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Outline of the book

Common concepts for Metaheuristics

Single-solution based metaheuristics
« Common concepts for S-metaheuristics
« Local search
. Landscape analysis

« Advanced local search (Simulated annealing, Tabu search, VNS,
ILS, GLS, ...)

Population-based metaheuristics
. Common concepts for P-metaheuristics
« Evolutionary algorithms (Genetic algorithms, GP, ES, EDA, ...)
. Swarm inteeligence: Ant colonies, Particle swarm, ...
. Bess, Immune systems, ...
Metaheuristics for Multi-objective Optimization
Hybrid Metaheuristics

Parallel metaheuristics
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Outline of the chapter 1

= Optimization models

« Optimization methods
« Exact algorithms / Approximate algorithms
« When using metaheuristics?
« Greedy heuristics

= Main common concept of metaheuristics
« Representation
« Objective function

« Constraint handling
"= Parameter tuning
» Performance analysis of metaheuristics

= Software frameworks for metaheuristics
« ParadiseO framework
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From modeling to decision making

A 2

Farmulate T Mode

| Optimize

—»>

Solutlon

Implement

= In practice, we find solutions for models representing

problems

= Usually models are simplifications of the reality

Importance of models

Metaheuristics
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Optimization problem

« Definition (minimisation problem) : couple (S,f)

Given a search space S which represents feasible solutions
Given an objective functionf: S 2 R
Find s*eS suchas:

f(s*)<f(s) VseS

s* : global optimum

Large scale and complex optimization problems in many areas of

science and industry (Telecommunications, Biology, Transportation-
Logistics, Environment, Finance, Design, ...).

Problem size more and more important (combinatorial explosion) and/or
Delays more and more reduced.
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Optimization models

Ciptimization models

VoIUSsIVeE parnimoning

Mathematical programming Combinaterial Constraint satisfaction  MNon-analytic
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Continuous Integer Mized
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- ~inear programming Mon linear continucus
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Complexity theory: Algorithms

Definition 1.2 Big-() notation: an algorithm has a complexity f(n)

O{g(n)) if there erist positive constants ng and c such that ¥n > ng, f(n)

c.gin).

=« Polynomial-time algorithms: shortest paths,
spanning tree, network flow; ...

« EXponential-time algorithms

-'.'

——
Complexity | Size=10 20 30 40 50
Cx) 0.00001 s | 0.00002 s | 0.00003 s 0.00004 s 0.00005 s
O x2) 0.0001 = 0.0004 = 0.0009 s 0.0016 = 0.0025 s
=) 0.1s 0.32 s 24.3s 1.7 mn 5.2 mn
O 2*) 0.001 = 1.0= 17.9 mn 12.7 days 35.7 years
O 3%) 0.059 = 58.0 mn 6.5 yvears | 3855 centuries | 2= 10% centuries
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Complexity theory: Algorithms

 Two other notations to analyze algorithms

Definition 1.5 Big-{} notation: an algorithm has a complerity f(n) =
gln)) if there exist positive constants ng and ¢ such that ¥n > nq, f(n) =
c.g(n). The complexity of the algorithm fin) is lower bounded by the function

gimnj.

| Definition 1.6 Big-© notation: an algorithm has a complerity fin) =
O(gln)) if there exist positive constants ng, e1 and co such thatvn = ng,c1.g(n) =
fin) < es.gin). The complerity of the algorithm f(n) is lower bounded by the

function g(n).
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Complexity theory: Problems

Complexity of a problem = complexity of the best
algorithm solving that problem

Tractable (easy) = there exists a polynomial-time
algorithm to solve it

Intractable = if no polynomial-time algorithm exists

Most of real-life problems are intractable
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Decision / Optimization problems

« Decision problem has always « yes » or « no »
answer

Example 1.5 Prime number decision problem: a popular decision
problem consists in answering the following question: is a given number )
a prime number? It will return yes if the number € is a prime one. otherwise

the no answer is returned.

= Optimization problem can always be reduced to a
decision problem

Example 1.6 Optimization versus decision problem: the optimiza-
tion problem associated to the traveling salesman problem is: find the optimal
Hamiltonian tour which optimizes the total distance. Whereas the decision
problem is: given an integer [J, is there a Hamiltonian tour with a distance

less or equal to D7



Complexity classes

P class: decision problems
solved by a deterministic
machine in polynomial time

NP class: decision problems
solved by a non-
deterministic algorithm in
polynomial time

NP-complete: if all problems
of the class NP are reduced
polynomially to the problem

P=NP? Important open
guestion

NP Class

MP-Complete Problems
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Complexity classes: Examples
Q‘:-
Y N
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Other models for optimization

Optimization under uncertainty
. Input data subject to noise
. e.g VRP - stochastic demands, travel times, ...

