ACCURATE MINIMAX DESIGN OF VARIABLE FRACTIONAL-DELAY FILTERS USING LINEARIZED OCTAGONAL CONSTRAINTS

Tian-Bo Deng

Department of Information Science
Faculty of Science, Toho University
Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
E-mail: deng@is.sci.toho-u.ac.jp

ABSTRACT

This paper proposes a linear programming (LP)-based minimax design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters. The original minimax design is a non-linear optimization problem. To convert this non-linear problem into a linear one, we apply the rotation theorem to linearize the non-linear constraints as linear ones through constraining the complex-valued errors of variable frequency response (VFR) inside an octagon in the complex plane such that the resulting constraints are linear functions of the VFD filter coefficients. Hence, the minimax design can be done by using an LP technique. An example is given to illustrate that an even-order VFD filter can be designed more accurately than using the decoupling LP approach that solves a pair of LP sub-problems separately.

1. INTRODUCTION

Variable digital filters have instantly changeable magnitude responses [1]-[4] or/and fractional-delay (FD) responses [5, 6]. Without redesigning a new filter, users can tune the frequency response of a variable digital filter on-line. This paper focuses on variable fractional-delay (VFD) filters that have found various applications in sampling rate conversion, discrete-time signal interpolations etc. One can find the details on various FD filters in the survey paper [7]. This section, we first briefly review the VFR and its error of variable fractional-delay (VFD) filters. The desired VFR of an even-order FIR VFD filter is specified by the rotation theorem [20, 21]. Such approaches have been applied for designing constant FIR and IIR filters [22, 23]. Since an octagon is closer to a circle (true minimax design) than a square, the largest deviation can be reduced, which leads to a more accurate VFD filter. We will use an example to show that the octagonally constrained LP yields a more accurate VFD filter than the decoupling LP.

2. OCTAGONALLY CONSTRAINED LP DESIGN

In this section, we first briefly review the VFR and its error of an even-order VFD filter and show that the complex-valued VFR error can be separated into real part and imaginary part so that the decoupling LP design is possible [19]. Then, we linearize the non-linear constraints as linear ones through constraining the complex-valued VFR errors inside an octagon. As compared with the decoupling design, since the number of constraints increases, the computational complexity required in the octagonally constrained LP design also increases. This trades off the higher design accuracy.

The desired VFR of an even-order FIR VFD filter is

\[H_d(\omega, p) = e^{-j\alpha p} = \cos(\omega p) - j \sin(\omega p) \]

where \(\omega \in [0, \pi] \) is the normalized angular frequency, the parameter \(\alpha \) specifies the passband edge frequency \(\alpha \pi \), \(0 < \alpha < 1 \), and \(p \) is the VFD parameter, \(p \in [-0.5, 0.5] \).

As in [19], we use the transfer function

\[H(z, p) = \sum_{n=-N}^{N} h_n(p) z^{-n} \]

(2)

to approximate (1), where the variable coefficients \(h_n(p) \) are the \(M \)-th degree polynomials in \(p \) as

\[h_n(p) = \sum_{m=0}^{M} a(n, m) p^m. \]

(3)

© EURASIP, 2011 - ISSN 2076-1465 1534
Substituting (3) into (2) yields

\[H(z, p) = \sum_{n=-N}^{N} \sum_{m=0}^{M} a(n, m) z^{-n} p^m \]

\[= \sum_{m=0}^{M} F_m(z) p^{2m} + \sum_{m=1}^{M} G_m(z) p^{2m-1} \]

(4)

with

\[F_m(z) = \sum_{n=-N}^{N} a(n, 2m) z^{-n} \]

\[G_m(z) = \sum_{n=-N}^{N} a(n, 2m - 1) z^{-n} \]

\[M_e = \left[\frac{M}{2} \right], \quad M_o = \left[\frac{M}{2} \right] \]

(5)

where \(F_m(z) \) and \(G_m(z) \) are called sub-filters in the Farrow structure [5], and \(\{ \cdot \} \) are floor function and ceiling function, respectively. We have proved in [14] that the sub-filters \(F_m(z) \) have even-symmetric coefficients

\[a(-n, 2m) = a(n, 2m) \]

and \(G_m(z) \) have odd-symmetric (anti-symmetric) coefficients

\[a(-n, 2m - 1) = -a(n, 2m - 1). \]

