Large Vocabulary Continuous Speech Recognition

Berlin Chen（陳柏琳）
Associate Professor
Department of Computer Science & Information Engineering
National Taiwan Normal University

2007/10/18
Why LVCSR Difficult? (1/2)

- The software complexity of a search algorithm is considerably high
- The effort required to build an efficient decoder is quite large

Bayesian Decision Rule
(Risk Minimization with a Zero-One Risk Function)

\[
\hat{W} = \arg \max_W P(W|X)
\]

\[
= \arg \max_W \frac{P(X|W)P(W)}{P(X)}
\]

\[
= \arg \max_W P(X|W)P(W)
\]

Acoustic Model Probability
Language Model Probability
Why LVCSR Difficult? (2/2)

- Maximum Approximation of the Decoding Problem

\[
\hat{W} = \arg \max_{W} p(X | W) P(W)
\]

\[
= \arg \max_{W: W_1^n} \left\{ P(W_1^n) \sum_{s_1^T} p(X, s_1^T | W_1^n) \right\}
\]

\[
(s_1^T : \text{the corresponding state sequence of } W_1^n)
\]

\[
\hat{W} \approx \arg \max_{W: W_1^n} \left\{ P(W_1^n)^\alpha \max_{s_1^T} p(X, s_1^T | W_1^n) \right\}
\]

\[
(\alpha : \text{heuristic language model factor})
\]
Two Major Constituents of LVCSR

- **Front-end Processing** is a spectral analysis that derives feature vectors to capture salient spectral characteristics of speech input
 - Digital signal processing
 - Feature extraction

- **Linguistic Decoding** combines word-level matching and sentence-level search to perform an inverse operation to decode the message from the speech waveform
 - Acoustic modeling
 - Language modeling
 - Search
Classification of Approaches to LVCSR Along Two Axes

• Network Expansion
 – Dynamic expansion of the search space during the decoding
 • Tree-structured n-gram network
 • Re-entrant (word-conditioned) vs. start-synchronous (time-conditioned)
 – (Full) Static expansion of the search space prior to decoding
 • Weighted Finite State Transducers (WFST) - AT&T
 – Composition ($A \odot L \odot G$), Determinization, (Pushing) and Minimization of WFST
 • Static tree-based representations

• Search Strategy
 – Time-synchronous (Viterbi + Beam Pruning) Breadth-first (Parallel)
 – Time-asynchronous (A* or Stack Decoding) Best-first (Sequential)
Word-conditioned vs. Time-conditioned Search (1/3)

- **Word-conditioned Search**
 - A virtual tree copy is explored for each active LM history
 - More complicated in HMM state manipulation (dependent on the LM complexity)

- **Time-conditioned Search**
 - A virtual tree copy is being entered at each time by the word end hypotheses of the same given time
 - More complicated in LM-level recombination

Prefix-Tree of whole lexicon

Network Storage: 1 single Tree
Search Process: LM history is "attached" to each hypothesis.
"Virtual" Recombination Nodes

Network Storage: 1 single Tree
Search organization: sharing one-word extensions among theories ending at same time
Word-conditioned vs. Time-conditioned Search (2/3)

- Schematic Comparison

<table>
<thead>
<tr>
<th>Time-conditioned Search</th>
<th>Word-conditioned Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of tree-copies</td>
<td>No. of tree-copies</td>
</tr>
<tr>
<td>is independent of the complexity of LM constraints, but dependent on the duration of the utterance (however, the number is 30~50 according to the average word duration)</td>
<td>is dependent on the complexity of LM constraints (for bigram constraint, $</td>
</tr>
</tbody>
</table>
Word-conditioned Search (with Bigram LM)

ACOUSTIC LEVEL: process (tree,state)-hypotheses
- initialization: \(Q_0(t-1,s=0) = H(v;t-1) \)
 \(B_0(t-1,s=0) = t-1 \)
- time alignment: \(Q_v(t,s) \) using DP
- propagate back pointers \(B_v(t,s) \)
- prune unlikely hypotheses
- purge bookkeeping lists