Dynamic optimization
« Deterministic objective function, varies over time
. e.g. VRP — new demand - Track the optimal solution

. Multi-periodic optimization: periodic change (change known
a priori)
« €e.g. planning problem (traffic, incoming technology)

Robust optimization: engineering design problems
Multi-objective optimization problems
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“Generic” problems

Ex: SAT, TSP, and NLP are 3 canonical forms of
models than can be applied to solve different
problems.

Quadratic Assignment Problem

Bin Packing and Generalised Assignment Problems
Hub allocation problems

Graph Colouring & Partitioning

Vehicle Routing

Single & Multiple Knapsack

Set Partitioning & Set Covering Problems
Processor Allocation Problem

Various Staff Scheduling Problems

Job Shop Scheduling

Metaheuristics E-G. Talbi



Size of the search space

= SAT Problem : Boolean Satisfiability Problem (First NP-hard
problem).

= Many applications : timetabling, routing, ...
* Find a set of boolean variables
X =(Xg,0 X))
such as the boolean expression F = TRUE
= Boolean expression F = conjunction of clauses
= Clauses are disjunctions of k variables (k-SAT) :
F(X)=(X{VX3)A(X v X,)A(XyV X)) A
= For n=100, size of the search space = 2190 ~ 1039,

= Evaluation of 1000 solutions / sec ; 15 billions of years (Big Bang) to
evaluate less than 1% of the search space.

= k>2, NP-hard problem ; k=2, Polynomial problem
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Size of the search space

= TSP Problem : n cities, find a circuit which minimize the
total distance ; all cities must be visited once.

» Symmetric TSP <= dist(X,y)=dist(y,X)
" |S|=n!/2n=(n-1)!/2; n>6 TSP > SAT

= 10 cities = 181 000 solutions

= 20 cities = 10 000 000 000 000 000 solutions

= 50 cities = 100 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 solutions

= There is 1 000 000 000 000 000 000 000 litres of water In

the planet
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html
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The traveling salesman problem (from Chvatal's
page)

e 1800-1900: first descriptions of the problem,;

e 1920-1930: problem becomes well defined,;

e 1940-50: it starts to be recognized as “hard”;

e 1954: an instance with 42 cities is solved to optimality.
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Size of the search space

= NLP problem : Non-Linear Programming Problem
= Many applications : mechanics, aeronautics, ...

» Classical methods don’t give “good” results

Zn:cos4(xi)—2ﬁcosz(xi) Non linear Function
G2(x) = 1= i-1 Global Optimum unknown
20X
i=1
[]xz07 Zn:XiS7-5” 0<y, <10

Non-linear Constraint + linear constraint
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Size of the search space

» Treated as a mathematical problem = infinite number of
solutions / dimension.

= On machine : suppose a precision of six decimals, each
variable may take 10 000 000 different values.

= |S| =10 000 000" = 107"
= Search space larger than TSP
= Evaluation function and constraints ?

» Maximize G2(x) ; Non feasible solutions =0
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Constraints

= Most of the problems have constraints.

» EXx: Timetabling :

 List of courses, classes, students / classes, professor /
classes, available rooms, capacity of rooms, logistics of
rooms (video, computer, microphone; ...).

« Hard constraints (must be satisfied) :

Each class must be assigned to a room with a sufficient
number of seats and required facilities.

Students assigned to different classes must not be scheduled
at the same time.

Professors must not be scheduled to courses in parallel.
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Optimization + Simulation:

Cellular network des&m\:)
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Parameters of antennaes

AR
" 20 .’{‘

MINTINSH A
SRS

30

w _ =nall Directive {-3.00 dB=:84", -10,00 dB=>119")
_ lLarge Directive (-3,00 dB=>82°, -10,00 dB=>181")
__Onnidirectionnal (-3.00 dB=>0°, -10,00 dB=>0)

= Search space :
568 sites candidates =» 23689160 golutions
and — 600.10° choices for one antenna !

= Cost Evaluation (pop : 100, Gen : 10°,
cost = more than one year !)

Decision variables

Data Bounds
Power [26, 55] dBm
Diagram 3 types
Height [30,50] m
Azimut [0, 359]°

Tilt [-15, 0] °
Transmitters [1,7]
<

! ¥

1 omni or 1-3 sectorial

Metaheuristics
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Impact of the parameters via
simulation

Cell = zone covered by a BTS
Limited Traffic for a site (technological constraint)
Many sites are necessary

Sectorial type 1  Sectorial type 2 Propagation Model ?:

. dBm Free space
* Azimut 50° PIRE-10dBm  Tilt-15°
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Model : Constraints

= A set of BTS satisfying the
constraints :

« Covering

« Handover (mobility)
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Model : Objectives

Min Number of sites (cost)

Min Interferences

Max Trafic handled

Q)