Furthermore, for \(m = 0 \), we have \(a(n, m) = \delta(n) \), thus \(F_0(z) = 1 \). By generalizing the same-order sub-filters \(F_m(z) \) and \(G_m(z) \) in (5) into different-order case, we get

\[F_m(z) = \sum_{n=-N}^{N} a(n, 2m) z^{-n} \]

\[G_m(z) = \sum_{n=-N}^{N} a(n, 2m - 1) z^{-n} \]

(6)

where the subscript “e” means that the sub-filters \(F_m(z) \) have even-symmetric coefficients

\[a(-n, 2m) = a(n, 2m) \]

and “o” denotes that \(G_m(z) \) have odd-symmetric coefficients

\[a(-n, 2m - 1) = -a(n, 2m - 1). \]

Fig. 1 shows the Farrow structure with \(M = 3 \), i.e., \((M_e, M_o) = (1, 2) \). Thus, the frequency responses of \(F_m(z) \) and \(G_m(z) \) are

\[F_m(\omega) = \sum_{n=-N}^{N} b_{en}(n) \cos(n\omega) = e^T_m b_{en} \]

\[G_m(\omega) = (-j) \sum_{n=-N}^{N} b_{on}(n) \sin(n\omega) = (-j) s^T_m b_{on} \]

(8)

where

\[b_{en}(n) = \begin{cases} a(n, 2m), & n = 0 \\ 2a(n, 2m), & n = 1, 2, \ldots, N_{en} \end{cases} \]

\[b_{on}(n) = 2a(n, 2m - 1), \quad n = 1, 2, \ldots, N_{en} \]

and

\[e^T_m = [1 \cos(\omega) \cos(2\omega) \cdots \cos(N_{en}\omega)] \]

\[s^T_m = [\sin(\omega) \sin(2\omega) \cdots \sin(N_{en}\omega)] \]

\[b_{em} = \begin{bmatrix} b_{em}(0) \\ b_{em}(1) \\ \vdots \\ b_{em}(N_{en}) \end{bmatrix}, \quad b_{om} = \begin{bmatrix} b_{om}(1) \\ b_{om}(2) \\ \vdots \\ b_{om}(N_{om}) \end{bmatrix}. \]

Therefore, we have

\[F_m(\omega) p^{2m} = \sum_{n=0}^{N_{en}} b_{en}(n) \cos(n\omega) \cdot p^{2m} \]

\[= f^T_m b_{em} \]

\[G_m(\omega) p^{2m-1} = (-j) \sum_{n=1}^{N_{en}} b_{on}(n) \sin(n\omega) \cdot p^{2m-1} \]

\[= (-j) s^T_m b_{om} \]

with

\[f^T_m = e^T_m p^{2m}, \quad s^T_m = s^T_m p^{2m-1}. \]

Hence, the VFR of \(H(z, p) \) can be written as

\[H(\omega, p) = 1 + \sum_{m=1}^{M_e} f^T_m b_{em} - j \sum_{m=1}^{M_o} s^T_m b_{om} \]

\[= 1 + f^T b_e - j s^T b_o \]

\[= \text{Re} \{ \omega, p \} - j \text{Im} \{ \omega, p \} \]

(9)

where

\[\text{Re} \{ \omega, p \} = 1 + f^T b_e, \quad \text{Im} \{ \omega, p \} = s^T b_o \]

\[f^T = \begin{bmatrix} f^T_1 \\ f^T_2 \\ \vdots \\ f^T_{M_e} \end{bmatrix}, \quad s^T = \begin{bmatrix} s^T_1 \\ s^T_2 \\ \vdots \\ s^T_{M_o} \end{bmatrix} \]

(10)

and

\[b_e = \begin{bmatrix} b_{e1} \\ b_{e2} \\ \vdots \\ b_{eM_e} \end{bmatrix}, \quad b_o = \begin{bmatrix} b_{o1} \\ b_{o2} \\ \vdots \\ b_{oM_o} \end{bmatrix}. \]

(11)

The VFR error can be computed by using (1) and (9) as

\[e_R(\omega, p) = H(\omega, p) - H_d(\omega, p) \]

\[= e_R(\omega, p) - je_l(\omega, p) \]

(12)

with

\[e_R(\omega, p) = \text{Re} \{ \omega, p \} - \cos(\omega p) \]

\[e_l(\omega, p) = \text{Im} \{ \omega, p \} - \sin(\omega p). \]

(13)