WORD PAIR LEVEL: process word end hypotheses
- for each word \(w \)
 \[
 H(w;t) = \max_v \{ p(w|v) Q_v(t,S_w) \}
 \]
 \[
 V(w;t) = \arg\max_v \{ p(w|v) Q_v(t,S_w) \}
 \]
- store best predecessor \(v_0 := V(w;t) \)
- store best boundary \(\tau_0 := B_{v_0}(t,S_w) \)

Time-conditioned Search (with \(m \)-gram LM)

ACOUSTIC LEVEL: process state hypotheses \(\{Q_r(t,s)\} \)
- initialization:
 \[
 Q_{r-1}(t-1,s) = \begin{cases}
 H_{max}(t-1) & \text{if } s = 0 \\
 0.0 & \text{if } s > 0
 \end{cases}
 \]
- time alignment: \(Q_r(t,s) \) using DP recursion
- prune unlikely hypotheses
- purge bookkeeping lists

WORD LEVEL: process word end hypotheses \(\{Q_r(t,S_{v_m})\} \)
- for each word end \(v_m \)
 - for each boundary \(\tau \)
 - word score: \(h(v_m;\tau,t) = Q_r(t,S_{v_m})/H_{max}(\tau) \)
 - for each \((m-1) \)-gram \(v_1^{m-1} \)
 \[
 H(v_1^{m-1};t) = \max_{(v_1,\tau)} \{ p(v_m|v_1^{m-1}) \cdot H(v_1^{m-1};\tau) \cdot h(v_m;\tau,t) \}
 \]
 - store best predecessor \(\hat{v}_1(v_1^{m-1};t) \)
 - store best boundary \(\hat{\tau}(v_1^{m-1};t) \)
 - cache best score \(H(v_1^{m-1};t) \)
- \(H_{max}(t) = \max_{v_1^{m}} \{ H(v_1^{m};t) \} \)
Word-Conditioned Tree-Copy Search

• As trigram language modeling is used

- The pronunciation lexicon is structured as a tree
- Due to the constraints of \(n \)-gram language modeling, a word’s occurrence is dependent on the previous \(n-1 \) words
- Search through all possible tree copies from the start time to the end time of the utterance to find a best sequence of word hypotheses
Lexical/Phonetic Tree (1/2)

- Each arc stands for a phonetic unit
- The application of language modeling is delayed until leaf nodes are reached
 - Word identities are only defined at leaf nodes (Solution: language model smearing/look-ahead)
 - Each leaf node is shared by words having the same pronunciation

\[
P(say \mid \text{they})
\]

\[
P(tell \mid \text{they})
\]
Lexical/Phonetic Tree (2/2)

• Reasons for using the lexical/phonetic tree
 – States according to phones that are common to different words are shared by different hypotheses
 • A compact representation of the acoustic-phonetic search space
 – The uncertainty about the word identity is much higher at its beginning than its ending
 • More computations is required at the beginning of a word than toward its end
Linear Lexicon vs. Tree Lexicon
(for Word-Conditioned Search)

- In the general n-gram case ($n \geq 1$), the total number of prefix tree copies is equal to $|V|^{n-1}$, where $|V|$ is the lexicon size and n the LM order.

- When using a (flat) linear lexicon and in the general n-gram case ($n \geq 2$), the total number of copies of the linear lexicon would be $|V|^{n-2}$.

\[|V| \text{ linear lexicons for trigram modeling} \]

\[|V|^2 \text{ tree-copies for trigram modeling} \]
Context-Dependent Phonetic Constraints

- Context-Dependent modeling (e.g., cross-word, CW, triphone modeling) is a crucial factor regarding the search space at the junction between successive words.

Current NTNU system is implemented with intra-word INITIAL/FINAL or triphone modeling.