X

Zone géographique

x Used Sites
x Non-used Sites

Covered Zone
O Handover Zone

Metaheuristics
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Other standard problems
® Integer programming problem (IP); Commercially
avallable.
® (Weighted) constraint satisfaction problem (CSP,
WCSP)
® Maximum satisfiability problem (MAX SAT)
® Set covering problem (SCP)
Generalized assignment problem (GAP)
® Generalized quadratic assignment problem (GQAP)
® Resource constrained project scheduling problem
(RCPSP)
® Vehicle routing problem (VRP)
® Cutting stock problem (CSTP)
¢ 2-Dimensional Packing Problem (2PP)

Metaheuristics E-G. Talbi



EX : Knapsack Problem

= The classic Knapsack problem is typically put
forth as:

A thief breaks into a store and wants to fill his
knapsack with as much value in goods as possible
before making his-escape. Given the following list
of items available, what should he take?

. Item A, weighting wA pounds and valued at vA
. Item B, weighting wB pounds and valued at vB
. Item C, weighting wC pounds and valued at vC

Metaheuristics E-G. Talbi



EX : Knapsack Problem

« Input

. Capacity K

. N items with weights w, and values v,
» Goal

« Output a set of items S such that
. the sum of weights of items in S is at most K
. and the sum of values of items in S is maximized

Metaheuristics E-G. Talbi



The Simplest Versions...

Can items be divided up such that only a portion is taken?

The t
3
6

nief can hold 5 pounds and has to choose from:
pounds of gold dust at $379.22/pound

pounds of silver dust at $188.89/pound

1/9 pound of platinum dust at $433.25/pound

Are all of the weights or total values identical?

The thief breaks into a ring shop where all of the rings
weight 1oz. He can hold 12 ounces; which should he

take?

Metaheuristics E-G. Talbi



A Deceptively Hard Version...

What if each problem has the same price/pound?

This problem reduces to the bin-packing problem: we

want to fit as many pounds of material into the knapsack
as possible.

How can we approach this problem?

Metaheuristics E-G. Talbi



Optimization methods

Exact algorithms Approximate (Heuristics)
Branch Dynamic Specific .
and X programming ¢ (e-approximation) Metaheuristics

Problems of small size .

in :
gle Population
solution
Hill-climbin Simulated Tabu Evolutionary ANts,
9 annealing search algorithms SS, PSO

Tendance in exploitation Tendance in exploration
(neighborhood)
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Exact methods

Obtain global optimal solutions

« Guarantee their optimality

Useless for large problems (problem, instance).

Table 1.4 Order of magnitude of the maximal size of instances that state-

of-the-art exact methods can solve to optimality. For some practical prob-

lems, this maximum size may be negligible.

mstance of size 13509 has been solved to optimality [32].

For the TSP problem, an

Optimization CQuadratic Flow-shop Graph Capacitated
Problems Assignment (QAP) | Scheduling (FSP) | Coloring | Vehicle routing
Size of the 30 objects 100 jobs 100 nodes 60 clients
instances 20 machines
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Approximate algorithms

» Approximate algorithms or Heuristics

« The word heuristic has its origin in the old Greek
word heuriskein: art of discovering new strategies
(rules) to solve problems

« Generate « high quality » solutions in a
reasonable time for practical use.

« No guarantee to find the global optimal solution

«—Approximation algorithms

« Guarantee on the bound of the obtained solution
from the global optimum.

o c-approximation

Metaheuristics E-G. Talbi



Metaheuristics

= [he suffix meta also a Greek word: upper
level methodology.

» Introduced by F. Glover in 1986

« Metaheuristic: Upper level general
methodology (templates) that can be used as
guiding strategies in designing underlying
heuristics to solve specific optimization
problems

Metaheuristics E-G. Talbi



Application of Metaheuristics

e Engineering design, topology optimization and structural optimization
in electronics and VLSI, aerodvnamics, fluid dvnamices, telecommunica-

tions, automotive, robotics. ...

- N r-11-1.1.1'11';L_]¢3-'|]"r_]_1'11.f]' ;1_‘[11] JJJL-J. g A AR ] i J.i.nF N A e oot o b -'-_1_ﬁ_.<“__._l._

Al

Srpeham mealzling, sormlebio Sl S smh Dertion 4on chsmistre—se
B o MM

i ) b pemrrizon ], SiEsmel szl e jEnm e T

¢ Planning in routing problems, robot planning, scheduling and produe-
tion problems, logistics and transportation, supplyv chain management,

environment, ...

o and so on. -
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Metaheuristic design

No “Super Method” for all problems (NFL Theorem)