Clearly, the real-part error \(e_R(\omega, p) \) is only the function of the coefficient vector \(b_e \), and the imaginary-part error \(e_l(\omega, p) \) is only the function of \(b_o \). Therefore, the coefficient vectors \(b_e \) and \(b_o \) can be separately minimized as

minimize \(e_R \)

subject to \(|e_R(\omega, p)| \leq \varepsilon_R \)
and

$$\begin{align*}
\text{minimize} & \quad \varepsilon_l \\
\text{subject to} & \quad |\varepsilon_l(\omega, p)| \leq \varepsilon_l.
\end{align*}$$ \tag{15}

This approach is called decoupling LP design [19], but it may cause a large deviation from the true minimax design. This is because both the real-part error \(\varepsilon_R(\omega, p)\) and imaginary-part error \(\varepsilon_I(\omega, p)\) are constrained within a square

$$
|\varepsilon_R(\omega, p)| \leq \varepsilon_R \\
|\varepsilon_I(\omega, p)| \leq \varepsilon_I
$$ \tag{16}

with \(\varepsilon_R = \varepsilon_I = \varepsilon\). Thus, if both \(|\varepsilon_R(\omega, p)|\) and \(|\varepsilon_I(\omega, p)|\) take the maximum absolute value \(\varepsilon\), then the maximum absolute VFR error is \(\sqrt{2}\varepsilon\), i.e., the maximum deviation from the true minimax design is about 3 dB. As in the case of constant LP design for \(p = 0\), the rotation theorem can be applied to improve the design accuracy [20, 21]. Here, we constrain the VFR error \(\varepsilon(\omega, p)\) such that both \(\varepsilon_R(\omega, p)\) and \(\varepsilon_I(\omega, p)\) are inside the octagon as shown in Fig. 2. That is, the maximum deviation from the true minimax design may be \((1 - \cos(\pi/8))\varepsilon \approx 0.0761\varepsilon\). Consequently, the LP design can be formulated as

$$\begin{align*}
\text{minimize} & \quad \varepsilon \\
\text{subject to} & \quad |\Re \left[\varepsilon(\omega, p) e^{i\theta_k} \right] | \leq \varepsilon \cos(\pi/8)
\end{align*}$$ \tag{17}

with \(\theta_k = k\pi/4, k = 0, 1, 2, 3\), where \(\Re[c]\) denotes the real-part of complex number \(c\). Since

$$
\Re \left[\varepsilon(\omega, p) e^{i\theta_k} \right] = e_R(\omega, p) \cos \theta_k + e_I(\omega, p) \sin \theta_k = [1 + \cos(\omega p)] \cos \theta_k + [\sin(\omega p)] \sin \theta_k
$$ \tag{18}

the constraint in (17) can be rewritten as

$$
-\varepsilon \cos(\pi/8) + \Re \left[\varepsilon(\omega, p) e^{i\theta_k} \right] \leq 0 \\
-\varepsilon \cos(\pi/8) - \Re \left[\varepsilon(\omega, p) e^{i\theta_k} \right] \leq 0.
$$ \tag{19}

Substituting (18) into (19) yields

$$
A_k x \leq d_k, \quad k = 0, 1, 2, 3
$$ \tag{20}

with

$$
A_k = \begin{bmatrix}
-\cos(\pi/8) & 1 & \cos \theta_k & \sin \theta_k \\
-\cos(\pi/8) & -1 & -\cos \theta_k & -\sin \theta_k \\
\cos(\omega p) - 1 & \cos \theta_k & \sin \theta_k \\
\cos(\omega p) - 1 & -1 & -\cos \theta_k & -\sin \theta_k \\
\end{bmatrix}
$$

$$
d_k = \begin{bmatrix}
\epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \\
\end{bmatrix}
$$

Combining (20) for \(k = 0, 1, 2, 3\) together arrives at

$$
A = \begin{bmatrix}
A_0 & A_1 & A_2 & A_3
\end{bmatrix}
$$

$$
d = \begin{bmatrix}
d_0 & d_1 & d_2 & d_3
\end{bmatrix}
$$

Hence, the LP design (17) becomes

$$\begin{align*}
\text{minimize} & \quad e^T x \\
\text{subject to} & \quad Ax \leq d
\end{align*}$$ \tag{21}

with \(e^T = [1 \ 0 \ \cdots \ 0]\). To perform the LP design, we first discretize the parameters \(\omega\) and \(p\), and then solve the LP problem (21) on a set of discrete points. Since both the ideal and actual frequency responses of the VFD filter (4) have conjugate symmetry with respect to \(p = 0\), we only need to consider the half range \(p \in [0, 0.5]\). Moreover, we can easily verify from (13) that

