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Secure Multiparty Computation for
Privacy-Preserving Data Mining

Yehuda Lindell* and Benny Pinkas’

Abstract. In this paper, we survey the basic paradigms and notions of secure mul-
tiparty computation and discuss their relevance to the field of privacy-preserving
data mining. In addition to reviewing definitions and constructions for secure mul-
tiparty computation, we discuss the issue of efficiency and demonstrate the difficul-
ties involved in constructing highly efficient protocols. We also present common
errors that are prevalent in the literature when secure multiparty computation
techniques are applied to privacy-preserving data mining. Finally, we discuss the
relationship between secure multiparty computation and privacy-preserving data
mining, and show which problems it solves and which problems it does not.

1 Introduction

Background. Privacy-preserving data mining considers the problem of running data mining
algorithms on confidential data that is not supposed to be revealed—even to the party running
the algorithm. There are two classic settings for privacy-preserving data mining (although
these are by no means the only ones). In the first, the data is divided among two or more
different parties; the aim being to run a data mining algorithm on the union of the parties’
databases without allowing any party to view another individual’s private data. In the second,
some statistical data that is to be released (so that it can be used for research using statistics
and/or data mining) may contain confidential data; hence, it is first modified so that (a) the
data does not compromise anyone’s privacy, and (b) it is still possible to obtain meaningful
results by running data mining algorithms on the modified data set. In this paper, we will
mainly refer to scenarios of the first type.

A classical example of a privacy-preserving data mining problem of the first type occurs in
the field of medical research. Consider the case of a number of different hospitals that wish
to jointly mine their patient data for the purpose of medical research. Furthermore, let us
assume that privacy policy and law prevents these hospitals from ever pooling their data or
revealing it to each other, due to the confidentiality of patient records. In such cases, classical
data mining solutions cannot be used. Rather, it is necessary to find a solution that enables
the hospitals to compute the desired data mining algorithm on the union of their databases,
without ever pooling or revealing their data. Privacy-preserving data mining solutions have
the property that the only information (provably) learned by the different hospitals is the
output of the data mining algorithm. This problem, whereby different organizations cannot
directly share or pool their databases, yet must nevertheless carry out joint research via data
mining, is quite common. For example, consider the interaction between different intelligence
agencies. For security purposes, these agencies cannot allow each other free access to their
confidential information; if they did, then a single mole in a single agency would have access
to an overwhelming number of sources. Nevertheless, as we all know, homeland security also
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mandates the sharing of information! It is much more likely that suspicious behavior would be
detected if the different agencies were able to run data mining algorithms on their combined
data. Another example relates to data that is held by governments. In the late 1990s, the
Canadian Government held a vast federal database that pooled citizen data from a number
of different government ministries; this database was officially called the Longitudinal Labor
Force File, but became known as the “big brother” database. The aim of the database was
to implement governmental research that would arguably improve the services received by
citizens. However, due to privacy concerns and public outcry, the database was dismantled,
thereby preventing such “essential research” from being carried out (46). This is another
example where privacy-preserving data mining could be used to balance real privacy concerns
with the needs of governments to carry out important research.

Secure computation and privacy-preserving data mining. There are two distinct prob-
lems that arise in the setting of privacy-preserving data mining. The first is deciding which
functions can be safely computed (“safely” meaning that the privacy of individuals is pre-
served). For example, is it safe to compute a decision tree on confidential medical data in a
hospital, and publicize the resulting tree? This question is not the focus of this paper, but
will be discussed briefly in Section 5. For the most part, we will assume that the result of the
data mining algorithm is either safe or deemed essential. Thus, the question becomes how to
compute the results while minimizing the damage to privacy. For example, it is always possible
to pool all of the data in one place and run the data mining algorithm on the pooled data.
However, this is exactly what we don’t want to do (hospitals are not allowed to hand their raw
data out, security agencies cannot afford the risk, and governments risk citizen outcry if they
do). Thus, the question we address is how to compute the results without pooling the data in
a way that reveals nothing but the final results of the data mining computation.