Implementation of CW would be much difficult for time-conditioned than word-conditioned search (why ?)
More Details on Word-Conditioned Search
Word-Conditioned Search (1/3)

- **Word (history)-conditioned Search**
 - A virtual/imaginary tree copy explored for linguistic context of active search hypotheses
 - Search hypotheses recombined at tree root nodes according to language modeling (or the history)

For n-gram language modeling:
- Retain distinct n-1-gram word histories

- Time is the independent variable; expansion proceeds in parallel in a “breadth-first” manner
Word-Conditioned Search (2/3)

- Integration of **acoustic** and **linguistic** knowledge by means of tree-dimensional coordinates
 - A network (**dynamically**) built to describe sentences in terms of words
 - Language models for network transition probabilities
 - A network (**statically**) built to describe words in terms of phone
 - The pronunciation dictionary (organized as a phonetic tree)
 - Transition penalties are applied
 - A network (**statically**) built to describe a phone unit in terms of sequences of HMM states
 - Spectral vectors derived from the speech signal are consumed
Word-Conditioned Search (3/3)

- Three basic operations performed
 - Acoustic-level re-combinations within tree arcs
 - Viterbi search
 \[Q_{v_1^{n-1}}(t, s; \text{arc}) = \max_{s'} \left[Q_{v_1^{n-1}}(t - 1, s'; \text{arc}) P(s|s'; \text{arc}) \right] \cdot P(x_t|s; \text{arc}) \]
 - Tree arc extensions
 \[Q_{v_1^{n-1}}(t, S_0; \text{arc}) = Q_{v_1^{n-1}}(t - 1, S_M; \text{arc}') \]
 - Language-model-level recombination
 - Word end hypotheses sharing the same history were recombined
 \[H(v_2^n; t) = \max_{v_1} \left[Q_{v_1^{n-1}}(t, S_{v_1^n}; \text{arc}_E) \cdot P(v_n|v_1^{n-1}) \right] \]
 \[Q_{v_2^n}(t, S_0; \text{arc}_B) = H(v_2^n; t) \]
 \[Q_{v_1^{n-1}}(t, S_0; \text{arc}_B) \]
Implementation Issues (1/3)

- Path hypotheses at each time frame are differentiated based on
 - The n-1 word history (for the n-gram LM)
 - The phone unit (or the tree arc)
 - The HMM state

- Organization of active path hypotheses (states)
 - Hierarchical organization

“A Data-driven Approach”
Implementation Issues (2/3)

- Organization of active path hypotheses (states)
 - Flat organization

Acoustic level recombination

\[
Q_{v_{1}^{n-1}}(t, s; \text{arc}) = \\
\max_{s'} \left[Q_{v_{1}^{n-1}}(t-1, s'; \text{arc}) P(s|s'; \text{arc}) \right] P(x_t|s; \text{arc})
\]

C++ STL (Standard Template Libraries) is suitable for such an access

\[\log(NS)\] for the access of any HMM state

\(NS\): the number of HMM states
Implementation Issues (3/3)

• The pronunciation lexicon is organized as a “trie” (tree) structure

```c
struct DEF_LEXICON_TREE {
    short Model_ID;
    short WD_NO;
    int *WD_ID;
    int Leaf;
    double Unigram;
    struct Tree *Child;
    struct Tree *Brother;
    struct Tree *Father;
};
```
Pruning of Path Hypotheses (1/5)

• Viterbi search
 – Belong to a class of breadth-first search
 • Time-synchronous
 • Hypotheses terminate at the same point in time
 – Therefore, hypotheses can be compared
 – The search hypotheses will grow exponentially
 – Pruning away unlikely (incorrect) paths is needed
 • Viterbi beam search
 • Hypotheses with likelihood falling within a fixed radius (or beam) of the most likely hypothesis are retained
 • The beam size determined empirically or adaptively
Pruning of Path Hypotheses (2/5)

• Pruning Techniques
 1. Standard Beam Pruning (Acoustic-level Pruning)
 • Retain only hypotheses with a score close to the best hypothesis

\[
Thr_{AC} (t) = \left[\max_{v_{n-1}^{\text{arc}}} Q_{v_{n-1}^{\text{arc}}} (t, s ; \text{arc}) \right] \times f_{AC}
\]

\[
Q_{v_{n-1}^{\text{arc}}} (t, s ; \text{arc}) < Thr_{AC} (t) \Rightarrow \text{pruned!}
\]