$$
\varepsilon_R(\omega, p) = 0, \quad \varepsilon_I(\omega, p) = 0
$$

for \(p = 0\), i.e., the constraints in (19) are automatically met for \(p = 0\). Thus, we need not impose any constraints on the LP design for \(p = 0\). To solve (21), we discretize \(\omega \in [0, \alpha\pi]\) and \(p \in [0, 0.5]\) with step sizes \(\alpha\pi/(L_1 - 1)\) and \(0.5/(L_2 - 1)\), respectively, and get grid points \((\omega_1, p_1)\). Then, removing \(p_1 = 0\) leads to \(L = L_1(L_2 - 1)\) discrete points. Since there are 8 constraints for each point as shown in (20), the total number of constraints is \(8L = 8L_1L_2 - 1\).

3. DESIGN EXAMPLE

To approximate the ideal VFR in (1) with \(\alpha = 0.9\), we set \((M_e, M_o) = (3, 4)\) and the sub-filter orders

$$
\begin{bmatrix}
N_{e1} & N_{e2} & N_{e3} \\
N_{o1} & N_{o2} & N_{o3} & N_{o4}
\end{bmatrix} = \begin{bmatrix}
21 & 16 & 8 \\
36 & 29 & 19 & 7
\end{bmatrix}
$$ \tag{22}

Thus, the total number of the VFD filter coefficients is 139.

To evaluate the design accuracy, we use the maximum VFR error (in dB) defined as

$$
\varepsilon_{\text{Max}} = \max \left(20 \log_{10} |\epsilon(\omega, p)|, \omega \in [0, \alpha\pi], p \in [-0.5, 0.5] \right)
$$ \tag{23}

and the normalized root-mean-square (NRMS) VFR error

$$
\varepsilon_2 = \left(\int_0^{\alpha\pi} \int_{-0.5}^{0.5} |\epsilon(\omega, p)|^2 dp d\omega \right)^{1/2} \times 100\%
$$ \tag{24}

where \(\epsilon(\omega, p)\) is the VFR error in (12). Both the above two errors are numerically evaluated by discretizing \(\omega \in [0, \alpha\pi]\) with step size \(\alpha\pi/200\) and \(p \in [-0.5, 0.5]\) with step size 1/60, which generates 201 points for \(\omega \in [0, \alpha\pi]\) and 61 points for \(p \in [-0.5, 0.5]\). The design errors are

$$
\varepsilon_{\text{Max}} = -101.2166 \text{ (dB)}
$$

$$
\varepsilon_2 = 0.000532\%.
$$ \tag{25}

If the decoupling LP design is used, the resulting design errors are

$$
\varepsilon_{\text{Max}} = -100.38 \text{ (dB)}
$$

$$
\varepsilon_2 = 0.000512\%.
$$ \tag{26}

Therefore, the maximum error \(\varepsilon_{\text{Max}}\) is further reduced by applying the linearized octagonal constraints. This indicates
that constraining the complex-valued VFR errors within the octagon leads to more accurate minimax design than using a square approximation. As for the comparison with [17], since the decoupling LP design is better than the WLS design proposed in [17], it is obvious that the octagonally constrained LP design is better than the WLS design [17].

Fig. 3 depicts the log magnitude VFR errors from the octagonally constrained LP design. Clearly, the design errors are considerably flat. To verify the flatness, Fig. 4 shows the log magnitude VFR errors $|\mu(p)|$ for $p = 0.2, 0.35, 0.5$, respectively. It is seen that the errors $|\mu(p)|$ are almost equi-ripple. Fig. 5 depicts the VFD response and Fig. 6 plots its absolute errors whose maximum value is 0.001783.

4. CONCLUSION

This paper has presented an octagonally constrained LP approach for designing even-order FIR VFD filters. Instead of constraining the complex-valued VFR errors within a square in the complex plane, we constrain the VFR errors inside an octagon. Since the octagon is closer to a circle (true minimax design) than a square, we can get more accurate minimax design than the decoupling LP design. A design example has been given to illustrate that the proposed octagonally constrained LP design has improved the design accuracy, i.e., the maximum VFR error can be further reduced. The octagonally constrained LP approach can also be extended to the odd-order VFD filter design.

REFERENCES

Fig. 1. Farrow structure with \((M_e, M_o) = (1, 2)\).

Fig. 2. Octagonally constrained VFR errors.

Fig. 3. Log magnitude VFR errors.

Fig. 4. Log magnitude VFR errors for \(p = 0.2, 0.35, 0.5\).

Fig. 5. VFD response.

Fig. 6. Absolute VFD errors.