together. 

Other approaches that consider only a certain type of cost or use the most likely 

scenario for the evaluation can be easily implemented. 

An extra index for the w scenarios is considered by the MILP model in this 

problem. Here, binary variables do not depend on w assuring the same 

sequencing and assignment decisions for all the scenarios evaluated. Only the 

timing decisions of surgical activities differ in each scenario. The model is 

solved considering two operating rooms ORs (|r|=2) and a single surgeon 

(|k|=1) minimizing the expected value of the total cost assuming that all 

proposed scenarios (|w|=100) have the same probability of occurrence. 
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Scenario reduction 

In stochastic programming the number of scenarios plays a key role in 

obtaining a reliable solution. For this problem we emulate 100 scenarios using 

Monte Carlo simulation. We assume that the use of the entire set of 100 

scenarios gives us the “Optimal value”. Then, a suitable reduction of scenarios 

decreases the solution time but increases the result error. This error will be 

calculated with the following expression according to the best solution found. 

 

𝑅𝑒𝑠𝑢𝑙𝑡 𝐸𝑟𝑟𝑜𝑟 =
𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒
∗ 100 

 

On the other hand, exploring all the scenarios increases the solution time in 

some cases beyond the threshold. Only the first five instances will be evaluated 

with the MILP model since it can be solved up to optimality (see Table 6). 

Figure 8.4 shows the percentage of error between the values obtained using 

a specific number of scenarios from 0-100. When the number of scenarios is 

below 20, the error in some cases is above 30%. Then, the error decreases 

gradually with the number of scenarios. After analysing that, we conclude that 

in over 50 scenarios the error remains under 10%, it being unnecessary to 

consider many more numbers of scenarios for the resolution of the stochastic 

problem. 

 

 

Figure 8.4: Analysis of Error vs. Number of scenarios. 

 

Decomposition approach: Constructive-Improvement methods 

The MILP-based decomposition approach was developed “ad-hoc” for the 

specific structure and features of this problem. The constructive-improvement 
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methods were proposed using MILP models, as the one presented above, 

taking the advantages of General-Precedence (GP) concepts and also the 

strengths of exchanging information between them. This iterative solution 

allows decomposing the problem into small sub-problems that can be solved 

separately, in a sequential way, consuming moderate computational effort. 

Each algorithm consists of five sequential steps: initialization, selection 

procedure, setting binary variables, model resolution and updating parameters.  

In the constructive algorithm, a reduced MILP model is solved in each 

iteration obtaining an aggregated schedule with minimum Mean Total Cost (z). 

When all surgeries are inserted into the system, this phase finishes reporting 

an Initial Solution (see Algorithm 6). 

Then, starting from this solution, the improvement algorithm determines 

the surgeries to be released per iteration by choosing the first N consecutive 

surgeries on the Surgery List. Released surgeries are re-scheduled in the 

system by optimizing 𝑞𝑠𝑘,  𝑥𝑠𝑟 , 𝑦𝑠𝑠′𝑘 , 𝑧𝑠𝑠′𝑘𝑘′ while binary variables of non-

released surgeries remain fixed. After solving, the result of the MILP model is 

compared with the Best solution obtained up to this iteration. The Best solution 

is reported and its schedule is updated. This improvement phase finishes when 

no released surgery can enhance the best solution found (see Algorithm 7). 

 

Algorithm 6: Constructive Method 

Step 1: Initialize parameters iter, N and variables 𝑡𝑠𝑠𝑤 , 𝑞𝑠𝑘, 𝑥𝑠𝑟 , 𝑦𝑠𝑠′𝑘 , 𝑧𝑠𝑠′𝑘𝑘′ 

Step 2: Select N consecutive surgeries to be scheduled in each iteration iter by 

following their lexicographic order from the Surgery List (𝑠1, 𝑠2, … , 𝑠𝑠) 

Step 3: Set fixed all binary variables 𝑞𝑠𝑘 , 𝑥𝑠𝑟 , 𝑦𝑠𝑠′𝑘 , 𝑧𝑠𝑠′𝑘𝑘′ of inserted 

surgeries. 

Step 4: Solve the MILP model for selected surgeries and optimize tss,w 

variables of all inserted surgeries. 

Step 5: Update parameters and report aggregate schedule. (Back to Step 2) 

 

Algorithm 7: Improvement Method 

Step 1: Initialize parameters iter, N and start from the initial solution found 

(Schedule list). 

Step 2: Select N consecutive surgeries to be re-scheduled in each iteration iter 

by following their lexicographic order from the Surgery List (𝑠1, 𝑠2, … , 𝑠𝑠). 
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Step 3: Set fixed all binary variables 𝑞𝑠𝑘 , 𝑥𝑠𝑟 , 𝑦𝑠𝑠′𝑘 , 𝑧𝑠𝑠′𝑘𝑘′of non-released 

surgeries. 

Step 4: Solve the MILP model for released surgeries and optimize tss,w 

variables of all inserted surgeries. 

Step 5: Update parameters and report improvement schedule (Back to Step 2). 

 

The solution obtained by the “ad-hoc” decomposition approach can be also 

enhanced by exploiting the strength of the proposed General Precedence MILP 

formulation, releasing and optimizing a greater number of binary variables of 

non-released surgeries per iteration. According to this, we can play with the 

assignment variables improving the model behaviour without 

significantly increasing the number of released variables. 

Finally, in both constructive and improvement methods we have decided to 

use a lexicographic order for the selection procedure since incorporating 

randomness makes the reproducibility of the results impossible. The analysis 

of different selection rules to improve the solution performance of the 

algorithm needs to be studied in detail in future works. The algorithm ends 

when no other released surgery could improve the best solution found or after 

3600 sec. of CPU time. We adopt this termination criterion in order to make a 

fair comparison with the full-space MILP model presented above.  

 

Results 

Increasing the number of scenarios will improve the quality of the solution at 

the expense of the experiment lasting longer. The solution for the 100 

scenarios is presented in Table 8.7 considering all scenarios together and the 

solution for the mean case using the average scenario. Here, it can be seen that 

the relative difference between the full case and the mean case is very high. 

According to this, using the full case is much better than using the mean case. 

Table 8.8 shows the principal results and analysis among stochastic, 

constructive and improvement methods. For the first 4 instances analysed, both 

stochastic and decomposition methods provide optimal solutions in a short 

CPU time (< 5min). But, for the biggest instances 5 to 10, the stochastic model 

could not ensure optimal results in 1 hour of CPU time. According to this, the 

decomposition approach (constructive method + improvement method) 

emerges as an efficient solution tool for solving large scale problems with 

reasonable computational effort. 
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Table 8.7: Result of the stochastic problem using 100 scenarios. 

Inst

ance 

Total 

Cost 

CPU 

Time 

Bin 

Var 

Cont 

Var 
Eqs. Nodes Iterations 

Mean 

Cost 
Diff 

CPU 

Time 

1 676 27 18 1319 6109 171 40730 739 9.3 1.5 

2 1173 36 25 1426 9011 3002 461512 1220 4.1 4.2 

3 1613 37 25 1426 9011 1912 322763 1612 0 2.9 

4 1670 354 33 1534 12513 5201 881252 2046 22.5 6.7 

5 2045 3600 42 1643 16615 160652 29823967 2299 12.5 12.7 

6 45326 3600 75 1976 32521 53526 17994882 5364 22.5 47.6 

7 10465 3600 88 2089 39023 46982 14530619 10084 7.8 132 

8 2512 3600 42 1643 16615 33409 4708673 2921 16.3 9.3 

9 5511 3600 75 1976 32521 83891 20361739 5238 2.5 43.3 

10 10406 3600 88 2089 39023 37142 15621953 9549 10.1 411 

 

Thus, our constructive algorithm was able to provide initial good-quality 

solutions for all these cases in less than 5 min. For the biggest instances, in 

some cases the constructive algorithm obtains a better solution in 5 minutes 

than the stochastic result in one hour. 

The improvement method increases the quality of the solution in less than 

half an hour. In almost all cases the decomposition approach obtains the same 

or a best solution in half the time of the stochastic method and an average 

improvement of 3.22%. 

Table 8.8: Comparative using Constructive Method N=1, Improvement Method N=1. 

 
Stochastic 

Model 
Constructive Method Improvement Method Total 

Instan

ce 

Total 

Cost 

CPU 

Time 

Total 

Cost 

CPU 

Time 

%  

Imp 

Total 

Cost 

CPU 

Time 

%  

Imp 

%  

Imp 

1 676 27 676 5 0 676 24 0 0 

2 1173 36 1173 17 0 1173 52 0 0 

3 1613 37 1613 15 0 1613 77 0 0 

4 1670 354 1671 29 0 1670 85 0 0 

5 2045 3600 2135 51 -4.36 2135 126 0 -4.36 

6 4532 3600 4979 192 -9.87 4419 1856 12.32 2.50 

7 10465 3600 9659 277 7.71 9089 2049 5.44 13.15 

8 2512 3600 2512 48 0 2512 121 0 0 

9 5511 3600 4939 156 3.36 4939 1324 0 3.36 

10 10405 3600 
8704.

83 
281 16.34 8580 1500 1.20 17.55 

Mean 4060 2205  107.1 1.32  721.4 1.90 3.22 

 

The parameter N plays a key role in these algorithms. In the constructive 

algorithm, it is the number of surgeries inserted at each iteration while in the 
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improvement algorithm it represents the number of release surgeries to be re-

scheduled. A small number of N narrows the search space with the possibility 

of eliminating the global optimal but decreasing CPU time. 

Table 8.9 shows the results of giving more degrees of freedom to the 

algorithm by inserting and releasing two surgeries instead of one in both the 

constructive and improvement steps. The constructive method improves the 

results for only two of the ten instances analysed, since it has more flexibility 

to construct a better solution, but regrettably, it takes much more time to solve 

the problem. For the improvement part, when N=2, the algorithm takes much 

more time and no significant improvement can be seen after 3600 sec. 

Table 8.9: Comparative using Constructive Method N=2, Improvement Method N=2. 

 
Stochastic 

Model 
Constructive Method Improvement Method Total 

Instance 
Total 

Cost 

CPU 

Time 

Total 

Cost 

CPU 

Time 

% 

Imp 

Total 

Cost 

CPU 

Time 

% 

Imp 

% 

Imp 

1 676 27 676 9 0 676 24 0 0 

2 1173 36 1173 34 0 1173 112 0 0 

3 1613 37 1613 31 0 1613 130 0 0 

4 1670 354 1671 63 0 1670 153 0 0 

5 2045 3600 2135 121 -4.36 2135 375 0 -4.36 

6 4532 3600 4480 658 1.13 4381 3600 2.22 3.32 

7 10465 3600 9574 1174 8.52 9574 3600 0 8.52 

8 2512 3600 2512 116 0 2512 383 0 0 

9 5111 3600 4939 598 3.36 4939 2780 0 3.36 

10 10405 3600 8705 1223 16.34 8580 3600 1.44 17.55 

Mean 4020 2205 3748 402.7 2.50 3725 1475.7 0.36 2.83 

 

Table 8.10 presents the experimentation of the constructive phase, N=2, 

and the improvement phase, N=1. The constructive phase obtained better 

results, but took a longer time since more possibilities are being evaluated at 

each iteration. The improvement phase makes some improvements to the 

results of the other options using some extra time. 

More experimentation was done using N > 2, but the performance was poor. 

The time stop criterion was applied for the majority of the instances with 

almost no improvement. As N became the Total number of surgeries, the 

problem transformed into the stochastic model, which had to be solved several 

times, offering poor performance. As was discussed, small values of N should 

be used. 
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Table 8.10: Comparative using Constructive Method N=2, Improvement Method N=1. 