« EXxploration / Exploitation
= Intensification / Diversification

Fopulation based Single-solution based
netahsuristics netaheurisiics

Random search Local search

Diversification Design space of a metaheuristic Intensification

» Nature inspired / Non nature inspired
Memory usage / Memory less

» Deterministic / Stochastic

» Population based / Single-solution based

» lterative / Greedy

= Dynamic vs. static objective function

= One vs. various neighborhood structures

Metaheuristics E-G. Talbi



Greedy heuristics

» Start from scratch (empty solution) and constructs a
solution by assigning values to one decision variable at a
time until a complete solution is generated

= Solution = presence/absence of a finite set of elements
E={e,,...,e,}. Partial solution = subset of E

« Objective function=f: 2E > R

Algorithm 1.2 Template of a greedy algorithm.

g = {}; /¥ Initial solution (null) */
Repeat
e; = Local-Heuristic(E'\{e/e € 5}) ;
/* next element selected from the set E' minus already selected elements */
If s Ue; € F Then /* test the feasibility of the solution */
8= sglley

Until Complete solution found




Constructive algorithms (Greedy)

Two design guestions
o Definition of the set of elements

. Element selection heuristic: which gives the best
“profit” at each iteration.

Assignment of decision variables one by one

At each iteration, choose the optimal decision for the
current decision variable

Take an optimal decision at each step does not
guarantee global optimality.

Popular (Simplicity)
Reduced complexity

Metaheuristics E-G. Talbi



Greedy for TSP: nearest neighbor

*

L]
L
o
L
-
=
™ *
L
n
[ ]
[ ]
[ ]

Gresdy fInal salutlan & -E -8B - C - 0 - A With cast = 33 Better solutlon - A -E - C- B - D - A with cost = 189

Fig. 1.10 Ilustrating a greedy algorithm for the TSP using a static heuristic. An
element is associated to an edge of the graph, and the local heuristic consists in choos-
ing the nearest neighbor. The obtained solution is (A —E — B — C' — D — 4) with

a total cost of 33, whereas a better solution with a cost of 19 is given (right).
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Greedy for knapsack

Construeted solution = (3,3.7)

Knapsack
=
& i
3
1 - 3 rd
=
4
Wim=5 W2=d Wi=5 W3 W5=5 WE=3 WTm5 Wii=3 inapsack with a
Ui=3 ui=3 u3=T7 UdmZ uS=g uG=T7 UT =5 UG=i& capaclty of 15

Fig. 1.11 Ilustrating a greedy algorithm for the knapsack problem. An element
1s associated to an object, and the local heuristic consists in choosing an element

minimizing the ratio %‘- The final solution may be not optimal.
i
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Greedy for spanning tree

@‘@ N O

=
SEEEEEENEEEN
Ao

Constructed solution

(B.E}, (C.F). (D.B), (E.H), (F.1}, (E.D}. {A.B], (H.1}

©,

gEEaEEEREEEE
n
EEEEmEEREN

| ]

n

-
LiE

Fig. 1.12 Illustrating a greedy algorithm for the spanning tree problem. The edge

(A,D)) has not been selected even if it is less costly than the edge (H,I) because it

generates a non feasible solution (a cyele).
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Constructive algorithms (SAT)

Heuristic : For each variable from 1 to n, in a given order,
assign the value which satisfies the maximum number of non
satisfied clauses (current).

Example :
X1 A (X; V X5) A (X VvV Xg) A(Xp Vv Xy)
Let us consider the variable x,, Xx,=TRUE (3 clauses)
... Clause 1 non satisfied.
Poor Performances.

Heuristic for order selection: Order all the variables based
on the frequencies (from small to large values)
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Constructive algorithms (SAT)

« Example:
(X vV X5) A (X Vv X3) /\&1 vV Xy) /\(iz v;4) A(Xy VvV Xs) A(Xy VvV Xg) AF

« F does not contain the variables x; and x,, but many
occurrences of the other variables.

» Other variables = higher frequencies
« X,=TRUE (2 clauses), x,=TRUE (2 clauses)
» Impossible to satisfy the clauses 3 and 4

= Other improvements : Forbid the assignment which
Initializes a clause to FALSE, frequencies into non treated
clauses, size of the clauses in choosing the order, ...
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Constructive algorithms (NLP)

No efficient greedy algorithms for NLP problems

Example : function of two variables X, and X,

Initialize one variable (ex. x,) to a constant, and vary
X, until optimum found.

When optimum found (x,=constant), vary x, until
optimum found

Efficient when no or small interactions between
variables (decomposable function)

Metaheuristics E-G. Talbi



EXx : Constructive algorithms (Graph
coloring)

e
Color Largest Degree First (LF Algorithm)

Welsh and Powell [1967] d

Order by degree

Node : b,
Color: 1
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EXx : Constructive algorithms (Graph

coloring) <‘ T

Merging Non-adjacent vertices < '
Dutton and Brigham [1981]

DB Algorithm ’

Cluster successively non-adjacent nodes,
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EXx : Constructive algorithms (Graph

coloring)
f a N
e
C
(a, C) (a f) (b,d) (c d) (c.e) (d 1)
! 2 0 2 1
1 2
{a,f} {a,f}
i = {a.f}
e e b,d}
% e~ )
v ¥
a C Metaheuristics C  E-G. Talbi



When using Metaheuristics?