This question of privacy-preserving data mining is actually a special case of a long-studied
problem in cryptography called secure multiparty computation. This problem deals with a
setting where a set of parties with private inputs wishes to jointly compute some function
of their inputs. Loosely speaking, this joint computation should have the property that the
parties learn the correct output and nothing else, even if some of the parties maliciously collude
to obtain more information. Clearly, a protocol that provides this guarantee can be used to
solve privacy-preserving data mining problems of the type discussed above.

This paper. In this paper, we present a tutorial-like introduction to secure multiparty com-
putation and discuss its applicability to privacy-preserving data mining. In Section 2! we begin
with a light introduction to the model of secure computation, how security is defined, and why.
This is followed by full definitions of security in a number of different models. This formal basis
is crucial when designing cryptographic protocols for any task, particularly privacy-preserving
data mining. Experience shows that cryptographic protocols are extraordinarily hard to get
right, and rigorous proofs of security are essential for avoiding subtle flaws that can result in
breaches of privacy. We stress that once an individual’s privacy is breached, there is no way
that the clock can be turned back. Thus, it is not possible to follow a hit-and-miss strategy,
whereby a heuristic protocol is deployed and then later replaced if it is deemed not “secure
enough”. For this reason, we strongly advocate a rigorous approach to this problem. We stress
that if it is not possible to construct protocols that are efficient enough in practice and that
meet the given definitions of security, then one should search for a different definition of secu-
rity that is more relaxed (yet one should not give up on the goal of having a rigorous proof of
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security relative to some definition). In Section [2.2| we give some examples of how this can be
achieved.

Having laid the definitional foundations of secure computation, in Section 3 we proceed to
describe the basic tools and paradigms used in constructing secure protocols. Since this paper
relates to privacy-preserving data mining, we focus on techniques for constructing highly effi-
cient protocols, thus presenting the best techniques known to date for achieving high efficiency.
Given the tutorial-like nature of this paper, in Section /4 we also present some of the common
errors that can be found in the literature on privacy-preserving data mining. It is our hope
that this will help those new to the field see the subtleties and difficulties that arise when
constructing protocols and proving their security.

By its nature, privacy-preserving data mining is a multidisciplinary field. As such, it is our
strong belief that it requires close cooperation between researchers and practitioners from the
fields of cryptography, data mining, public policy and law. Specifically, most cryptographers are
not familiar enough with how data mining really works (knowledge that is clearly necessary for
constructing helpful solutions), most data miners are not familiar enough with the subtleties of
cryptography and secure computation (making it difficult to construct rigorous cryptographic
protocols), and computer science researchers in general are often not familiar enough with the
real privacy needs of society. It is our hope that this paper will make the cryptography side of
privacy-preserving data mining more accessible to others, thereby contributing to a common
language that can be used by researchers from different fields.

We remark that for those readers just interested in understanding the basic notions of
secure multiparty computation, but with no interest in constructing protocols, it suffices to
read Section 2. Despite this, we suggest that such readers also read Section 3/ because a deeper
understanding is obtained by seeing how secure multiparty computation protocols are actually
constructed. Section 4]is of importance to those who wish to actually construct protocols and
can be skipped by others.

Further reading. Although much of this paper can be read with very little background in
cryptography, we do assume familiarity with basic concepts such as “computational indis-
tinguishability” when we present formal definitions. An excellent survey by Goldreich (19)
provides all of the background necessary for reading this and other advanced papers. For those
interested in going a step further, we recommend (28) for a general introduction to cryptogra-
phy, and (20; 21)) for a rigorous and in-depth study of the foundations of cryptography.