 Stochastic Model Constructive Method Improvement Method Total 

Instan

ce 

Total 

Cost 

CPU 

Time 

Total 

Cost 

CPU 

Time 

% 

Imp 

Mean 

Total 

Cost 

CPU 

Time 

% 

Imp 

% 

Imp 

1 676 27 676 9 0 676 36 0 0 

2 1173 36 1173 34 0 1173 61 0 0 

3 1613 37 1613 31 0 16138 162 0 0 

4 1670 354 1671 63 0 1670 88 0 0 

5 2045 3600 2135 121 -4.36 2135 1200 0 -4.36 

6 4532 3600 4480 658 1.13 4381 2891 2.2 3.32 

7 10466 3600 9574 1174 8.52 9089 3600 5.06 13.15 

8 2512 3600 2512 116 0 2512 176 0 0 

9 5111 3600 4939 598 3.36 4939 743 0 3.36 

10 10406 3600 8705 1223 16.34 8580 1476 1.4 17.55 

Mean 4020 2205 3748 403 2.50 3711 1043 0.88 3.30 

 

As a conclusion, our decomposition method, by using only the constructive 

phase, was able to provide even better results than the stochastic model for 

large problem instances with a significant reduction in CPU time. Also, our 

algorithm was able to solve these problems using many more scenarios without 

any significant decrement in the efficiency of the solution found. Finally, 

possible enhancements can be tested in the algorithm by using different NxN 

parameters and selection rules according to the case study analysed. 

CONCLUSION 

This work presents the main contributions and results obtained for the daily 

scheduling problem of surgical cases in operating theatres under uncertainty. 

An efficient and also tightened MILP model was developed taking into 

account all the features of this challenge problem. In addition, stochastic 

strategies were implemented in order to deal with the uncertainty in surgery 

durations. Results show that our MILP-based model represents an efficient 

solution approach for solving deterministic cases, in which timing information 

is known, providing optimal results in short computational time (< 5min). 

Also, in stochastic cases, when the prior information is unknown, our 

stochastic model provides good-quality results but does not assure optimality 

in a time limit imposed of 1 hour for the largest cases.  

In order to improve the solution found and also reduce the CPU time 

consumed by the stochastic model, a decomposition approach based on 

constructive and improvement methods was developed. This approach allows 
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decomposing the problem and finding an initial good-quality result in less than 

5 minutes even for the most complex case in comparison with the full-space 

stochastic model. Then, an improvement method was applied to enhance the 

solution by 3.22% (on avg.) in less than 3600 seconds. For example, for the 

most complex case, our approach was able to improve the solution reported by 

the full-space model by more than 17% using only 1500 sec. which is quite 

acceptable for this offline solution purpose.  

All these solution strategies were implemented in AIMMS® using the 

principal strength of this modelling and optimization based software. Thus, an 

end user application was developed with a friendly interface for the hospital 

manager to introduce and remove data and solve deterministic and stochastic 

cases without needing any previous information about the result of the 

problem. 

The feedback received from surgeons about the tool was useful to simplify 

our tool, since the majority of them do not understand operational research 

terminology, and they want a user-friendly tool with their own terminology 

that offers reliable and quick results. Unfortunately, many of the surgical 

scheduling operations in public hospitals are done by hand, which represents 

a lack between data and IT systems. This becomes a challenging opportunity 

for our application to be implemented at any hospital, reducing total surgical 

costs and at the same time improving resource utilization. 

As a conclusion, we can realize now how much money hospitals are loosing 

by not using the proper scheduling system. If we compare with traditional 

heuristic rules, the ones probably used in real life, our MILP model could 

provide a total saving of between 25-75%. 

In the stochastic problem, the difference between using a decomposition 

method against the traditional full-space method gives savings of 5% on 

average for the largest instances analysed and reduces CPU time by more than 

50%. Using these kinds of tools represents a high reduction in total surgical 

cost and its utilization is really important to everyday scheduling. The specific 

requirements of the hospital manager will be added in a future step so as to 

represent real life conditions more accurately. 
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Chapter 9: Operation Rooms Optimization in a Teaching 

Hospital 

MOTIVATION 

An interesting application of operating room scheduling can be found in 

Spanish hospitals, which provide an an interesting study case since the 

country’s population is markedly older than most nations in Europe: 17.5% of 

the Spanish population is 65 years old, and the median age is 42.6 years (CIA, 

2014). Spain has one of the highest life expectancies in the European Union, 

where the average is 81.8 years; at 84.7 years, the country also has the highest 

female life expectancy in Europe. The implication of this aging population is 

that more elderly patients will need to undergo surgery and have to be placed 

on a surgery waiting list. 

The Spanish health-care system is both public and private: according to the 

last report in 2013 there are 452 public hospitals and 311 private hospitals. The 

system incorporates 4,201 ORs for the country’s around 47 million 

inhabitants. Every year, 24,342 surgeons perform 4.74 million operations 

(1,129 surgeries per OR per year) (SGISEI, 2013). 

The last official Spanish statistics from 2013 state that there are 20,721 

residents doctors, from which 5,698 are working and studying to become 

surgical specialists in Spanish hospitals, and many of them perform surgeries 

every day (SGISEI, 2013). 

These resident doctors are trained in teaching hospitals, which beside their 

normal task need to assure that these future surgeons have performed enough 

surgeries to be in charge of the health care system of the future years. This 

objective is contrary to other performance indicators, since resident doctors 

require more time to perform a surgery than an experienced surgeon, thereby 

causing more delays to the already saturated public health system. In this 

example more players such as residents, and heads of teaching are added to the 

decision units. 

This chapter examines the daily surgical scheduling problem in a teaching 

hospital. This problem relates to the use of multiple operating rooms and 

different types of surgeons in a typical surgical day with deterministic 

operation durations (preincision, incision, and postincision times). Teaching 

hospitals play a key role in the health-care system; however, existing models 

assume that the duration of surgery is independent of the surgeon’s skills. This 

problem has not been properly addressed in other studies. We analyse the case 
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of a Spanish public hospital, in which continuous pressures and budgeting 

reductions entail the most efficient use of resources. 

To obtain an optimal solution to this problem, we developed a mixed-

integer programming model and user-friendly interface that facilitates the 

scheduling of planned operations for the following surgical day. We also 

implemented a simulation model to assist the evaluation of different 

dispatching policies for surgeries and surgeons. The typical aspects we took 

into account were the type of surgeon, potential overtime, idling time of 

surgeons, and the use of operating rooms. 

It is necessary to consider the expertise of a given surgeon when 

formulating a schedule: such skill can decrease the probability of delays that 

might affect subsequent surgeries or cause cancellation of the final surgery. 

We obtained optimal solutions for a set of given instances, which we obtained 

through surgical information related to acceptable times collected from a 

Spanish public hospital. 

We developed a computer-aided framework with a user-friendly interface 

for use by a surgical manager that presents a 3-D simulation of the problem. 

Additionally, we obtained an efficient formulation for this complex problem. 

However, the spread of this kind of operational research in Spanish public 

health hospitals will take a long time since there is a lack of knowledge of the 

beneficial techniques and possibilities that operational research can offer for 

the health-care system 

 

BACKGROUND 

Teaching hospitals play a key role in the majority of health-care systems as 

these institutions provide medical attention to the community and train future 

health professionals. Several studies have identified operating rooms (ORs) as 

a hospital’s largest cost area (Macario et al., 1995, Fei et al., 2009). Optimizing 

ORs is difficult since many constraints need to be considered, and solving this 

issue within a reasonable time is difficult (Meskens et al., 2012). 

Improvements made in the scheduling of an OR lead to enhanced cost 

efficiency and better patient service (Gupta and Denton, 2008). 

In this situation, the objective is to determine the optimal assignment of 

ORs and surgeons to each operation on a daily basis; consequently, it is 

necessary to find the best sequence of operations for each surgeon with the 

goal of minimizing the total surgical cost resulting from an OR’s underuse or 

overuse and from surgeons’ waiting times. Here, we will assume that a set of 
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surgeries is known 24 hours in advance of the operations and that the number 

of available ORs and surgeons is also known. All the planned operations have 

to be performed on the surgical day. The tasks that have to be performed in the 

surgery are divided into the following: 

 TP: preparation time (preincision), 

 TS: surgery time (incision), and 

 TC: clean-up time (postincision). 

The OR staff has to support a surgery during the preparation, the operation 

itself, and in the clean-up. However, surgeons are required to be present only 

during the operation itself until the completion of the incision. Thus, surgeons 

can perform an operation in a different OR immediately after finishing the 

previous surgery. One example of this type of decision-making process is 

found in a Teaching hospital in Toledo, where we started describing the actual 

decision-making process and then a computer aided decision would be 

introduced. 

Conventional decision-making process 

This description of the conventional decision-making process is based on 

interviews conducted at a teaching hospital in Toledo, Spain. After a 

negotiation among the head of physicians and the head of the different medical 

sections, ORs are assigned to each section. 

For example, two ORs may be available for urology from Monday to 

Friday, though an additional OR is available on Wednesday. Despite most of 

its ORs being able to handle all medical services, in order to avoid unnecessary 

changes of specific instruments required for particular medical services, the 

medical services use the same ORs on a weekly basis. 

Every day the service head decides which patients on the waiting list will 

undergo surgery and in what order and which surgeons will perform the 

operations. At the Toledo hospital, the head of each medical service takes this 

difficult decision by hand. Finally, a secretary puts all these details into the 

hospital’s computer system and the information is sent to the hospital’s 

reception office so that all the necessary procedures and preparations for 

surgery may begin. If for any reason, the patient is unable to undergo the 

operation, it has to be rescheduled. 
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Teaching hospitals 

Health care systems rely on teaching hospitals to train future health 

professionals, conduct medical research, fulfil part of the patient-care needs, 

and sometimes offer services not available in other facilities (AHA, 2009). 

Various studies have found that resident doctors take longer to perform a 

surgical operation than experienced doctors. Becoming a properly trained 

surgeon requires resident doctors to work and study for 4–5 years, depending 

on their intended medical specialty, and during this time they carry out 

different types of surgery. The scheduling of surgery being performed in 

teaching hospitals has not been properly addressed in the literature (Bridges 

and Diamond, 1999). 

Two typical differences between a normal hospital and a teaching hospital 

is that in a normal hospital the surgery is pre-assigned to a surgeon according 

to some decision criteria such as the one that diagnoses the problem or the one 

chosen by the patients. Then, it is just necessary to coordinate the use of the 

operating rooms. The second main difference is that the surgery duration 

depends on the surgical team assigned and added to this is the decision to 

evaluate which surgeon it is better to assign to each surgery and where to 

perform the surgery. 

A teaching hospital may be considered as a particular case of a normal 

hospital where the different resources (surgeons) may take different times, 

according to their experience, and there is no pre-assignment of surgeons to 

surgeries. 

Some normal hospital algorithms have to make some assumption and 

preassign surgeries to surgeons to deal with teaching hospital problems. An 

example of this is Fei et al. (2010) that pre-assigns the surgical case to be 

treated for different surgeons (or, more generally, surgery groups) and the 

duration of the surgery is independent of the surgeon. Jebali et al., (2006) allow 

the model to assign a surgeon to perform an operation but do not make any 

distinction between surgeons. Other algorithms like Kharraja et al., (2006) 

define a block scheduling where each surgeon requests a block of time to 

perform surgeries. 