An easy problem (e.g. P class) with VERY large
Instances

An easy problem with hard real-time constraints

Difficult problem (e.g. NP-complete) with moderate
size and/or difficult input structures

Optimization problems with time-consuming objective
functions and/or constraints

Non-analytical models of optimization problems:
black box scenario (objective function).

Non deterministic complex models: uncertainty,
robust optimization, dynamic, multi-objective, ...

Metaheuristics E-G. Talbi



Design / Control problems

Cuality of solutions
A
Dezign problems
(sirategic, long-i=rm)

Planning problems
(tactical, medium-term)

Control problems
[operational, short-term)

Search time

Fig. 1.15 Different classes of problems in terms of the tradeoff between quality of
solutions and search time: design (strategic, long-term), planning (tactical, medinm-

term), control (operational, short-term).
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Common design concepts for
Iiterative metaheuristics

« Representation (Encoding) = search space
= Objective function
= Search space + objective function = landscape

Metaheuristics E-G. Talbi



Representation: Characteristics

= Completeness: All solutions associated to the
problem must be represented.

= Connexity: A search path may exist between
any two solutions (related also to the search
operators), especially the global optimal
solution.

« Efficiency: easy to manipulate bu the search
operators (time and space complexities).

Metaheuristics E-G. Talbi



Types of Representations

= Linear representation: strings of symbols of a
given alphabet

= Non-linear representation: based generally on
graph structures (e.g. trees)

=.Representation-solution mapping
= Direct versus indirect encodings

Metaheuristics E-G. Talbi



Classical linear representations

apsack problem - Location problem

n
- SAT problem - Azzignment problem
-0/ IP problems

u | T -|T otz en n
I L I
maTy. oo g — L
- Continous optimization - Sequencing prablems
- Parameter identification - Traveling =alesman problem
- Global optimization - Scheduling problems
filx) = 2 + 4.y - 2x.2
1.23 5.65 9.45 4.76 8.96 148936527

Vector of real values Permutation




Representation

Representation ==> Search Space + Size

SAT Problem with n variables : Binary vector
of size n, element = variable

Size of the search space = 2".
Each solution of the search space is feasible

TSP Problem of n cities : permutation of
Integer numbers 1, ..., n. element = city.

Size of the search space =n!
Symmetric TSP . n!/ 2
Starting city: (n-1)!/ 2
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Representation

= Problem NLP : all real numbers for all n
dimensions.

» Floating numbers representation to approximate real
numbers : 6 digits of precision, 10" possible different

solutions.

»__Choice of the representation is important.

Metaheuristics E-G. Talbi



Example : 8 Queens

N,

Problem : Place 8 queens on a 8x8 chess such that
two queens don’t overlap.

Metaheuristics E-G. Talbi



Example : 8 Queens

A permutation of the numbers from
1to8

Permutation : a configuration

Metaheuristics E-G. Talbi



Problem Representation

, In the 8-Queens problem, when every
state is an assignment of the 8 queens on the board:

« The number of possibilities with all 8 queens on the board is
64 choose 8, which is over 4 billion.

« The solution of the problem prohibits more then one gqueen
per row, SO we may assign each gueen to a separate row,
now we’ll have 88 > 16 million possibilities.

« Same goes for not allowing 2 queens in the same column
either, this reduces the space to 8!, which is only 40,320
possibilities.

Metaheuristics E-G. Talbi



Non-traditional linear representations

Random keys encoding: real-values for permutations
Random Key: .41 0.1
Azcending order: 0.1

Dzcoded as permutation e 3 i 4

Messy representations
Non-coding regions
Diploid representations
Quantum representations
Mixed representations

Metaheuristics E-G. Talbi



Representation / solution mapping

= Transforms the encoding (genotype) to a
problem solution (phenotype).
« One-to-one: single solution = single encoding

. One-to-many: one solution = multiple encodings
(redundancy): e.g.. Ssymmetry in grouping problems

. Many-to-one: one encoding = multiple solutions

Solutions of the problem . .

=
Encodings of solufions * ; x i

One-fo-one One-to-many Many-to-one




Direct/ Indirect representations

= Indirect representation: encoding is not a complete
solution

= A decoder is required: deterministic or non-
deterministic

« EX: Flow-shop scheduling problem: j jobs. Each job
has M operations (M machines).