2. Language Model Pruning (Word-level Pruning)
 • Applied to word-end or tree start-up hypotheses

\[
Thr_{LM} (t) = \left[\max_{v_{n-1}^{\text{arc}}} Q_{v_{n-1}^{\text{arc}}} (t, S_0 ; \text{arc}_B) \right] \times f_{LM}
\]

\[
Q_{v_{n-1}^{\text{arc}}} (t, S_0 ; \text{arc}_B) < Thr_{LM} (t) \Rightarrow \text{pruned!}
\]

3. Histogram Pruning
 • Limit the number of surviving state hypotheses to a maximum number (Need some kind of sorting!)
 • Not Recommended!
Pruning of Path Hypotheses (3/5)

- Pruning Techniques (cont.)
 - Stricter pruning applied at word ends
 - The threshold is tightly compared to the acoustic-level one

- Reasons
 - A single path hypothesis is propagated into multiple word ends (words with the same pronunciation)
 - A large number of arcs (models) of the new generated tree copies are about to be activated

Pose severe requirements on the system memory

Pose severe requirements on the system memory
Pruning of Path Hypotheses (4/5)

• A simple dynamic pruning mechanism in the NTNU system
 – Acoustic-Level Pruning

```c
Acoustic_Penalty=800;
Acoustic_MAX=(Float) Min_Delta;
count=0;
for(state_no=0;state_no<NewTreeState;state_no++)
{
  cur_HMM-LEX_STATE[PT2][state_no].TPTR->Model_ID;
  cur_state=LEX_STATE[PT2][state_no].HMM_state;
  if(LEX_STATE[PT2][state_no].Score>Acoustic_MAX)
    Acoustic_MAX-LEX_STATE[PT2][state_no].Score;
}
for(state_no=0;state_no<NewTreeState;state_no++)
{
  cur_HMM-LEX_STATE[PT2][state_no].TPTR->Model_ID;
  cur_state=LEX_STATE[PT2][state_no].HMM_state;
  if(LEX_STATE[PT2][state_no].Score>(Acoustic_MAX-Acoustic_Penalty))
    count++;
}
//20020522
if(count>10000) Acoustic_MAX-Acoustic_MAX-40;
else if(count>5000) Acoustic_MAX-Acoustic_MAX-80;
else if(count>10000) Acoustic_MAX-Acoustic_MAX-100;
else if(count>5000) Acoustic_MAX-Acoustic_MAX-150;
else if(count<2000) Acoustic_MAX-Acoustic_MAX-200;
else if(count<1000) Acoustic_MAX-Acoustic_MAX-300;
else if(count<400) Acoustic_MAX-Acoustic_MAX-400;
else Acoustic_MAX-Acoustic_MAX-500;
ATreeState=0;
for(state_no=0;state_no<NewTreeState;state_no++)
{
  if(LEX_STATE[PT2][state_no].Score>Acoustic_MAX)
    {LEX_STATE[PT1][ATreeState]-LEX_STATE[PT2][state_no];
    ATreeState++;}
}
```
Pruning of Path Hypotheses (5/5)

- A simple dynamic pruning mechanism in the NTNU system
 - Word-Level (language-model-level) Pruning

```c
LM_Penalty=200;
LM_MAX=(float) Min_Delta;
for(j=0;j<LOCAL_ACTIVE_WORD_NO;j++)
  if((LOCAL_ACTIVE_TREE[j].Score) < LM_MAX)
    LM_MAX=LOCAL_ACTIVE_TREE[j].Score;

count=0;
for(j=0;j<LOCAL_ACTIVE_WORD_NO;j++)
  if((LOCAL_ACTIVE_TREE[j].Score) > (LM_MAX-LM_Penalty))
    count++;

if(count > LM_MAX-200)
  LM_MAX=LM_MAX-200;
else if(count > LM_MAX-100)
  LM_MAX=LM_MAX-100;
else if(count > LM_MAX-50)
  LM_MAX=LM_MAX-50;
else
  LM_MAX=LM_MAX-50;

count=0;
for(j=0;j<LOCAL_ACTIVE_WORD_NO;j++)
  if((LOCAL_ACTIVE_TREE[j].Score) = LM_MAX)
    count++;

if((ACTIVE_TREE_WORD[Frame_Num])
   ->STRUCT DEF ACTIVE_TREE_WORD *)
  malloc((count+1)*sizeof(struct DEF ACTIVE_TREE_WORD)) == NULL)
  {
    printf("ACTIVE_TREE_WORD allocation error at FRAME %d\n",Frame_Num);
    exit(1);
  }

ACTIVE_TREE_WORD_NO[Frame_Num]=0;
for(j=0;j<LOCAL_ACTIVE_WORD_NO;j++)
  if((LOCAL_ACTIVE_TREE[j].Score) = LM_MAX)
  {
    ACTIVE_TREE_WORD[Frame_Num][ACTIVE_TREE_WORD_NO[Frame_Num]]=LOCAL_ACTIVE_TREE[j];
    ACTIVE_TREE_WORD_NO[Frame_Num]++;
  }
```
Language Model Look-ahead (1/2)