Literature review 

A literature review can make different classifications according to patient 

characteristics (elective or non-elective), performance measures, decision 

delineation (date, time, room, or capacity), research methodology, and 

considerations of uncertainty and applicability (Cardoen et al., 2010). The 
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schedule for ORs is usually done in an intuitive manner by the OR actors, thus, 

introducing optimization techniques will require a cultural change because it 

may restrict the authority of some of those individuals (Jebali et al., 2006). 

Many studies have addressed different aspects of the topic of optimization 

techniques from various points of view with regard to the decision-making 

process in OR scheduling. There are different classifications of the problems 

in this area. One of the most important issues is decision delineation. No 

agreement has been reached about classifying the decisions made regarding 

surgery and its scheduling. Since the boundaries are unclear, various papers 

have addressed different parts of the decision-making process (Cayirli and 

Veral, 2003). 

A literature review conducted by Guerreiro and Guido (2011) made an 

interesting classification of hierarchical decision levels. Strategic is when OR 

times are assigned among different surgical services. This is also known as the 

“case mix planning problem”. Tactical involves the development of a master 

surgical schedule (MSS). An MSS is a schedule that defines the number and 

type of available ORs. There is also the operational type, which is concerned 

with the scheduling of elective patients on a daily basis after an MSS has been 

developed. 

The strategic level of decision-making is generally performed following 

annual negotiations between the hospital manager and the head of surgical 

services. This part of the decision-making process is beyond the scope of the 

present study. Accordingly, in terms of the hierarchical decision-level 

classification, this study tackles a combination of tactical and operational 

problems. 

Another important literature review—one by Cardoen et al. (2010) —

deliberately avoids these classification levels since they lack clear definitions. 

Cardoen et al. (2010) suggest creating a classification according to the type 

(date, time, room, and capacity) and level (discipline, surgeon, and patient) of 

decision being made. The type of decision in question could be the assignment 

date on which surgery will be performed, the time indications, the operating 

surgeon, the OR, and the allocation capacity. In this study, we will take all 

these elements into consideration—except the date. 

With an open scheduling strategy, surgeons submit a request for OR time, 

and a detailed schedule is generated prior to the day of surgery. This procedure 

is common, for example, in neurosurgical operations, where the patient list is 

known only 24 hours before the day of surgery. This flexible scheme avoids 

unfilled blocks in the working day (Denton et al., 2007). In the present study, 

we will focus on the deterministic daily scheduling problem in ORs under an 

open scheduling strategy. 
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The performance measures examined in the literature are the following: 

waiting time (patient, surgeon, and throughput); utilization, under-

utilization/undertime (OR, ward, and intensive care unit); over-utilization or 

overtime (OR and ward); general (OR and ward); levelling (OR, ward, post 

anaesthesia care unit, holding area, and patient volume); makespan; patient 

deferral; financial measurements; and surgeons’ preference (Cardoen et al., 

2009). 

The aim of the present study was to develop a generic deterministic model 

for dealing with the daily scheduling of a set of surgeries in a teaching hospital 

in a reasonable time. The surgeries can be performed in a given number of ORs 

by different types of surgeons. We consider most of the problems encountered 

in the OR’s daily operations. We evaluated the proposed approach using real 

data from a Spanish hospital, a friendly and efficient computer-aided tool and 

a simulation software. 

METHODS 

Operational research techniques have helped health-care managers optimize 

their operations. We will address this issue using a mixed-integer 

programming model (MILP) and a user-friendly interface; these will allow the 

scheduling for surgeries planned the following day. Additionally, we will 

implement a simulation model to facilitate the evaluation of different 

dispatching policies related to surgical operations and surgeons. A MILP 

solution has previously been developed for a similar problem (Batun et al., 

2011); however, that did not exploit the real strength of general-precedence 

concepts and did not preassignan operations to a surgeon or use different types 

of surgeons. 

The MILP model was created using AIMMS 3.14 (Bisschop and Roelofs, 

2011) and was solved with the standard solver Gurobi Optimization 5.5; it was 

simulated with Enterprise Dynamics 8.01 by In control. As noted above, the 

model presented is a generic one as applied to one Spanish teaching hospital. 

In the remainder of this chapter, we present a 3D simulation of the different 

dispatching policies, which will be followed by the MILP formulation. 

Objective function 

Some studies have found that OR performance measures, such as utilization, 

overtime, and on-time performance, may be used as achievable targets at most 

hospitals (CAB, 2001). Denton and Gupta (2013) highlight how, despite the 

tightness of surgical schedules, it is possible to achieve a balance among the 
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three competing criteria of surgeon waiting, OR staff idling, and overtime 

costs. The objective function minimizes the sum of these three costs. 

 Surgeon waiting cost. Since the surgeon is a very expensive 

resource, decreasing the surgeon’s waiting time has been the subject 

of many papers (Denton et al., 2007, Denton and Gupta, 2003, 

Gupta, 2007, and Lebowitz, 2003). This factor has to take into 

consideration the minimum waiting time a surgeon needs between 

operations (Pause Time). 

 OR waiting cost (under-utilization). OR idling is the direct cost 

associated with having an OR vacant, with no surgical activity being 

performed (Cardoen et al., 2010, Lebowitz, 2003, Dexter, 2003, 

Dexter and Traub, 2002, Ozkarahan, 2000, Fei et al., 2008, and 

Adan and Vissers, 2002). 

 Overtime cost. Late starts result in direct costs associated with 

overtime staffing when the surgery finishes later than the end of the 

appropriate shift (Kharraja et al., 2006, Denton et al., 2007. Gupta, 

2007, Fei et al., 2008 and Adan and Visser 2002. 

The OR staff works in a normal shift of 7 hours (T = 420 minutes). 

Accordingly, overtime needs to be considered if the OR staff has to work 

beyond the normal shift length, T. For simplicity, all the patients are ready to 

start the surgical procedure when the OR is ready. Three main costs are taken 

into account (see Table 9.1): (a) the cost per hour of OR idling time (vacant 

time cost); (b) the cost per hour of OR overtime (overtime cost); and (c) the 

cost per hour of surgeon waiting time (waiting time cost). 

 

Table 9.1: Estimated hourly cost. 

OR vacant cost Surgeons’ waiting cost OR overtime cost 

CV CW CO 

€ 900 € 700 € 1500 

 

Assumptions 

We assume that a set of ORs and surgeons are available each day. 

Additionally, we stipulate that only surgeon 1 in OR 1 can perform surgery D, 

which is an extremely complex operation, and that surgery A should be 

performed by a resident (surgeon k = 2). The remaining surgeries can be 
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performed in any OR by any surgeon. The ORs can operate in parallel. Figure 

9.1 presents a simple example of seven surgeries scheduled in three ORs with 

two surgeons. The first idle time cost (a) is incurred when the patient has to 

wait for surgeon 2. OR1 and OR2 generate extra time cost (b). Surgeon 1 

generates waiting cost when the surgeon finishes surgery 1 and has to wait to 

start surgery 4. The vacant time is the time between surgeries where the 

surgeon cannot perform other activities since the surgeon is wearing surgical 

uniform. 

 

 

Figure 9.1: Scheduling of a given surgical day. Where (1–7) are the surgeries performed in three ORs 

with two surgeons. And (a) is the OR idle time, (b) is the over time, and (c) is the waiting time of the surgeons. 

Data accessibility 

We looked for available public data to test our model, but the majority of the 

papers dealing with OR scheduling do not present a complete dataset. We used 

data from the waiting list of the urology department of the general hospital in 

Toledo, mentioned above, to test the model. That information included an 

estimate of the duration of the surgery. 

We experimented with six instances, each consisting of five to nine 

surgeries. Table 9.2 contains the preparation time, the incision time for each 

surgeon, and the clean-up time. Each surgeon had different surgical times 

according to their expertise, which allowed them to perform an operation faster 

or slower. Surgeon (k = 1) was the fastest surgeon, surgeon 2 the slowest, and 

surgeon 3 intermediate. Each instance represents different types of working 

days, with two ORs and three surgeons being available. For example, instance 
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1 represents the smallest instance, in which only five surgeries have to be 

performed, and instance 6 represents the largest instance, in which nine 

surgeries have to be performed (see Table 9.3). To test the model, we ran it on 

a day with the following availability: three ORs and two groups of surgeons—

one without residents (k = 1) and the other with residents (k = 2). 

Table 9.2: Surgery Durations (min.). 

Surgery type (i) A B C D E F G H 

TP 15 20 15 20 25 30 35 40 

TS k=1 20 35 40 45 85 130 190 220 

TS k=2 30 53 60 n.a. 128 195 285 330 

TS k=3 25 44 50 n.a. 106 163 238 275 

TC 10 20 35 40 40 50 50 60 

Table 9.3: Surgical day instances with several ORs and surgeons (k). 

#Instance #ORs #k #Surgeries S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 2 1 6 A B C D E E    

2 3 2 5 E E D F G     

3 3 2 6 C D D E F H    

4 3 2 7 B B C D E G G   

5 3 2 8 A B B C D E F G  

6 4 3 9 A B C D E E F G H 

 

Spanish hospitals usually operate from 8:00 a.m. to 3:00 p.m. (T = 420 

minutes). Extra time is possible only if a request is made for this during the 

day. Thus, it is important to know when additional time will be required, which 

cannot exceed 2 hours. If any delays occur apart from the approved extra time, 

the surgeon and other staff need to finish the surgery without additional 

payment. Therefore, if the anaesthesiologist or surgeon realizes that a surgery 

will not be completed on time, they usually prefer to cancel the surgery and 

reschedule it before it begins. 

Simulation model 

We used a simulation to evaluate different solutions without any disturbance 

to the hospital’s operations (Ballard, Kuh, 2006). We built the simulation 

model using the Enterprise Dynamics discrete-event simulation tool, which 

emulates different dispatching policies of surgeries and surgeons. 
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We set different strategies for the dispatch of surgeries such as ordering 

(ascending or descending) them according to the duration of a given surgery 

time (TS). When two surgeons were idle, we selected either the faster or slower 

surgeon to perform the surgery (Lebowitz, 2003). 

MILP problem formulation 

In this section, we begin by introducing the notation needed to formulate the 

problem (see Table 9.4). Thereafter, we present the MILP for the OR 

scheduling. 

Table 9.4: Indexes, Parameters, and Variable Sets. 

Index Set 

𝑆 Set of surgeries s to be scheduled in a surgical day 

𝑆𝑘  Subset of surgeries (S) that can be performed by surgeon k 

𝑆𝑟  Subset of surgeries (S) that can be performed in room r 

𝑅 Set of operating rooms r 

𝐾 Set of surgeons k 

Parameters 

TP s Preparation time (preincision time) of the surgery s 

TS sk Surgery time (incision time) of the surgery s by surgeon k 

TC s Clean-up time (postincision time) of the surgery s 

CV Cost per minute of having an OR vacant 

CW Cost per minute of having the surgeon waiting 

CO Cost per minute of using an OR beyond the normal shift length T 

T Shift length 

PT Pause between surgeries done by the same surgeon 

MOT Maximum overtime 

MaxS Maximum number of surgeries performed by a surgeon 

M A large scalar value 

Variables 

x sr Binary variable; 1 if surgery s ∈ S is done in room r ∈ R, 0 otherwise 

y ss’k Binary variable; 1 if s ∈ S precedes s '∈ S and is done by the same surgeon 

k ∈ K, 0 otherwise 

z ss’kk’ Binary variable; 1 if s precede s' ∈ S and it is done by different surgeon k and 

k '∈ K, 0 otherwise 

q sk Binary variable; 1 if surgery s ∈ S is done by surgeon k ∈ K, 0 otherwise 

msR r Non negative variable equal to the make span of room r ∈ R 

msS k Non negative variable equal to the make span of surgeon k ∈ K 

ts s Non negative variable equal to the start time of the surgery s ∈ S 

tsS k Non negative variable equal to the start time of the surgeon k ∈ K 

vt Non negative variable equal to the vacant time 
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ot r Non negative variable equal to the overtime of room r ∈ R 

wt k Non negative variable equal to the waiting time of a surgeon k ∈ K 

𝑣𝑡𝑟 Vacant time of room r ∈ R 

𝑜𝑡𝑟 Overtime of room r ∈ R 

𝑤𝑡 Waiting time of a surgeon 

𝑡𝑐 Total cost 

 

Most studies (Fei et al., 2009, Denton, 2007 and Gupta, 2007) on this topic 

make the assumption that the surgeons for each patient are already known. 