2 Secure Multiparty Computation — Background and Def-
initions
2.1 Motivation and Highlights

Distributed computing considers the scenario where a number of distinct, yet connected, com-
puting devices (or parties) wish to carry out a joint computation of some function. For example,
these devices may be servers who hold a distributed database system, and the function to be
computed may be a database update of some kind. The aim of secure multiparty computa-
tion is to enable parties to carry out such distributed computing tasks in a secure manner.
Whereas distributed computing classically deals with questions of computing under the threat
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of machine crashes and other inadvertent faults, secure multiparty computation is concerned
with the possibility of deliberately malicious behavior by some adversarial entity. That is, it is
assumed that a protocol execution may come under “attack” by an external entity, or even by a
subset of the participating parties. The aim of this attack may be to learn private information
or cause the result of the computation to be incorrect. Thus, two important requirements on
any secure computation protocol are privacy and correctness. The privacy requirement states
that nothing should be learned beyond what is absolutely necessary; more exactly, parties
should learn their output and nothing else. The correctness requirement states that each party
should receive its correct output. Therefore, the adversary must not be able to cause the result
of the computation to deviate from the function that the parties had set out to compute.

The setting of secure multiparty computation encompasses tasks as simple as coin-tossing
and broadcast, and as complex as electronic voting, electronic auctions, electronic cash schemes,
contract signing, anonymous transactions, and private information retrieval schemes. Consider
for a moment the tasks of voting and auctions. The privacy requirement for an election pro-
tocol ensures that no parties learn anything about the individual votes of other parties; the
correctness requirement ensures that no coalition of parties has the ability to influence the
outcome of the election beyond simply voting for their preferred candidate. Likewise, in an
auction protocol, the privacy requirement ensures that only the winning bid is revealed (if this
is desired); the correctness requirement ensures that the highest bidder is indeed the winning
party (and so the auctioneer, or any other party, cannot bias the outcome). Due to its gen-
erality, the setting of secure multiparty computation can model almost every cryptographic
problem.

To be even more concrete, let us consider the two-party problem of securely computing the
median. Here, we have two parties with separate input sets X and Y. The aim of the parties
is to jointly compute the median of the union of their sets X UY, without revealing anything
about each other’s set that cannot be derived from the output itself* Here, the parties’ private
inputs are X and Y, respectively, and their output is the median of X UY. In order to obtain
this output, they run an interactive protocol which involves them sending messages to each
other according to some prescribed specification, which in turn should result in them learning
the output as desired.

Security in multiparty computation. As we have mentioned above, the model that we
consider is one where an adversarial entity controls some subset of the parties and wishes
to attack the protocol execution. The parties under the control of the adversary are called
corrupted, and follow the adversary’s instructions. Secure protocols should withstand any
adversarial attack (the exact power of the adversary will be discussed later). In order to
formally claim and prove that a protocol is secure, a precise definition of security for multiparty
computation is required. A number of different definitions have been proposed and these
definitions aim to ensure a number of important security properties that are general enough to
capture most (if not all) multiparty computation tasks. We now describe the most central of
these properties:

e Privacy: No party should learn anything more than its prescribed output. In particular,

INote that some information may be learned from the output. For example, if the median of the
union is a number that is smaller than all of the values in X, and the sets are of the same size, then
the parties will know that all of values in Y are smaller than all of the values in X. Nevertheless, this
is “allowed” because it is inherent in the problem description — the parties must learn the output.
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the only information that should be learned about other parties’ inputs is what can be
derived from the output itself. For example, in an auction where the only bid revealed
is that of the highest bidder, it is clearly possible to derive that all other bids were lower
than the winning bid. However, this should be the only information revealed about the
losing bids.

e (Correctness: Fach party is guaranteed that the output that it receives is correct. To
continue with the example of an auction, this implies that the party with the highest bid
is guaranteed to win, and no party including the auctioneer can alter this.