Mairiz of J*M elements

i I

lop7 op3

Job i 3 m3

1.3 13.17

Fermutation of jobs
Array of J"M elements

opE Cpd op1 3 [ ; 18
,J.::.. ma 4 m 1

20,22 | 34,38 51,55 Jak | job & 0132102321031 2230

[a] Direct encoding {b]} First Indirect enceding ic) Second Indirect encoding



ODbjective function

Formulation of the goal
Self-sufficient objective functions

Guiding objective functions

nteractive optimization

Meta-modeling

Representation decoding

f:5—R

Relative and competitive objective functions

Metaheuristics
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Self-sufficient objective functions

« Straightforward objective function = original
formulation of the problem

= TSP : minimize the total distance min > dist(x, )
« SAT :boolean formulae satisfied (TRUE).

= NLP : minimize the function G2(x).
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Guiding objective functions

« Transform the original goal for a better
convergence (guide the search)

= SAT : Non optimal solution = FALSE -
. No information on the quality of solutions,

« No indication on the improvement of solutions to
guide the search towards good solutions, ...

« New objective function = Number of satisfied
clauses

Metaheuristics E-G. Talbi



Graph coloring

G =(S,A
coloring f:S— C suchas(s;t) e A=
f(s) = f(t)

Chr(G) = min card f(S), chromatic number
of G :

Chr(G) = 3

Many applications : frequency assignment
(telecommunications), scheduling,
timetabling, register allocation, ...

Metaheuristics E-G. Talbi




Representation decoding

» Relationship between the representation and
the objective function

» Decode the representation to compute the
objective function

Metaheuristics E-G. Talbi



Steiner problem in a graph

Steiner problem in a graph:

non-oriented graph G=(V,E),V: vertices, E: edges
T: terminals (obligatory)

C.. weight of the edge e € E

Find a spanning tree oef.terminal-nodes.-of minmum
weight

(particulier case: if T =V, spanning tree problem of
mintmum weight)

Steiner vertices: non obligatory vertices which generate the
optimal solution.

Applications: Telecommunications, Phylogeny in biology, ...
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Steiner problem in a graph

-

1 1

1 1
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Steiner problem in a graph
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Steiner problem in a graph

Characterization of a solution
X < V: sub-set of non obligatory vertices

Steiner Tree
My

Tree which connects the terminal vertices (obligatory using a sub-
set X of non-obligatory vertices

Each Steiner Tree may be characterized by the sub-set of used
non-obligatory vertices

Optimal Steiner Tree
Ml

Spanning Tree with Minimum Weight connecting the terminal
vertices and using the optimal subset X* of non-obligatory vertices
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Steiner problem in a graph

IVI=p

Solution: s = (Sy,S,,---;S;,---,Sp) < X

Representation by a 0-1 indication of appartenance
s, = 1, if the I-th vertice non-obligatory is used (i.e., if
VvV, € X)

s, = 0, otherwise
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Interactive optimization

= The user is involved on-line in the loop of a
metaheuristic

= Motivations:

« User intervention to guide the search process:
user knowledge, decision making in multi-criteria
problems, ...

o User intervention to evaluate a solution: human
preferences (subjective evaluation), ...

. Taste of coffee, wine, ...
. Visual appeal or attractiveness

Metaheuristics E-G. Talbi



Relative and competitive objective
functions

« Impossible to have an absolute objective function f
. Ex: Game theory, co-evolution, learning classifier systems

. Game: Strategy A may be better than B, B better than C, C
better than A

= Relative fithess: associates a rank to a solution into a
population
« Competitive fithess: competition between solutions

. Bipartite
« Tournament
o Full

Metaheuristics E-G. Talbi



Meta-modeling

= [Ime consuming part: evaluation of the
objective function

= Approximate the objective function

« Extremely expensive objective functions: structural
design optimization (e.g. 3D aerodynamic system
design: computational fluid dynamics CFd
simulation)

« Approaches
. Neural networks
. Response surface methodology

« Kriging models, DACE, Gaussian techniques, machine
learning approaches (SVM, ...)
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Meta-modeling

(3]

Hecisionm variables, objective funcfion, constraints

Original optimization problem

Lccurate yevaluation

Y

Metaheuristic

Meta-model

1

1

;

Cheap :E'.'alua'.i:r'

1

'

: Optimization problem
Sest solution i using the meta-model

; .