However, the problem of assigning surgeons, residents for each operation in 

several ORs, does not appear to have been addressed in OR planning and 

scheduling (Ghazalbash et al., 2012). To the best of our knowledge, no models 

have involved different types of operations in multiple ORs with different 

types of surgeons. This study presents a detailed scheduling scheme for 

different surgery cases in multipurpose ORs with multiple types of surgeons. 

Based on the principal ideas of general-precedence concepts (Méndez et al., 

2006), we formulated a MILP model for the scheduling of multiple surgery 

types in multiple ORs with several available surgeons. 

We present a MILP model for this particular problem with the aim of 

minimizing the total surgical cost denoted by the overtime cost (CO), vacant 

time cost (CV), and waiting time cost (CW) in equation (1). Equations (2) and 

(3) guarantee that all surgeries are performed in only one OR by just one 

surgeon. The sequencing and timing constraints in the same OR and also by 

the same surgeon are presented in equations (4) and (5) and equations (6) and 

(7), respectively. 

The binary variable zss’kk’ is introduced to consider the sequencing and 

timing decisions of operations performed by different surgeons but in the same 

OR, as shown in equations (8) and (9). Equations (10) and (11) are provided 

to estimate the completion time both in the ORs (makespan of the rooms) and 

by the surgeons (makespan of the surgeons). Equations (12) and (13) 

determine the initial time of each operation and surgeon in the system. 

Additionally, overtime (ot) is calculated in equation (14) while equation (15) 

limits the amount of overtime and equation (16) limits the number of 

operations performed by the same surgeon. Vacant time (vt) and waiting time 

(wt) variables are calculated in equations (17) and (18), respectively. 
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RESULTS 

We evaluated the performance of our approach using part of the waiting list 

from the urology department of the teaching hospital in Toledo. We defined 

six instances with different numbers and types of surgeries. The computational 

experiences were performed on an ASUS PC with Intel Core i3-2350 M 2.30 

GHz with 6 GB RAM running the solver in parallel mode with two threads 

under Windows 7. 
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Simulation results 

The results of the different strategies for various surgeries and surgeons are 

presented in Table 9.5. In the last column, the results from running 100 

replications are displayed. 

 

Table 9.5: Costs of the different strategies for the dispatch of surgeries (euros). 

Instance Optimal 

(MILP) 

Faster k, 

ascending 

TS 

Faster k, 

descending 

TS 

Slower k, 

ascending 

TS 

Slower k, 

descending 

TS 

Results of 100 

scenarios 

Mean (std) Min-Max 

1 3,400 3,850 4,325 3,850 4,325 3,812 (53) 3775-

3850 

2 2,850 3,579 4.320 6,966 4,850 4,914 

(1,277) 

3,579-

6,966 

3 3,258 8,541 6,616 9,141 7,204 7,162 

(1,337) 

5,591-

9,475 

4 5,100 7,291 10,300 5,900 9,662 7,848 

(1,104) 

5,900-

10,562 

5 3,650 9,600 7,783 8,800 6,729 7,073(960) 5175-

10,329 

6 4,183 15,668 13,539 13,637 15,456 13,563 

(933) 

11,066-

16,568 

 

It is evident from those results that no dispatching policy was able to 

outperform the others. For some instances, using the faster surgeon first was 

better; in other instances, using the slower surgeon was advantageous. We 

made the same observation with the ascending or descending order. Another 

option was to try many random combinations to obtain a good solution. In 

some instances, that worked to an acceptable degree; however, with a larger 

number of ORs and surgeons, there was a greater difference from the optimal 

situation. It should be noted, though, that all of the results were far from 

optimal. 

MILP results 

Table 9.6 presents the computational performance of each instance; Table 9.7 

shows the detailed costs and Figure 9.2 displays the solution schedule in a 

Gantt chart. In that chart, we observed that the waiting time of the surgeons 

was minimized and that changing the ORs would avoid delays with the 

postincision time and the clean-up time for the next patient. The overtime was 
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minimized, but it was inevitable in some situations. OR occupation also 

increased since in the majority of the cases as soon as one patient left, the 

preincision procedure began for the next. 

 

Table 9.6: Results of the instances. 

Instan

ce 

CPU 

time 

(s) 

Total 

cost 

(€) 

Integer 

variables 

Continuous 

variables Constraints Nodes Iterations 

1 3.8 3,400 33 15 140 10,552 36,167 

2 3.5 2,850 65 19 357 5,812 26,076 

3 4.7 3,258 90 20 510 4,734 21,390 

4 140 5,100 119 21 691 224,573 948,271 

5 456 3,650 152 22 900 558,804 2,984,012 

6 1,720 4,183 387 28 3,013 1213370 5,627,758 

 

Table 9.7: Detailed cost of the instances. 

Instance 1 2 3 4 5 6 

Waiting time (min) 75 45 65 75 90 95 

Waiting time cost (euro) 875 525 758 875 1050 1,108 

Overtime (min) 20 30 55 115 20 63 

Overtime cost (euro) 500 750 1,375 2,875 500 1,575 

Vacant time (min) 135 105 75 90 140 100 

Vacant time cost (euro) 2,025 1,575 1,125 1,350 2100 1,500 

Total cost (euro) 3,400 2,850 3,258 5,100 3650 4,183 

 

We did not experiment with any operations bigger than surgery type H (320 

minutes’ duration) as they would require a full day in the OR and would result 

in a trivial answer (one OR, one long surgery), which was not relevant to this 

study. 

Our model was able to deal with multiple surgeons in multiple ORs. The 

solutions are presented in Table 9.6. Some of the tested instances are solved 

up to optimality within a few minutes—in some cases, in less than 1 minute. 

The model takes more time to solve the most complex instances. 
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Figure 9.2: Gantt diagram of instances 1–6. Each panel refers to one instance. Every panel has a pair of 

Gantt diagrams, the upper Gantt diagram is the schedule of the surgeons and the lower Gantt diagram is the 

schedule of each operation room. 

The model size is also reported in Table 9.6 according to the number of 

variables and constraints while the complexity of the solution is demonstrated 

by the number of nodes and iterations explored. As with other similar models, 

the solution time for an instance with the same number of surgeries varies 

considerably depending on the data. This is a critical point in the solution 

performance: our model was able to obtain high-quality initial feasible results 

in only a few minutes, but it needed much more time to ensure the optimality 

of the solution found. With the general-precedence formulation, a reduced 

number of binary sequencing variables has been reported compared with other 

MILP formulations, e.g., that presented in Batun et al., (2011). 

Our model was refined through using pairs of constraints associated with 

the general-precedence formulation and appears to be much more efficient 

than that since it uses a unique general-precedence variable for sequencing 

surgeries simultaneously for both ORs and surgeons. In other formulations, the 

sequencing variables are proposed for each OR using surgery-specific 

precedence-based representation. Since the number of binary variables 

increases with the number of surgeries and the number of ORs is greater than 

the number of surgeons, our representation can significantly reduce the size of 

the problem (Méndez et al., 2006). As an example, using a unit-specific 

representation, the number of sequencing variables will be |S|*|S-1| in each 

OR as a result of s ≠ s’; in our formulation, the number of combinations is 

reduced to (|S|*|S-1|)/2 for each surgeon, since s > s’ under general-
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precedence concepts. This is because if the sequence exists in one tuple of the 

constraints, it does not exist in the other. 

The combinatorial sequencing problem size increases with the number of 

surgeries considered, as noted above. That is why it is so important to reduce 

the number of binary sequencing variables when solving large problems with 

reduced computer effort. 

Variation of the number of surgeons and ORs 

This problem can be solved by varying the number of ORs and surgeons and 

by minimizing the total surgical cost (OR idling, surgeon waiting, and 

overtime). If the number of surgeons and ORs is constant, the idling time of 

the ORs is zero since they are never vacant. Then, the waiting time for the 

surgeon increases since the surgeon has to wait for both the clean-up and 

preparation of an OR to be completed before starting the next operation. 

The final configuration will depend on the resources available on a surgical 

day, and the manager must decide on and evaluate the best possible option. 

The manager may choose to perform the surgeries with fewer surgeons or staff 

or use the same number of surgeons and ORs if they are available that day. In 

Figure 9.3, we present instance 5 using one extra surgeon (3 Surgeons and 3 

ORs). Having the same number of surgeons as ORs meant that the cost 

increased from €3,650 to €4,083 (€1,800 for overtime and €2,283 for vacant 

time). There is no single answer as to whether it is better to have more ORs 

than surgeons on a given day: this situation should be evaluated for each 

instance with the use of the mathematical model. 

 

 

Figure 9.3: Gantt diagram of the instance 5 using the same number of surgeons and rooms. The upper 

Gantt diagram is the schedule of the surgeons and the lower Gantt diagram is the schedule of each operation 

room. 
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Importance of differentiated surgery times in a teaching hospital 

Not all surgeons are the same. In the context of a teaching hospital, this matter 

becomes very important. According to Bridges et al., (1999), who compared 

14,452 cases in terms of operating time, that time was longer in 10,787 

procedures when a resident performed the surgery rather than it being done by 

an experienced surgeon. As with any other process, an experienced surgeon 

usually works faster than a student. Some faculty surgeons have performed 

operations for many years, and the residents are still learning. We incorporate 

this feature into our model by trying to represent actual behaviour at teaching 

hospitals. In Table 9.3, we assign different operation durations to different 

surgeons, assuming that each surgeon may perform each operation faster or 

slower than the projected time. 

The misguided assumption that all surgeons perform equally can create 

significant scheduling problems. This is especially important in a teaching 

hospital, where residents perform many operations during the surgical day. In 

the next example, we planned the surgical day under the false assumption that 

surgeon 1 and surgeon 2 (the resident) perform their operations in the same 

amount of time. When we reviewed the results (see Figure 9.4), we found that 

there would be no overtime: all the staff would finish early at a total cost of 

€1,725. In this situation, the planner could even consider including additional 

surgeries. However, when the surgeons followed the sequence obtained, the 

residents took more time, and the result was completely different: there was 

considerable overtime, and an increase in the total cost of up to €6,048. In the 

previous section (Table 9.6), we solved instance 5 by considering from the 

outset the difference among surgeons in terms of skill: the resulting cost was 

€3,650, which is significantly lower than €6,048. 

 

Figure 9.4: Problems of assuming that the surgeons perform the surgeries in the same time. On the 

left part are the Gantt diagram (surgeons and operation rooms) of the instance 5 assuming that all the surgeons 

perform the surgeries in the same time. On the right part are the results of follow the previous sequence, with 

surgeons that perform the surgeries in different times. 