e Independence of Inputs: Corrupted parties must choose their inputs independently of
the honest parties’ inputs. This property is crucial in a sealed auction, where bids
are kept secret and parties must fix their bids independently of others. We note that
independence of inputs is not implied by privacy. For example, it may be possible to
generate a higher bid without knowing the value of the original one. Such an attack can
actually be carried out on some encryption schemes (i.e., given an encryption of $100, it
is possible to generate a valid encryption of $101, without knowing the original encrypted
value).

e Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest
parties from receiving their output. In other words, the adversary should not be able to
disrupt the computation by carrying out a “denial of service” attack.

e Fairness: Corrupted parties should receive their outputs if and only if the honest parties
also receive their outputs. The scenario where a corrupted party obtains output and an
honest party does not should not be allowed to occur. This property can be crucial, for
example, in the case of contract signing. Specifically, it would be very problematic if the
corrupted party received the signed contract and the honest party did not.

We stress that the above list does not constitute a definition of security, but rather a set
of requirements that should hold for any secure protocol. Indeed, one possible approach to
defining security is to generate a list of separate requirements (as above) and then say that
a protocol is secure if all of these requirements are fulfilled. However, this approach is not
satisfactory for the following reasons. First, it may be possible that an important requirement
was missed. This is especially true because different applications have different requirements,
and we would like a definition that is general enough to capture all applications. Second, the
definition should be simple enough so that it is trivial to see that all possible adversarial attacks
are prevented by the proposed definition.

The standard definition today (cf. (8) following (22} [4; [35)) therefore formalizes security
in the following general way. As a mental experiment, consider an “ideal world” in which
an external trusted (and incorruptible) party is willing to help the parties carry out their
computation. In such a world, the parties can simply send their inputs to the trusted party,
who then computes the desired function and passes to each party its prescribed output. Since
the only action carried out by a party is that of sending its input to the trusted party, the
only freedom given to the adversary is in choosing the corrupted parties’ inputs. Notice that
all of the above-described security properties (and more) hold in this ideal computation. For
example, privacy holds because the only message ever received by a party is its output (and so
it cannot learn any more than this). Likewise, correctness holds since the trusted party cannot
be corrupted; thus it will always compute the function correctly.

Of course, in the “real world” there is no external party that can be trusted by all parties.
Rather, the parties run some protocol among themselves without any help. Despite this, a
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secure protocol should emulate the so-called “ideal world”. That is, a real protocol that is run
by the parties (in a world where no trusted party exists) is said to be secure, if no adversary
can do more harm in a real execution than in an execution that takes place in the ideal world.
This can be formulated by saying that for any adversary carrying out a successful attack in the
real world, there exists an adversary that successfully carries out the same attack in the ideal
world. However, successful adversarial attacks cannot be carried out in the ideal world. We
therefore conclude that all adversarial attacks on protocol executions in the real world must
also fail.

More formally, the security of a protocol is established by comparing the outcome of a real
protocol execution to the outcome of an ideal computation. That is, for any adversary attack-
ing a real protocol execution, there exists an adversary attacking an ideal execution (with a
trusted party) such that the input/output distributions of the adversary and the participating
parties in the real and ideal executions are essentially the same. Thus, a real protocol execu-
tion “emulates” the ideal world. This formulation of security is called the ideal/real simulation
paradigm. In order to motivate the usefulness of this definition, we describe why all the prop-
erties described above are implied. Privacy follows from the fact that the adversary’s output
is the same in the real and ideal executions. Since the adversary learns nothing beyond the
corrupted party’s outputs in an ideal execution, the same must be true for a real execution.
Correctness follows from the fact that the honest parties’ outputs are the same in the real and
ideal executions, and from the fact that in an ideal execution, the honest parties all receive
correct outputs as computed by the trusted party. Regarding independence of inputs, notice
that in an ideal execution, all inputs are sent to the trusted party before any output is received.
Therefore, the corrupted parties know nothing of the honest parties’ inputs at the time that
they send their inputs. In other words, the corrupted parties’ inputs are chosen independently
of the honest parties’ inputs, as required. Finally, guaranteed output delivery and fairness hold
in the ideal world because the trusted party always returns all outputs. The fact that it also
holds in the real world again follows from the fact that the honest parties’ outputs are the
same in the real and ideal executions.