1 1

v (3) ;

Fig. 1.23 Optimization using a meta-model. Once the model is constructed (1), the
metaheuristic can use either the meta-model (2) or alternate between the two models
(original and approximate) for a better compromise between accuracy and efficiency

(3).
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Constraint handling

=« Not trivial to deal with contraints
. Reject strategies: only feasible solutions are kept
. Penalizing strategies: penalty functions
» Repairing strategies: repair infeasible solutions

« Decoding strategies: only feasible solutions are
generated

« Preserving strategies: specific representation and
search operators which preserve the feasibility

Metaheuristics E-G. Talbi



Parameter tuning

« Many parameters have to be tuned for any
metaheuristics

= Large flexibility and robustness but careful initialization
(efficiency and effectiveness of the search)

« Optimal tuning depends on the problem and instance:
no universally optimal.tuning

Farameter initialization

- Py

Off-line initialization On-line initialization
Design of experiments Meta-optimization Dynamic Adaptive

(DOE)

'

Self-adapfive
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Meta-level

Base-lewvel

Meta-optimization

Metaheuristic 1

at meta-level

Solution x = (parameters. decision]

Objective function fm = best solution ocbiained by the metaheuristic 2

Metaheuristic 2 (x1)

Solution ¥ of the problem

Objective function fb of the problem

Metaheuristic 2 at base-level

Metaheuwristic 2 [xk)

Solution y of the problem

Dbjective function fb of the preblem

WMetaheuristic 2 at base-level

Metaheuristics
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Performance analysis of

» EXxperimental design: goals of the

metaheuristics

experiments, selected instances (real-life,
constructed) and factors to be defined

« Random instances may be controversial

« Measurements: measures to compute -
statistical analysis

= Reporting in a comprehensive way

Experimental design

- Define the goals
- Select the instances

Measurement

- Ordinal analysis

- Define the metrics
- Statistical analysis

ivietaneuristucs

E-G. 1albl

Reporting
- Report the results
- Visualization

- Data analysis
- Reproducibility




Criteria

Quality of solutions

Computational effort: search time, ...

Robustness (instances, problems,
parameters, ...)

Easy of use, simplicity, flexibility,
development cost, ...
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Quality of solutions

Gap to optimize

. »
e i Objective
- I function

i | ] >

Optimal solution Besi known solution Solution found
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Measurements

« Statistical analysis: performance assessment and
estimante the confidence of the results to be
scientifically valid

« Ordinal analysis: ranking metaheuristics (e.g. Borda
count voting method, Copeland’s method)

According to the characteristics of the measurements

Instances

Kolmogorov-Smirnowv test fes Mo Mormality cenditions
or Khi2 test rmore than 30 experiments

Farametric analysis: Mon parametric analysis:

- Student's t-test, - Wilzoxon

- ANOVA: more than 2 - 5ign test, permutation test

- Boostrap

- McHemar [(categorical variables)

- More than two algorithms: Friedman

- More than two criteria: multi-variate ANOWVA




Reporting: Interaction plots

A =.9. average guality A _ _
Ferf. Indicator 2

[e.g. guality of solutions, robustness)

Factor 2
[g.g. population size)

*.. pop size = 100 Y

Facior 1 Ferf. Indicator 1
—t— —> >

{e.g. search fime)

[e.g. muiation probability)

fa) Interaction plots (b} Tradeoff scatier plots

Fig. 1.29 (a) Interaction plots analyse the effect of two factors (parameters, e.g.
mutation probability, population size in evolutionary algorithms) on the obtained re-
sults (e.g. solution quality, time). (b) Scatter plots analyze the tradeoff between the

different performance indicators (e.g. quality of solutions, search time, robustness).
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Reporting: deviation bars, confidence
Intervals

v A Darbnrmancs indirater (2 a0 saleting ApEktE e o o s . o -oee LALASEL value (nonzoutlier).. .. ...
[}
1
lpper quartile : - |
¥,
Mean L
) Confidence interval
’
#i
ledian Ltandard deviation bars P R b
Lower guartile o=

mallest value (non-outlier) — R, =
- Box plots
Experiments
>
Different instances, parameters, metaheuristics, ..
results: deviation bars, Fig. 1.30 Some well known visualization tools to report

confidence intervals.
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Why a software framework?

» 3 major approaches are used for the
development of metaheuristics:

« From scratch or no reuse: costly (time,
manpower), error prone, difficult maintain and
evolve, ...

. Code reuse: reuse third party code — application
dependent, error prone, time consuming, ...

« Code and design reuse (design patterns): use of
generic templates, inheritance,

. Problem dependent part
. Invariant part

Metaheuristics E-G. Talbi



Why a software framework?

Optimization Problems In practice

. Diversity

. Continual evolution of the modeling (regards
needs, objectives, constraints, ...)

. Need to experiment many solving methods,
techniques of hybridization, parameters, ...

Metaheuristics E-G. Talbi



Main characteristics of software
frameworks

Maximum design and code reuse

Flexibility and adaptability

Utility

Transparent and-easy access to performance
and robustness

Portability

Ease of use and efficiency

Metaheuristics E-G. Talbi



ParadisEO framework

A templates-based, ANSI-C++ compliant Metaheuristic
Computation Framework.

GForge Project by INRIA Dolphin Team.