The objective with the above example is to highlight the problem with a 

commonly accepted assumption when scheduling, whereby the duration of a 

surgery is independent of the surgeon’s skill. This could result in additional 
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costs owing to unforeseen delays or cancellations of surgery through 

limitations with the extra time. For this reason, it is important to differentiate 

between surgeons. 

Rescheduling 

Many changes can occur in the course of a day at a hospital, such as the 

duration of surgeries and the starting time of those procedures. A rescheduling 

procedure based on fixed variables xsr’qsr’ and tss relates to the completed 

surgeries and surgeries that have already begun. The start time and duration of 

surgeries are modified according to new information, and scheduling can be 

solved up to optimality in only a few seconds using a deterministic approach. 

With our model, we can handle uncertainties in surgery duration and 

modify the schedule immediately after the occurrence of unexpected events 

during the surgical day. The values of the fixed variables allow the 

determination of other values related to the general precedence for the same 

surgeon, for different surgeons, for different ORs, and for the same OR, 

thereby decreasing the overall solution time.  

Figure 9.5 presents the rescheduling in instance 6. When surgery G has a 

delay of 25 minutes, the algorithm fixes the variables associated with surgeries 

E, A, and C, and determines the new start of surgery G. It then optimizes the 

remaining surgeries. The optimal situation with this example was achieved in 

15 seconds. A smaller instance could be solved faster, and rescheduling based 

on the first surgery would take the same amount of time as normal scheduling. 

If we recall the optimal outcome for instance 6, presented in Figure 9.3, 

surgeon 2 should perform surgery B in OR 2 after that surgeon completes 

surgery G, though surgery B now becomes assigned to surgeon 3. 

 

 

Figure 9.5: Gantt diagrams of the rescheduling of instance 6. The hatched surgeries (A, E, C) are fixed, 

and the surgery G is delayed 25 minutes. The upper Gantt diagram is the schedule of the surgeons and the 

lower Gantt diagram is the schedule of each operation room. 
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The rescheduling tool allows the OR planner to deal with new conditions 

that arise during the surgical day, implementing the required modifications to 

the schedule, thereby decreasing the cost impact and avoiding surgery 

cancellation.  

Software interface 

We developed a user-friendly interface in AIMMS (Bisschop and Roelofs, 

2011) to deal with this complex optimization problem (see Figure 9.6). We 

included a guide to help users become familiar with the process. Additionally, 

we added a rescheduling capability, and we facilitated the changes to the 

experimental data. Our solution tool provides the manager with the possibility 

of easily changing parameters and obtaining high-quality results faster. The 

video presents a brief overview of the interface and its rescheduling 

capabilities in real time. 

 

 

Figure 9.6: Screenshot of the configuration page of the software interface. 

We used Enterprise Dynamics simulation software to facilitate the 

evaluation of the different schedules performed by various surgeons. The 

interface allows the planner to visualize any schedule in 3-D (see Figure 9.7) 

and to evaluate different dispatching policies for surgeons and surgeries, as 

indicated in Table 9.4. The simulation model aims to mimic the behaviour of 

the OR, allowing the planner to easily change the parameters of the simulation 

and to set a predefined schedule; alternatively, the planner may introduce 

dispatching rules and see their effects in the accrued costs at the end of the 

simulation. 
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Figure 9.7: Screenshot of the 3D simulation. The left part is the diagram of the simulation and the right 

part is the 3D display. 

DISCUSSION 

We presented the model we developed to physicians, who provided useful 

feedback. We took their suggestions into consideration and made some 

improvements to the model, such as limiting the amount of overtime available 

and the maximum number of operations that could be performed by a surgeon 

in a day. In addition, the physicians noted that it was unrealistic to perform one 

surgery and then immediately begin the next one. Accordingly, we added some 

pause time (PT) to the model; in some of the results, this time was the only 

waiting time cost present. 

The main problem with our model arises from the fact that a surgeon 

sometimes moves from one OR to another OR. This procedure is currently 

only done in special cases at the Toledo teaching hospital, such as when the 

surgeons are in a hurry as the surgeons themselves prefer to perform all their 

scheduled operations in the same OR. 

The problem with using a single surgeon for surgical operations in parallel 

ORs has already been examined (Batun et al., 2011, Mancilla and Storer, 

2013). Mancilla and Storer (2013) presented an interesting discussion on this 

topic, arriving at the conclusion that the use of parallel ORs depends on ratios: 

the cost ratio (cost of waiting/cost of idling) and the “setup to surgery time 

ratio”. The problem in limiting the mobility of surgeons is that during the 

clean-up time and preparation time for the next patient, the surgeon is not 

occupied. Therefore, there is a significant time saving if surgeons move from 

one OR to another, avoiding idling costs. If all the operations by one surgeon 

are scheduled in the same OR, a major benefit of the scheduling is lost. 
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Uncertainty with times 

If our model is used to develop OR schedules, having an accurate estimate of 

the operating time required for each surgery type is a prerequisite to its 

effective use. However, assessing an operation’s execution time is not easy 

because it depends on the patient’s pathology, which may be known only 

partially, and on the surgeon’s expertise (Wright et al., 1996, Dexter and 

Macario, 1996). 

Since there are no historical data—either on the probabilities or distribution 

of the surgery duration for each patient—we followed the strategy of finding 

a fast, accurate solution using the time estimated by the head of surgery. 

Asking the head of surgical services to provide a forecast concerning the three 

times (preparation, surgery, and clean-up) for each operation increases the 

complexity of using the system; it also increases the complexity of the model 

without obtaining a better solution since all the data are used for the estimate. 

Having an information system that stores all records relating to surgeons and 

patients would help increase the accuracy of such estimates. 

Interesting approaches have been made in the stochastic field such as Batun 

et al., (2011), however, obtaining a more robust solution usually has the 

requirement of a high computational cost. Since the aim of this paper is to deal 

with the daily scheduling, using a deterministic approach to generate a good 

solution in a reasonable time was preferred. 

Despite the use of a stochastic or deterministic model approach it is 

advisable to periodically update the solution with the most recent data. 

In the event that the actual time of the surgery differs from the predicted 

model, the solution will be affected and it will be necessary to run the 

scheduling again with the new information. In order to take the best decision, 

for example, changing the beginning of the next surgery, or the surgeon that 

will perform the surgery, in the event that is needed in the rescheduling phase, 

the minimum pause time constraint could be relaxed to minimize the impacts 

of the delays. 

Limitation of the model 

The main limitation with our model is that we first need to define the set of 

surgeries that should be sequenced each day. A future developmental step 

would be to select from the entire waiting list which surgeries should be 

performed according to their urgency (time on the waiting list). 

Using historical data to feed the model could help the decision-maker to 

obtain accurate predictions of the duration of the surgeries performed by each 

surgeon. However, the same operation can have different times even when 
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performed by the same surgeon because every patient is different: according 

to the head of the medical service, “Nobody knows what they might find when 

they enter the operating room”. Although we developed a general model for a 

teaching hospital, there are still many specific considerations that need to be 

studied and implemented in the final program for it to be used on a daily basis. 

CONCLUSIONS 

The principal contribution of this paper is the development of an effective 

computer-aided framework based on mixed integer lineal programming and a 

simulation model for the daily schedule of the ORs of a teaching hospital 

managing multiple surgeries performed by different surgeons. 

The MILP model is able to deal with scheduling different types of surgeries 

in parallel ORs and with multiple surgeons. Using this model, decisions are 

made on an operational level because the capacity of the resources (ORs and 

surgeons) and the operations that need to be performed are known 24 hours in 

advance. 

Our model provides high-quality results within a reasonable time for the 

decision-maker, and allows a new schedule to be created if any circumstances 

change. By incorporating the advantages of model formulation, we can easily 

allow surgeons to specialize in only certain types of operations and deal with 

real-world problems without incurring additional computational costs. 

The daily surgical scheduling in ORs with multiple surgeons is still a 

complex issue for the managing director of a hospital. Our tool was 

specifically designed to help managers analyse and evaluate possible 

profitable results within a reasonable time frame. There are several specific 

requirements that are significant to a manager-director that could be examined 

in future research towards more accurately representing real situations. Some 

future considerations could be the stochastic duration of the surgeries 

themselves, different operating times depending on the surgeon, and the 

upstream and downstream resources necessary to support surgical activities, 

such as preoperative and postoperative actions. 

These and other practical considerations provide an opportunity to continue 

research in this area: the promising results in terms of savings and publications 

represent more opportunities for operational research in health management. 

In addition, it is necessary to convince the decision-makers of the advantage 

of health-care operation research; they need to know that it is worth investing 

their time and money in further studies of this nature even in the face of current 

ongoing cuts in the public health-care system. 
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SECTION 4. FINAL THOUGHTS 

In section 3, the integration of the health care sector was analysed, and then 

the scheduling in a teaching hospital was implemented. In the last section we 

identify the factors that make an instance likely to use a joint approach, 

summarize the thesis and present the final conclusion of this thesis. In chapter 

10, we highlight the fact that some instances are more suitable for a joint 

approach while others are not. We then identify the factors that could make an 

instance more suitable to be used with an overall approach, and when it is more 

suitable to make the decision separately. Finally, in the last chapter we present 

the overall conclusion and future research directions of this work, followed by 

the appendices of the thesis. 

Chapter 10: The role of complexity and flexibility of the 

instance in the joint solution approach 

MOTIVATION 

Many pieces of research address the development of new algorithms and new 

solution techniques for decision-making; however, most of them do not 

consider the characteristics of instance in their analysis, such as the complexity 

and flexibility of the instance. Building a complex model, such as a joint 

model, requires a huge amount of time and effort while the resulting solution 

of such joint models may or may not be the best solution for all the actors 

involved in the process. Therefore, it is important to make an in-depth analysis 

of the instance before investing the time and effort to build a joint model. In 

this regard, this paper provides an instance evaluation procedure to help 

decision-makers decide whether to use a joint decision or not for a particular 

instance. 

INTRODUCTION 

The traditional decision-making process is usually sequential where the best 

decision is taken for the first stage of the process and then this output of the 

first stage is used as a basis for the next stage decisions and so on. However, 

by using a sequential decision-making process it is difficult to reach an overall 

optimal solution as the final decisions completely depend on the first-stage 

decision. To overcome this limitation a joint decision approach offers a great 

opportunity to reach an overall optimal solution by enlarging the search space. 

Joint decision-making can have many implications since, besides the intrinsic 
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cost and time of developing the joint model, it may involve a possible change 

in the organizations in order to allow different actors to share information and 

to persuade global goals instead of local goals. This requires a close 

collaboration and coordination among the different actors involved in the 

overall process. Interestingly, many operational management researchers 

assume that “integration is a must” and that cross-functional coordination and 

integration are necessary (Ketokivi, 2006). However, in later research, 

Turkulainen et al. (2012) argued that the benefits of integration and cross-

functional coordination are context-dependent and sometimes disaggregation 

is beneficial.  

Joint decisions usually result in a paradox since the different actors may not 

achieve the optimal solution for their sub-operations in order to achieve an 

overall optimal solution. Therefore, a joint decision-making process could be 

attractive for some circumstances and unappealing in other situations. 

Considering this paradoxical nature of joint decisions, this research attempts 

to explore “When is it advisable to use a joint decision-making process and 

when is it better not to use it? The contribution of this paper is to create an 

“instance evaluation procedure” based on the complexity and flexibility of the 

instance to help the decision-makers to decide before investing their time and 

effort in the preparation of a joint decision model. To this end, the authors 

argue that it is highly important to consider instance characteristics before 

setting out on a joint decision model.  