We remark that the above informal definition is actually “overly ideal” and needs to be
relaxed in settings where the adversary controls a half or more of the participating parties (i.e.,
in the case that there is no honest majority). When this number of parties is corrupted, it
is known that it is impossible to obtain general protocols for secure multiparty computation
that guarantee output delivery and fairness (e.g. (11))). Therefore, the definition is relaxed and
the adversary is allowed to abort the computation (i.e., cause it to halt before termination),
meaning that “guaranteed output delivery” is not fulfilled. Furthermore, the adversary can
abort after it has already obtained its output, but before all the honest parties have received
their outputs. Thus, “fairness” is not achieved. Loosely speaking, the relaxed definition is
obtained by modifying the ideal execution and giving the adversary the additional capability
of instructing the trusted party to not send outputs to some of the honest parties. Otherwise,
the definition remains identical, thus preserving all other properties.

Adversarial power. The above informal definition of security omits one very important issue:
the power of the adversary that attacks a protocol execution. As we have mentioned, the
adversary controls a subset of the participating parties in the protocol. However, we have
not described the corruption strategy (i.e., when or how parties come under the “control”
of the adversary), the allowed adversarial behavior (i.e., does the adversary passively gather
information or can it instruct the corrupted parties to act maliciously), and what complexity
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the adversary is assumed to be (i.e., is it polynomial-time or computationally unbounded). We
now describe the main types of adversaries that have been considered:

1. Corruption strategy: The corruption strategy deals with the question of when and
how parties are corrupted. There are two main models:

(a)

(b)

Static corruption model: In this model, the adversary is given a fixed set of parties
whom it controls. Honest parties remain honest throughout, while corrupted parties
remain corrupted.

Adaptive corruption model: Rather than having a fixed set of corrupted parties,
adaptive adversaries are given the capability of corrupting parties during the com-
putation. The choice of who to corrupt and when can be arbitrarily decided by
the adversary and may depend on its view of the execution ;for this reason, it is
called adaptive. This strategy models the threat of an external “hacker” breaking
into a machine during an execution. We note that in this model, once a party is
corrupted, it remains corrupted from that point on.

An additional model, called the proactive model (40; [9), considers the possibility that
parties are corrupted only for a certain period of time. Thus, honest parties may become
corrupted throughout the computation (like in the adaptive adversarial model), but may
later become honest again.

2. Allowed adversarial behavior: Another parameter that must be defined relates to
the actions that corrupted parties are allowed to take. Once again, there are two main
types of adversaries:

(a)

(b)

Semi-honest adversaries: In the semi-honest adversarial model, even corrupted par-
ties correctly follow the protocol specification. However, the adversary obtains the
internal state of all the corrupted parties (including the transcript of all the mes-
sages received), and attempts to use this to learn information that should remain
private. This is a rather weak adversarial model. However, there are some settings
where it can realistically model threats to the system. Semi-honest adversaries are
also called “honest-but-curious” and “passive”.

Malicious adversaries: In this adversarial model, the corrupted parties can arbitrarily
deviate from the protocol specification, according to the adversary’s instructions.
In general, providing security in the presence of malicious adversaries is preferred,
as it ensures that no adversarial attack can succeed. Malicious adversaries are also
called “active”.

3. Complexity: Finally, we consider the assumed computational complexity of the adver-

sary.

(a)

As above, there are two categories here:

Polynomial-time: The adversary is allowed to run in (probabilistic) polynomial-time
(and sometimes, expected polynomial-time). The specific computational model
used differs, depending on whether the adversary is uniform (in which case, it is
a probabilistic polynomial-time Turing machine) or non-uniform (in which case, it
is modeled by a polynomial-size family of circuits). We remark that probabilistic
polynomial-time is the standard notion of “feasibly” computation; any attack that
cannot be carried out in polynomial-time is not a threat in real life.