- Language model probabilities incorporated as early in the search as possible
 - Language model probability incorporated for computing of $Q_{v_1^{n-1}}(t,s;arc)$
 - **Unigram Look-ahead**
 \[
 \pi(a) = \max_{w \in W(a)} P(w)
 \]
 - **Bigram Look-ahead**
 \[
 \pi_v(a) = \max_{w \in W(a)} P(w|v)
 \]
 - Anticipate the language model probabilities with the state hypothesis
 \[
 \widetilde{Q}_{v_1^{n-1}}(t,s;arc) = \pi(a_{s,arc})Q_{v_1^{n-1}}(t,s;arc)
 \]
 \[
 \text{Thr}_{AC}(t) = \left[\max_{(v_1^{n-1},s,arc)} \pi(a_{s,arc})Q_{v_1^{n-1}}(t,s;arc) \right] \times f_{AC}
 \]
 \[
 \widetilde{Q}_{v_1^{n-1}}(t,s;arc) < \text{Thr}_{AC}(t) \Rightarrow \text{pruned!}
 \]

Implementation of bigram look-ahead would be much difficult for time-conditioned than word-conditioned search (why?)
Language Model Look-ahead (2/2)

• A Simple recursive function for calculating unigram LM look-ahead

```c
void SpeechClass::Calculate_Word_Tree_Unigram()
{
    if(Root==(struct Tree *) NULL) return;
    Do_Calculate_Word_Tree_Unigram(Root);
}

void SpeechClass::Do_Calculate_Word_Tree_Unigram(struct Tree *ptrNow)
{
    if(ptrNow==(struct Tree *) NULL) return;
    Do_Calculate_Word_Tree_Unigram(ptrNow->Brother);
    Do_Calculate_Word_Tree_Unigram(ptrNow->Child);
    if(ptrNow->Father!=(struct Tree *) NULL)
    if(ptrNow->Unigram > ptrNow->Father->Unigram)
    ptrNow->Father->Unigram=ptrNow->Unigram;
}```
Acoustic Look-ahead (1/3)

• The Chinese language is well known for its monosyllabic structure, in which each Chinese word is composed of one or more syllables
  – Utilize syllable-level heuristics to enhance search efficiency
    • Help make the right decision when pruning
  – How to design the a suitable structure in order to estimate the heuristics for the unexplored portion of a speech utterance?

\[
\tilde{Q}_{v_{n-1}}(t, s; \text{arc}) = \log F_{v_{n-1}}(t, s; \text{arc}) = \log \tilde{Q}_{v_{n-1}}(t, s; \text{arc}) + \log \text{Heuristics}(t, s; \text{arc})
\]
Acoustic Look-ahead (2/3)

- Possible structures for heuristic estimation for the Chinese language

INITIALs  FINALS

Syllables

- Incorporated with the actual decoding score and language model look-ahead score

\[
\log \bar{D}(t, h, arc_k, s_q) = m_1 \cdot \log D(t, h, arc_k, s_q) + m_2 \cdot \log L_{LM}(arc_k) + m_3 \cdot \log L_{AC}(t, arc_k, s_q)
\]
Acoustic Look-ahead (3/3)

- Tested on 4-hour radio broadcast news
  - Use Kneser-Ney backoff smoothing for language modeling

<table>
<thead>
<tr>
<th></th>
<th>Character Error Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TS</td>
</tr>
<tr>
<td>MFCC</td>
<td>26.34</td>
</tr>
<tr>
<td>LDA-1</td>
<td>23.10</td>
</tr>
<tr>
<td>LDA-2</td>
<td>23.13</td>
</tr>
<tr>
<td>LDA-2+Acoustic Look-ahead</td>
<td>23.24</td>
</tr>
</tbody>
</table>

Table 2. Recognition efficiency achieved as acoustic model look-ahead was further applied. The recognition efficiency is expressed in terms of the real time factor.

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
<th>L_{AC}</th>
<th>TS</th>
<th>WG</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Acoustic Look-ahead</td>
<td>0.323</td>
<td>0.000</td>
<td>1.264</td>
<td>0.196</td>
<td>1.783</td>
</tr>
<tr>
<td>With Acoustic Look-ahead</td>
<td>0.323</td>
<td>0.004</td>
<td>0.738 (41.61%)</td>
<td>0.149 (23.98%)</td>
<td>1.214 (31.91%)</td>
</tr>
</tbody>
</table>