Characteristics of the Instance 

The instance is the complete set of data that defines the problem space e.g. in 

the case of a scheduling problem the number of days, workers, job shops, 

production lines, units to produce and so on. One of the most important 

characteristics of an instance is the size of the problem, which is determined 

by the number of continuous and binary variables that represent all the 

relationships among variables and parameters. The problem size is considered 

as a major contributor to the complexity of the instance. However, there are 

many other factors that need to be considered when analysing the instance 

complexity. The complexity and flexibility of the instance plays a crucial role 

in the decision-making process. For dynamical systems theory the complexity 

measures are usually computational complexities that are a measure of the 

interactions (Adami, 2002). Similarly, Heylighen (2008) highlighted that a 

fundamental part of any complex system is the parts connected via 

interactions. These parts can be distinct and/or connected as well as 

autonomous and/or to some degree mutually dependent. This interdependence 

can create conflicting goals since the improvement of one part could lead to 

the decrement of the other part. Therefore, just considering the total number 
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of variables present in a problem space as the only parameter/measure of 

complexity is not the right approach. Many other factors need to be considered 

when analysing the complexity of an instance. An important work in this 

regard is by Vanhoucke and Maenhout (2009) where they characterize the 

Nurse scheduling problem. In their work, they highlight four factors to analyse 

the complexity of the indicators: a) problem size, b) the preference distribution 

measures, c) the coverage distribution measures, and d) the time related 

constraints.  

Similarly, flexibility of an instance is another key characteristic that needs 

to be considered when analysing a joint decision. Flexibility is “the ability to 

change or react with little penalty in time, effort, cost, or performance” (Upton, 

1994). Thus, a flexible instance of workers means the extent to which the 

employees can perform different tasks. In this research, we propose 

considering three new factors while analysing the instance characteristics. 

These factors include preference distribution, coverage distribution and cost 

dispersion.  

FACTORS FOR INSTANCE ANALYSIS 

In this section we propose and define three indices that need to be considered 

when analysing an instance for a joint decision. These factors are discussed 

briefly.  

Preference distribution (PD) 

The preference distribution measures the dispersion among the needs or 

requirements of resources by the different entities over the scheduling horizon. 

If all the requirements are similar the preference of distribution will be low, 

but on the other hand if all the requirements are different this index will be 

high. It can be measured using equation 1. Where 𝐸𝑛𝑡𝑖𝑡𝑦𝑖  is the requirement 

of resources of the entity.  

 𝑃𝐷 =

√
∑ (𝐸𝑛𝑡𝑖𝑡𝑦𝑖−𝐸𝑛𝑡𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠

𝐸𝑛𝑡𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (1) 

Extra coverage constrainedness (ECC) Rigidity / Flexibility 

The coverage requirements are expressed by the average of the extra capacity 

(availability) of all machines (resources). When this number is close to 0, we 

could say that it is a rigid instance that there is no extra resource; when it is 

close to 1 its means that it is a flexible instance meaning we have some extra 

resources. This factor can be measured with the help of equation 2. 
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 𝐸𝐶𝐶 =
∑ (1−

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚𝑎𝑐ℎ𝑖𝑛𝑒 

)𝑀𝑎𝑐ℎ𝑖𝑛𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (2) 

Cost dispersion (CD) 

The cost dispersion is a measure that is used to quantify the variation of cost 

among the different areas, in which the decision will be made together. We 

will refer to the total cost of each part, which, for example, in the case of the 

inventory, will be the total cost of the inventory not the cost of each unit of 

inventory. It can be measured using equation 3. 

 𝐶𝐷 =

√
∑ (𝐶𝑜𝑠𝑡𝑖−𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑠𝑡𝑠

𝐶𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅
 (3) 

In the next section, these factors are studied using 2 case studies where 

different combinations of the preference distribution, extra coverage 

constrainedness and cost dispersion are tested. The size of the instance is 

constant and the amount of resources available helps to characterize the 

instance. The three indexes vary between low (close to 0) and high (close to 

1).  

CASE STUDIES AND RESULTS 

The computational experience was performed in a Windows-PC with an Intel 

Core 7, 8 GB of RAM, running Windows 7, with the AIMMS 3.14 

mathematical modeller and Gurobi 6.0. A maximum stop criterion of 3600 sec 

was set for all instances. 

Case study 1 

In a car assembly line, the production sequence has to be decided for the 

planning period. Each workstation could deal with a production rate, which 

means that a workstation could install X high trim components each Y cars. In 

the event that the number of high trim components is higher, an extra utility 

worker has to come to help, with a penalty cost.  Each station installs a different 

type of component that needs to be next to the assembly line before it is 

needed. The transportation vehicles carry these components from the 

warehouse to the workstations where it is assumed that all the components 

exist. Each model has a set of characteristics, such as engine, rims, tyres, 

steering, etc. These components could have different trims (Low or High). All 

the models are different from the other models in at least one type of 

component. The components required at each workstation are delivered as a 

kit. The model was implemented using mixed integer linear programming. A 
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detailed description can be found in (Pulido et al. 2014a). There are 3 main 

decisions that have to be taken and are usually taken sequentially. 

1. The production sequence that minimizes the use of extra utility workers. 

2. The distribution cost of components that minimizes transportation cost.  

3. The inventory level that minimizes the inventory cost. 

The first index will be calculated as the deviation of the number of high 

trim elements that each car requires, and the average entity will be the one for 

which the assembly line was designed. For the second index, the machines will 

be the workstation and transportation vehicle. The requirement of workstations 

of the car assembly line will be the requirement of each car model for this 

workstation, while between the production ratios and for the transportation 

vehicles, the requirement will be the demand for the use of a vehicle, and its 

capacity will be the transportation capacity.  

The results of the experimentation are presented in Table 10.1, where the 

first column of the instance defines the instance with respect to three indexes, 

and the left part of the table is the result of the traditional sequential approach 

while in the right part is the result of the joint approach. Promising results 

appear when the preference distribution is high, and there is diversity among 

the tasks that have to be done and also when there is extra coverage of 

resources since there is flexibility of the allocation. And finally when there is 

diversity of the cost there are promising results, especially when the biggest 

cost contributor is the last of the sequential model.  

Table 10.1: Result of Case Study 1. 

PD,ECC,CD Sch Transp Invent SeqD Sch Transp Invent JointD Savings 

L,L,L 594 1432 928 2954 638 1424 796 2858 3% 

L,L,H 594 716 9283 10593 638 715 7921 9274 14% 

L,H,L 0 1439 902 2341 0 1426 813 2239 5% 

L,H,H 0 720 9023 9743 22 716 7979 8717 12% 

H,L,L 308 1435 944 2687 308 1434 834 2576 4% 

H,L,H 308 718 9436 10462 396 714 8124 9234 13% 

H,H,L 0 1436 947 2383 0 1424 795 2219 7% 

H,H,H 0 718 9469 10187 0 712 7952 8664 18% 

Case study 2 

The teaching hospital plays a key role in the health care system. Inside the 

hospital, the main part of this structure is the operating rooms, since the 

majority of the patients go through the operating room 

The scheduling of the surgeries is important since the vacant time of the 

operating room, the idle time of a surgeon, and the extra time cost of the 
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operating room impact directly on how the hospital functions. A detailed 

explanation of the model can be found in (Pulido et al. 2014b). There are 2 

main decisions that have to be taken and are usually taken sequentially.  

1. The doctor who performs the surgery that minimizes the extra time. Each 

surgeon has a different expertise and could perform a surgery faster or 

slower.  

2. The operating room schedule that minimizes the vacant time of the 

surgeons and idle operating rooms. 

The first index will be calculated as the deviation of the length of the 

surgery against the average surgery duration. In order to calculate the second 

index the machine will be the surgeons and operating rooms. The requirement 

of surgeons will be the total length of the duration of the surgeries that could 

be performed by a surgeon between the shift length (capacity) while the 

requirement of the operating room will be the total length of surgeries that can 

be performed in this operating room between the shift lengths. 

Table 10.2 presents the results. First the indexes used, then the overtime, 

vacant OR time and surgeon waiting time cost for the sequential decision and 

the same three costs for the joint decision, and the savings. The Joint Decision 

is advisable with promising results when the preference dispersion is high, 

because when it is low the results are negligible. The role of the ECC is minor, 

since it plays a complicated role, as there is a penalty for the extra resources 

(vacant time cost). The dispersion of the cost is also important, especially when 

the cost of vacant time is high.  

Table 10.2: Result of Case Study 2. 

PD,ECC,CD OverT VacT WaitT SeqD OverT VacT WaitT JointD Savings 

L,L,L 1307 885 362 2554 1387 885 210 2482 3% 

L,L,H 980 885 620 2485 1040 905 360 2305 8% 

L,H,L 0 1020 350 1370 13 885 210 1108 24% 

L,H,H 0 1020 600 1620 0 1135 120 1255 29% 

H,L,L 1027 1545 58 2630 1307 1065 58 2430 8% 

H,L,H 770 1545 100 2415 980 1065 100 2145 13% 

H,H,L 40 990 362 1392 40 1065 58 1163 20% 

H,H,H 0 1050 540 1590 0 1035 100 1135 40% 

Prescriptive framework 

A prescriptive framework is developed based on results, and acquired 

experience is presented. With a more detailed analysis of the input data, we 

can assess the preference distribution of the instance, the extra coverage 

(flexibility/ rigidity) of instance, and the homogeneity of the cost. If the results 
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of this pre-processing of the data are promising, we can decide to take the next 

step and start to build a joint model. 

When the preference distribution is low, which means similar products or 

tasks need to be produced/performed, the benefits of the Joint Decision 

decrease. On the other hand, if we have bigger diversity the results could be 

promising. 

The extra coverage constrainedness plays a key role and will depend on 

whether there is a penalty or not for having extra resources. However, if there 

is no extra coverage the possible savings will decrease. 

The major influence that we found is cost dispersion, since when it is low 

the results are not so promising, but when there is a high dispersion then it is 

necessary to know the position of the most expensive cost as this plays a key 

role. When the highest cost is the final decision, the possible savings increase 

considerably. 

However, for choosing the right type of model, it is important to take into 

consideration the number of actors or the size of the problem, since this will 

determine if we use exact or non-exact methods. The goal ambiguity, 

frequency of decision and uncertainty should be taken into consideration in 

advance in order to decide on exact or non-exact methods. 

For the reason mentioned previously, we suggest analysing the likelihood 

of savings based on the preference of distribution, coverage of the instance and 

homogeneity of cost. Figure 10.1 shows the proposed evaluation process/ 

procedure. 

 

 

Figure 10.1: Instance Evaluation process. 
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Conclusion 

The major benefit of a joint decision is the possible cost savings, thanks to the 

better utilization of key resources. The decrease in the cost is accompanied by 

an improvement in the key performance indicator such as the use of resources 

or the decrease in overtime. As expected, the use of a joint model increases the 

size of the model, the complexity and the solving time. When the 

computational time is high other non-exact solution methods should be 

evaluated with the risk of a decrease in savings for non-achievement of the 

global optimum. 

The range of possible savings for the same problems using a joint model 

depends on the data being quite large, but the bottom line is close to zero. 

Therefore, before deciding the type of model, we suggest pre-evaluating the 

instance as in some cases the implementation cost can be higher than the 

savings. Therefore, in some cases it is better to use the traditional sequential 

approach since the preparation of a complex model does not guarantee enough 

savings to justify the development of the joint model. Hence, this research 

concludes that any possible savings of a joint decision are case-dependent and 

every case should be evaluated before investing time and effort in a joint 

decision approach. The case/instance should be evaluated from its complexity 

and flexibility perspective.  