Paradigm Free (genetic algorithms, genetic programming,

particle swarm optimization, local search, TS, SA, ILS,
VNS, EDA, ES, ...).

Hybrid, distributed and cooperative models.
Elexible / a considered problem.

Generic components (variation operators, selection,
replacement, termination, particle behaviors ...).

Many services (visualization, managing command-line
parameters, saving/restarting, ...).

Metaheuristics E-G. Talbi



ParadisEO framework

Single-solution-based metaheuristics
(local search, simulated annealing.
tabu search, iterated local search,
variable neighborhood search,
threshold accepting., ...) | .

Farallel, distributed
and hybrid metaheuristics

Paradiseao-PEQC

Paradiseo-MO Paradiseo-BMOEQ

I Paradiseo-EQ =

_._r'.r |I

-I--r'-. .I

J--r' Ir
Population-based metaheuristics Multi-objective
{evoluticonary algorithms, metaheuristics

particle swarm optimization, ant colony, INSGA-1l SPEA?T
estimation of distribution algeorithms, |'E.E;_L|L 1
—_—

differential evaolution, ...}



Frameworks: State

of the art

Framework Metaheuristic Optimization Parallel Communication
or library problems models systems
[ EasyLocal++ S-meta Mono - -
Localizer++ S-meta Mono - -
PISA EA Multi - -
MAFRA mﬂ. Mono - -
iOpt Smeta, GA, CP | Mono, COP - -
OptQuest =5 Mono - -
GAlib GA Mono Algo-level PVM
Ite-level
Genocoplll EA Mono, Cont - -
DREAM EA Mono Algo-level Peer-to-peer
sockets
MALLEA LS Mono Algo-level MPI
EA Ite-level Netstream
Hotframe S-meta, BA Mono - -
TEMPLAR L5, BA, GA Mono, COFP | Algo-level MPI, Threads
JDEAL A, ES Mono Tte-level sockets
gosleyal. | peads, Suzkats, ., veoe L | | Gdm e | | MGES - |
ga-leval ~ Socksts Dist. BEAGLE A 3 Moro !
e level
go level MPL, Threads Yeredis 0 5 meta Mono, Mulii
e=leve!. Cloncor Pometa 20 Cond
l-lewal Slooas
Metaheuristics E-G. Talbi
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Guideline In solvingla given
optimization problem
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Model of the problem

Complexity and difficuliy of the problem

. - Reguiremesnt
[e.g. MF-compleiensss

size, structure) , ) :
{e.g. search tim gquality

of the application

of solutions, robustness)

State-of-the-art

. . When using metaheuristics?
optimization algerithms

v \

Design of a metaheuristic

k!
- Commeon concepts for metaheuristics: Y
- Representation

- Guiding objective function )
- Constraint handling

|
- Single-solution based metaheuristic (see chapier 2)
- Population based metaheuristic (seee chapter 3)

! \

L

3

Implementation of the metaheuristic I".I

i
- From scratch or no reuse (non desirable) I| II
- Code reuss € I II
- Design and code reuse {e.g. sofiware | f
framework ParadisEQ) {

e——""/ x& \/

Parameter tuning

Performance evaluation |
- Off-lime {e.g. design of experimenis,

- Experimental design
meta-cptimization) « > - Measurements
- On-line (dynamic, adaptive, - Reporting
self-adaptive)




Exercises
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Ex : Magic Square

2 [ 6 =15
4 3 8 =15
25 1 2

15 1515 15 15

- Distinct N2 integers over a matrix N*N

- Magic-square of order N : Arrangement such that the N numbers In
all rows, all columns, and both diagonals sum to the same constant
(magic sum)

- The magic sum has the value M(N) = (N3+N)/2.

- Magic squares of ordern =3, 4, 5, ..., the magic constants are: 15,
34, 65, 111, 175, 260, ...

Metaheuristics E-G. Talbi



EX : ‘Casse-tete’

oo 06 0 (0 6 O
oo 0 0 (0 0 O
oo o & o6 (O 0 O
o0 0 0 0 0 0 ¢

A non feasible solution

- 2D grid of size 4*4 covered by 16 jetons

- Each row and each column of the grid there
will be a pair number of jetons.

Metaheuristics E-G. Talbi



Bin packing

i <D

ﬁ
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Greedy for knapsack

Constructed solution = (3,5,7)

8
6
3
1 5 7
2
4
wil=5 w2=4 w3=6 w4=3 w5=5 w6=8 w7=5 w8=9 knapsack with a
ul=3 u2=>5 u3=7 ud=4 ub=2 u6=9 u7=>5 u8=8 capacity of 15
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Greedy for spanning tree

Constructed solution

(B,E), (C,F), (D,G), (E,H), (F,l), (E,D), (A,B), (H,I)

Metaheuristics E-G. Talbi
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