- The recognition efficiency for TC improves significantly (a relative improvement of 41.61% was obtained) while the time spent on acoustic look-ahead (0.004 real time factor) was almost negligible.
Word Graph Rescoring (1/6)

- Tree-copy search with a higher order (trigram, fourgram, etc.) language model (LM) will be very time-consuming and impractical.

- A word graph provides word alternatives in regions of the speech signal, where the ambiguity about the actual spoken words in high.

- Decouple the acoustic recognition (matching) and language model application.
  - Such that more complicated long-span language models (such as PLSA, LSA, Trigger-based LMs, etc.) can be applied in the word graph rescoring process.
Word Graph Rescoring (2/6)

• If word hypotheses ending at each time frame have scores higher than a predefined threshold
  – Their associated decoding information, such as the word start and end speech frames, the identities of current and predecessor words, and the acoustic score, can be kept in order to build a word graph for further higher-order language model rescoring
• E.g., a bigram LM was used in the tree search procedure, while a trigram LM in the word graph rescoring procedure

• Keep track of word hypotheses whose scores are very close to the locally optimal hypothesis, but that do not survive due to the recombination process

Bigram History Assumed
Word Graph Rescoring (3/6)

- If **bigram LM** is employed in the tree-copy search
  - For a word hypothesis $w$ ending at time $t$, information about its beginning time and its immediate predecessor word should be retained
  
  $\tau(t; v, w) = B_v(t, S_w; arc_E)$

  - The acoustic score of a word hypothesis $w$ is also retained

  $AC_v(w; \tau, t) = Q_v(t, S_{v_n}; arc_E) / H(v, \tau)$

  For each possible word hypothesis $w$, not only the word segment with the best predecessor word were recorded
  
  (those do not survive due to re-combination are also kept)
Word Graph Rescoring (4/6)

- Bookkeeping at the word level
  - When word hypotheses were recombined into one hypothesis to start up the next tree
  - Not only the word segments (arcs) with the best predecessor word were recorded
  - But for the hypotheses that have the same LM history, only the best one was kept ("word-pair" approximation)
“Word-Pair” Approximation: for each path hypothesis, the position of word boundary between the last two words is independent of the other words of this path hypothesis.

An illustration for “word-pair” approximation.
Word Graph Rescoring (6/6)

- A word graph built with word-pair approximation

- Each edge stands for a word hypothesis
- The node at the right side of an edge denotes the **word end**
  - There is a maximum of incoming word edges for a node
  - There is no maximum of the num. of outgoing edges for a node
Configuration of NTNU System

• Feature Extraction
  – HLDA (Heteroscedastic Linear Discriminant Analysis) + MLLT (Maximum Likelihood Linear Transformation) + MVN (Mean and Variance Normalization)

• Language Modeling
  – Bigram/Trigram trained with the SRI toolkit

• Acoustic Modeling
  – 151 RCD INITIAL/FINAL models trained with the HTK toolkit
  – Intra-word triphone modeling is currently under development

• Look-ahead Schemes
  – Unigram Language model look-ahead
  – Utterance-level acoustic look-ahead
References

Thank You!