As a further work we intend to test the proposed framework using more 

case studies, which can be generalized to other areas to try to help other 

researchers and practitioners to decide when or not it is better to use a joint 

decision.  
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Chapter 11: Conclusion and future directions 

INTRODUCTION 

During the past chapters, we have discussed several topics with the common 

denominator of the model-based decision-making process. In this chapter we 

started with a recap of the entire work, followed by a recap of the research 

question, and finalize with the overall conclusion and future direction of this 

work. 

A RECAP OF THE WORK REALIZED 

In the first section of the thesis we present an overall introduction of the thesis, 

the second section deals with a survey and manufacturing cases, the third 

section with health care sector cases, and finally in the fourth section are the 

final thoughts. 

This research area will keep being relevant as long as almost every 

managerial position requires decision-making. Researchers have a look at 

tools and techniques that help to make a decision that helps decision makers 

to increase the possibilities of making a decision that leads to successful 

results.  

Mintzberg et al. (1976) present their relationship between phases of the 

decision process, highlighting that the identification phase (first phase) had 

been unattended. Adding a phase after the diagnosis phase, where the 

identification of the scope is determinate, we analyse the changes caused by 

the change of scope in various cases of the manufacturing industry and health 

care sector. 

Changing the scope of a decision has a direct impact on the complexity 

from all points of view of a decision. These changes have impacts on the 

organization of the decision-making unit, since as we add more players with 

different interests the decisions increase their complexity. This increment of 

complexity could be caused by different factors such as adding more 

functional areas, or mixing operational decisions with tactical and strategic 

decisions, or by increasing the term of a decision from only short term to 

medium or long term or by a combination of those factors. 

This leads to two possibilities; the first is to take a sequential decision using 

the output of one decision as the input to the other decision, while the second 

is to take a joint decision, taking all the decision together. Then the different 

combinations of the problems are presented for the manufacturing and health 

care sector. After the introduction, the four research questions were presented 
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followed by the research design and the layout of the research where the 

different techniques and the research methodology were introduced.  

In the third chapter, a literature review was conducted on the different 

decision theories and the characteristics of a decision with complete 

information, the decision process and the decision-making unit. A deep 

literature review of a journal specialised in presenting successful decision 

model real life stories was undertaken, where the different savings were 

analysed. It is important to highlight that some cases are not comparable; for 

example, the savings of human lives cannot be compared with monetary 

savings. Finally, it is suggested the expected impact of a decision compared 

with the literature should be known together with a benefits cost analysis. 

The second section presents a survey and manufacturing cases. Starting 

with the fourth chapter a survey and face-to-face interviews were performed 

to understand the decision-making process in different companies from 

different sectors, and their perception of integration. There is a general 

agreement that competitive supply chains employ the internal integrated 

process, which is frequently misconceived as just the use of the software. Also, 

we obtained many misalignments between their beliefs and what they do, for 

example, job rotation, which is considered as an integration factor that is 

apparently easy to implement, was only strongly advised by 12% of the 

companies. 

In Chapter 5, a model-based decision for the car assembly line was 

implemented. The inventory routing problem and the inventory problem were 

combined in a MILP model and implemented separately. The integration of 

production and logistics is a common goal of an integrated company. 

Therefore, the routing model should consider more factors than just the 

transportation cost, such as the specific requirements of materials over time to 

decrease the cost. The cost of space is an amplifier of the savings of the model. 

In the next chapter, the complexity of this model was increased by adding 

the car scheduling problem to the inventory routing problem and the vehicle 

routing problem. A MILP model was developed, but it requires a lot of 

computation time to solve mid-size instances. After that, an Ant Colony 

Optimization heuristic was used. The ACO model obtains a good quality 

solution in a fraction of the time. Two ownership policies of the transportation 

vehicles were tested, the first one where the car manufacturing company has 

the ownership of the transportation vehicles and when they use a material 

handling company. As there are no public instances to compare, we could not 

compare the results of the ACO for bigger instances. However, we believe that 

the results tested in the small and medium-sized case are promising and will 

remain valid for bigger instances.  
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In chapter 7 a simulation for an aeronautical manufacturing plant was 

performed. The problem presented is not exclusive to aeronautical 

manufacturing plants since several manufacturing processes such as printed 

circuit boards and automated wet-etch stations in semiconductors rely on the 

use of hoists, cranes or some material handling device to change the work in 

progress from one workstation to another. This problem is an example of a 

problem where obtaining an optimal solution to one part of the problem does 

not lead to an optimal overall solution, in some cases not even to a feasible 

solution. Two operational decisions were made jointly, and the use of 

heuristics and simulation let us obtain a feasible solution in a reasonable 

amount of time and simulate breakdowns that are difficult to model with exact 

methods. One of the advantages when solving these kinds of problems by 

simulation is that the decision-maker may easily evaluate the impact of a WIP 

variation and its impact on production time and the cost of defective parts. 

Interesting ideas coming from the decision-makers, such as changing the 

chemical from non-used tanks to the highly used tanks, could be easily tested 

knowing the cost of the change and the improvement in the performance. The 

proposed simulation allows the decision-makers to evaluate future 

improvements in the system design such as a second hoist, faster hoists and 

more tanks. 

Section 3 refers to the health care sector. In chapter 8 an operating room 

optimization is presented. Despite manufacturing facilities and hospitals 

looking like two different worlds, the decision of a hospital manager does not 

differ a lot from a manufacturing manager. Both are evaluated by the key 

performance indicators of the usage of the production facilities (machines or 

operating rooms), overtime, workers’, outputs, and so on. One of their goals is 

the proper management of the operating rooms which are the engines of a 

hospital. A model to decrease the three main costs of the operating rooms (OR 

vacant cost, surgeon waiting cost and OR overtime cost) is presented. We 

started with a MILP model where the times are deterministic and we compared 

it with some heuristic models. In the second part of the chapter, we deal with 

stochastic duration times of the surgeries. We compared the stochastic MILP 

model with a decomposition method that is a hybrid between an exact and a 

heuristic method. We can now realize how much money the hospital is losing 

not using a proper scheduling system. If we compare with traditional heuristic 

rules, the ones probably used in real life, the MILP model could provide an 

average saving of 25%. 

In the next chapter, we presented an operating room optimization in a 

teaching hospital. This case was performed in a hospital in Toledo, Spain. The 

Spanish population is one of the most aging populations in Europe, which is 

increasing the pressure on the health care system. Part of the health care system 
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is based in teaching hospitals, which besides the normal hospital activities, 

these hospitals have to train the doctors of the future. To achieve that, it is 

necessary for resident surgeons to perform some surgeries even though they 

take longer to perform them. This creates conflicts in the decision-making 

units since the objectives of the decision-makers persuade contrary objectives. 

A MILP model was compared with a simulation to quantify the improvements. 

The daily surgical scheduling in ORs with multiple surgeons is still a complex 

issue for the managing director of a hospital. Our tool was specifically 

designed to help managers analyse and evaluate possible profitable results 

within a reasonable time frame. 

Finally, in section 4 we present the final thoughts of this thesis. In Chapter 

10, we analyse the role of complexity and flexibility of the instance in the joint 

solution approach. What is good for one company might not be good for 

another company even though they deal with the same problem. The range of 

possible savings for the same problems using a joint model depends on the 

data being quite large, but the bottom line is close to zero. Then before 

deciding the type of model, we suggest pre-evaluating the instance, as in some 

cases the implementation cost can be higher than the savings. Then we identify 

the factors that could make an instance offer promising results. We found that 

the preference distribution, the extra coverage constrainedness and the cost 

dispersion could make an instance more suitable to use a joint approach. 

Therefore, in some cases it is better to use the traditional sequential approach 

since the preparation of a complex model does not guarantee enough savings 

to justify the development of the joint model. 

RESEARCH QUESTION SUMMARY 

The four research questions were solved throughout the different chapters. In 

the next paragraphs a brief summary of the answer to the research questions is 

presented. 

The main research question regarding the impact of the complexity of the 

model-based decision-making process in the context of industrial management 

has been answered through all the chapters. Each chapter has represented a 

part of the integration in different industries, to generalize the results. Also, 

each chapter could be taken as an initial step for a further integration process. 

There is a correlation between the level of integration and the complexity. 

An excessive degree of integration could lead to too many resources being 

spent to reach a decision that is not justified by the savings. On the other hand, 

a lack of integration could be a missed opportunity to save resources or 

improve performance.  

Despite the fact that three indices were identified to decrease the chance of 

failure in the integration, defining a general threshold for all the problems is 
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almost impossible. For example, maybe it is less complex to integrate three 

small functional areas rather than two big functional areas. Defining what is 

bigger and smaller for all the cases depends on the type of problem and the 

cases. The best approach is to make this comparison with the actual state-of- 

the-art of the problems, which also evolves with the growth of computational 

power, solving techniques, and also the size and requirements of the problems. 

Also this blurry threshold to decide what the level of integration is changes 

with the time, supporting tools and the needs of the company. In some points, 

more than one solution could exist, and then it is necessary to spend more time 

exploring the options in the initial stage of the decision-making process.  

The first sub-research question was: Using current knowledge and 

computational power, is it possible to develop models that deal with the 

increase in complexity for joint decision making in an efficient and effective 

manner? 

Current knowledge and computational power allow us to deal with the 

bigger problem as we did in Chapters 5, 6, 8 and 9. This computational power 

opens up new possibilities for exploring different decision-making scopes. 

This new model could offer us interesting savings and cost reductions. There 

was a decrease in transportation vehicles, extra workers, defective parts, 

overtime and waiting time. For example in Chapter 6, savings of around 7% 

were obtained with respect to the solution obtained using a separate approach. 

The impact of these types of models is directly influenced by other factors such 

as the cost of space. As presented in Chapter 5, factories with a reduced 

production space should be more interested in this kind of approach.  

Unfortunately, despite the increase in computational power there is also an 

increase of industry-size problems that even high computational servers cannot 

solve in a reasonable time. It was only possible to solve small and medium 

cases with promising results, which led to seeking other alternatives to keep 

solving the problem with a joint approach using constructive methods, 

simulation or heuristics, or to carry on using the sequential approach. 

This leads us to the second sub research question: When exact methods are 

not enough to deal with the increasing complexity of real size problems, is it 

better to try with heuristic methods or is it better to use sequential decision-

making? 

The use of exact methods guarantees the optimal solution but only when 

the solver is capable of solving it in a reasonable period. Here it is important 

to explain the concept of reasonable period, which is case dependant. If we are 

dealing with a tactical solution to create the daily replenishment schedule of 

car components, a solution that requires some hours is not reasonable at all, on 

the other hand if we are planning the yearly oil drilling schedule, a solution 

that requires some days is perfectly reasonable. 
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In the smallest solution, the MILP-based approach performs better that the 

heuristic solution but as the instance increases the ACO performs better than 

the MILP. Unfortunately, the percentage of improvement with respect to the 

sequential decision decreases with the ACO since the heuristic approach does 

not obtain the optimal. 

When we deal with a stochastic model such as in the operating room in 

Chapter 8, where the complexity added due to the stochastic nature of the 

problem makes it necessary to explore options like hybrid methods, such as 

constructive methods and improvement methods, where we obtain similar 

results in a fraction of the solving time of the exact method. An average 

improvement of 4.2% was achieved with 1/6 of solving time in the instance 

that requires more than one hour to be solved. 

When the optimal solution of one part of the problem causes infeasibilities 

for the second part of the problems, such as in Chapter 7, there is no option 

and a joint approach should be used, in this case, based on simulation, but other 

options could have been used. 

In almost all the instances of all the case studies, the joint approach is better 

than the sequential approach, or at least obtains the same solution. However, 

these savings hardly reach two digit savings. Therefore, it is necessary make a 

benefit-cost analysis, to quantify if the possible savings justify all the 

drawbacks caused by the joint solution, such as an increase in complexity, 

more computational time, organizational challenges and so on.  

In the third sub-research question we analyse the complexity: When is the 

use of a complex decision advisable and when is it not? 

As obtained in Chapter 10, the possible savings of increasing the 

complexity of a problem are data dependent. For the same problems, some 

instances could provide good savings and for other instances almost zero 

savings. The lower bound could be as low as 3 (or even zero) percent, and the 

upper could reach up to 40 per cent.  

Despite the fact that we are dealing with the same problem as the vehicle 

routing problem or operation room scheduling, for some companies that deal 

with this problem the  joint approach maybe a good approach for a company 

while for another it may not be. Then three factors were identified that could 

characterize an instance to evaluate if that instance should be considered for a 

joint approach or not before the model is developed. This could save valuable 

time and money in the construction of a model that will deliver poor results. 

The first factor was preference distribution, which measures the dispersion 

among the needs for resources by the different entities. The second factor was 

the extra coverage constrainedness, which is the average of the extra capacity 

of all machines, and the third factor is the cost dispersion that is a measure that 

quantifies the variation of the cost of the different areas. Once that that factor 
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has been calculated it is possible to decrease the uncertainty regarding the 

possible output. When the instance presents at least two factors with a high 

certainty, the chances of higher savings are higher. When the majority of the 

factors are low the chances of obtaining negligible savings are high. 

The fourth and last sub research question is related to managerial insights: 

What is the managerial theory and implication behind the decision models that 

are currently being used? 

Starting from the framework of Mintzberg et al. (1976) where they present 

the relationship between the phases of a decision process, we proposed adding 

a definition of the scope phase after the diagnosis phase to evaluate the most 

promising scope for the decision-making process.  

Besides the three factors explained in the last answer, other limitations exist 

such as the frequency of the decision, which is related to solving time, the 

nature of the decision and its financial impact, the supporting tools available, 

the decision-makers and the  organizational changes implied in the solution. 

All this generates an increase in the complexity of the decision. 

Increasing the number of players in the decision-making unit generates 

many organizational challenges. As we have more people involved in the 

decision with different interests and sometimes with conflicts of interest, the 

achievement of a joint solution also requires soft skills from the managers, as, 

for example, in the case of the operating room scheduling in a teaching hospital 

in Chapter 9. At the moment we persuade a joint solution, the conflict of 

interests appear, the head of the operating rooms looks for a decrease in the 

overtime in the operating room, the head of medical services persuades that 

more of the surgeries required by their services are done, and the head of 

teaching encourages the residents to perform more surgeries to have better and 

more prepared surgeons in the future. Then the implementation of decision 

support tools is only one stage of the solution; a change is also needed in the 

organization to achieve an overall best solution. 

The other highly important part of the decision criteria is the benefit-cost 

analysis that was analysed in Chapter 3, which highlighted that all the cost 

incurred by the new decision-making process should be covered by the 

benefits of a new decision system when the scope of the decision-making 

process was decided. The expectations regarding the benefits should be bound 

to the acceptance of options where costs are higher than benefits. Success 

stories in papers report savings of around 15.9%, therefore, if the savings 

required to cover all the expenses is higher than 50%, maybe it is better to look 

for another option. 
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FINAL CONCLUSION 

The contribution of this thesis could be divided into different parts. The first 

contribution is to investigate the benefit and implications of a joint decision. 

The main benefit is the possible savings thanks to the better utilization of key 

resources. Unfortunately, this creates important implications and 

organizational challenges, generating costs that have to be fulfilled with the 

savings of the joint approach. 

A careful benefit-cost analysis should be performed and the savings needed 

to justify the implementation of the new decision-making process evaluated. 

The literature review of the success cases presents average savings of 16 % 

with a standard deviation of 9, a maximum of 37% and a minimum of 3%. 

This implies that if a cost reduction of more than 50 % is necessary to cover 

all the costs, it is better to look for alternatives; although it is possible to obtain 

bigger savings, it is not very likely.  

For the managerial theory, we research into the decision-making process 

starting with a literature review of the different theories, and analyse the 

misalignment between the beliefs of integration and the real integration. We 

also propose a framework to evaluate the instance, in order to analyse when it 

is advisable to follow a joint approach for an instance and when it is not.  

It is important to highlight the need to add an extra phase to the definition 

of the scope to decide if a traditional sequential approach is better or a joint 

solution approach is possible, since a shift in the scope of the problems creates 

new possibilities that could achieve a better global solution. We recommend 

spending more time on the first phase of the decision-making process, 

evaluating the alternatives and defining the scope since this has a huge impact 

on the decision. Then the utilization of either solving method will not affect 

the solution so much since many of the different techniques offer a similar 

solution. 

The last contribution is the development of different decision models to 

contribute to the decision-based model body of knowledge. To develop the 

algorithm model we presented a MILP model to deal with the vehicle routing 

problem plus the inventory problem and another version to also deal with the 

car scheduling problem. We accompanied this model with its heuristic version. 

We created two simulation models; one for the aeronautical manufacturing 

plant and another for the operating room scheduling at teaching hospitals. For 

the teaching hospital, we also presented a MILP, model. For the operating 

room scheduling we presented a different heuristic model and a MILP model 

to deal with the deterministic and stochastic version of the problem. For the 

stochastic version of the problem a hybrid method was also developed. These 

hybrid algorithms (constructive and improvement method) are a combination 

of exact and heuristic methods. 
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FUTURE RESEARCH 

There are three future research lines that we have to consider. The first one is 

the evaluation of the frameworks comparing them with other case studies from 

other sectors to try to make them more general, and identify other important 

factors that help to decrease the uncertainty. 

The second research line is in the health care sector, which presents great 

opportunities for researchers since the majority of the knowledge disseminated 

among the health sector is related with medical issues, which provide many 

opportunities for the management of the hospital, unlike the automotive 

industry where there are only a few players controlling all the market, causing 

a fast spread of the latest state-of-the-art techniques. Hospital control is split 

among federal and local goverments, private organizations, and non-profit 

organizations, causing the organizational changes to be split slowly among the 

hundreds of thousands of hospital and health care facilities. This offers 

opportunities for researchers to help to create change in the health care sector. 

If the scope of the problems is changed the complexity offers unlimited 

combinations to explore. There are so many problems that shifting the scope 

to combine it with other related problems could offer interesting results, 

thereby moving one step closer to holistic integration. 

RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH 

In the first part of the work it was really complicated to calculate the possible 

savings of different projects, since in many papers these quantities are not 

reported or the impact is based on non-quantifiable benefits. The other issue is 

the confidentiality of many projects where the data cannot be presented. For 

the car assembly line problem more computational power would allow us to 

solve bigger instances. For the operation research problem there was a lack of 

historical data to perform a parallel analysis in the teaching hospital.  

In order to keep testing the decision framework it is necessary to keep 

applying more case studies in order to generalize the results and make them 

more evident and less ambiguous. The health care field offers great 

opportunities since despite the recent awareness of the need to improve the 

decision-making process there are many opportunities to improve. Another big 

difference with the automotive industry is that the last improvements are not 

spread among all the actors. Therefore, in the future this research will focus 

more on the collaboration between academia and the health care sector. 
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Appendices  

 

QUESTION OF THE SURVEY 

 

1. In which sector are you? 

2. Number of employees working in the manufacturing facility(es) on 

which you planning activities are focused (shop floor / warehouse / 

assembling lines / …) 

3. Which process structure do you use for manufacturing or 

assembling? In case that in your facilities have many process, select 

the one that it is more related to your job position. 

4. How do you consider the performance of your production planning 

process? Ranging from poor performance [1] to good performance 

[5]. 

5. What is the degree of integration of the production planning 

process? Ranging from non-integrated [1] to fully integrated [5]. 

6. How is the flow of materials through production process? Ranging 

from no flow [1] to continuous flow [5]. 

7. Which is the amount of labour spent on produce a unit form the 

beginning to the end of the process? Ranging from low labour 

content [1] to high labour content [5]. 

8. Which level of labour skill or expertise do you need in your 

production process? Ranging from a low labour skill [1] to a high 

labour skill [5]. 

9. What is your production volume? Ranging from a quantity of one 

[1] to large scale mass production [5]. 

10. How many types of products family do you produce? E.g. for the 

car industry product family is a Civic, Accord, etc. 

11. How many variants of this products family do you produce? E.g. for 

the car industry model is each type of Civic that is produced. 

12. Who is the decision maker of the production sequence? Name of the 

position / department (e.g. chief production / manufacturing) please 

do not write any personal name. 
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13. Who is the decision maker of the replenishment policies? Name of 

the position / department (e.g. chief of inventory / manufacturing) 

please do not write any personal name. 

14. Who is the decision maker of the inventory management? Name of 

the position / department (e.g. chief of inventory / manufacturing) 

please do not write any personal name. 

15. Do you know which production method (philosophy) do you use to 

plan the production ? JIT, Lean, Total Quality Management, theory 

of constraints (TOC), etc. 

16. Do you keep track of the inventory next to the production system? 

17. Do you use any IT system / optimizer to communicate / optimize 

the production? SAP, Cplex, AIMMS, proprietary system, EPR or 

similar. Please specify as many as you want. 

18. Explain briefly how do you schedule your production. Resources 

constraints, inputs, outputs and goals. 

19. Explains briefly how do you make the replenishment of materials. 

Resources, constraints, inputs, outputs and goals. 

20. Explain briefly how do you manage your inventory. Resources, 

constraints, inputs, outputs and goals.  

21. How do you deal with the exceptions? Such as special orders or 

urgent orders. 

22. Does your company has job rotation through the different 

departments?  

23. The performance indicators of your job position are based on: 

24. In case that you want to receive the report of the survey please 

provide us an email to send you the report. We will not share any 

email with any one. 

 

ACO PSEUDO CODE 

Algorithm 1 

Initialize pheromones 

Repeat  

 π←empty {Start to sequence the cars} 

 while |π|≤|C| do let C−π denote the set of cars of C that are not sequenced 
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 cand←the minimum cost generated by {ck∈C−π}|∀cj∈C−π, 

cost(π<ck>)≤cost(π<cj>) 

 if ∀ci∈cand, cost(π<ck>)≤cost(π<cj>) then  

  for every car class cc ∈{classOf(ci)}∈ C − π do 

   T2(cc) ←T2(cc)+ cost(π<cj >) − cost(π)  

  end for 

 end if  

 Choose ci ∈ cand with the probability p(ci, candCar, π) 

 π ←<ci >  

 end while  

 keep the best sequence 

 calculates the instant demand for the best sequence  

 repeat  

  R← empty {Routes for transportation vehicles} 

  for vn = maxVehicles to vn =1 do  

   while |R|≤|S| do 

    let (R–S) denote the set of non-attended stations 

    duplicate the depot a number=Vn 

    the ants select a candS←the min cost generated by {sk ∈ R − S} 

with p(si, candS, R)  

   end while 

   if stock at station ≤ safety stock then 

    break 

   end if  

   decrease one replenishment vehicle 𝑣𝑛 = 𝑣𝑛 − 1 

   keep the best route for the transportation vehicles  

  end for 

 until stop criteria 

 calculate the cost 

 keep the best solution and update the pheromones  

until stop criteria  

 

 

 

 

 

 