Computationally unbounded: In this model, the adversary has no computational
limits whatsoever.
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The above distinction regarding the complexity of the adversary yields two very different
models for secure computation: the information-theoretic model (7} 10) and the compu-
tational model (45} [18). In the information-theoretic setting, the adversary is not bound
to any complexity class (and in particular, is not assumed to run in polynomial-time).
Therefore, results in this model hold unconditionally and do not rely on any complexity
or cryptographic assumptions. The only assumption used is that parties are connected
via ideally private channels (i.e., it is assumed that the adversary cannot eavesdrop or
interfere with the communication between honest parties).

By contrast, in the computational setting the adversary is assumed to run in polynomial-
time. Results in this model typically assume cryptographic assumptions, such as the
existence of trapdoor permutations. These are assumptions on the hardness of solving
some problem (e.g., factoring large integers) whose hardness has not actually been proven
but is widely conjectured.” We note that it is not necessary here to assume that the
parties have access to ideally private channels, because such channels can be implemented
using public-key encryption. However, it is assumed that the communication channels
between parties are authenticated; that is, if two honest parties communicate, then the
adversary can eavesdrop but cannot modify any message that is sent. Such authentication
can be achieved using digital signatures (24)) and a public-key infrastructure.

We remark that all possible combinations of the above types of adversaries have been considered
in the literature.

Feasibility of secure multiparty computation. The above-described definition of security
seems to be very restrictive in that no adversarial success is tolerated. Thus, one may wonder
whether it is even possible to obtain secure protocols under this definition, and if yes, for which
distributed computing tasks. Perhaps surprisingly, powerful feasibility results have been estab-
lished, demonstrating that in fact, any distributed computing task can be securely computed.
We now briefly state the most central of these results; let m denote the number of participating
parties and let ¢t denote a bound on the number of parties that may be corrupted:

1. For t < m/3 (i.e., when less than a third of the parties can be corrupted), secure

multiparty protocols with fairness and guaranteed output delivery can be achieved for
any function in a point-to-point network and without any setup assumptions. This can
be achieved both in the computational setting (18) (assuming the existence of enhance
trapdoor permutations”), and in the information-theoretic (private channel) setting (7t
10).

. For t < m/2 (ie., in the case of a guaranteed honest majority), secure multiparty

protocols with fairness and guaranteed output delivery can be achieved for any function
assuming that the parties have access to a broadcast channel. This can be achieved
in the computational setting (18) (with the same assumptions as above), and in the
information-theoretic setting (43).

. Fort > m/2 (i.e., when the number of corrupted parties is not limited), secure multiparty

protocols (without fairness or guaranteed output delivery) can be achieved assuming that
the parties have access to a broadcast channel and that enhanced trapdoor permutations

2The unfortunate state of affairs is that the ability to unconditionally prove the hardness of solving

such problems would involve major breakthroughs in the area of computational complexity, and as
such, seems currently out of reach.

3see (21, Appendix C)
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exist (45; 18} 21). These feasibility results hold only in the computational setting; analo-
gous results for the information-theoretic setting cannot be obtained when t > m/2 (7).

In summary, secure multiparty protocols exist for any distributed computing task. In the com-
putational model, this holds for all possible numbers of corrupted parties, with the qualification
that when no honest majority exists, fairness and guaranteed output delivery are not obtained.
We note that the above results all hold with respect to malicious adversaries. (The status
regarding adaptive versus static adversaries is more involved and is therefore omitted here.)

Challenges for secure multiparty computation. Given the aforementioned results, it may
seem that there are no challenges remaining for the field of secure multiparty computation.
This is far from the truth. In particular, the above are all feasibility results, meaning that
their focus is on establishing that secure computation (with some set of parameters) can be
achieved. However, if secure protocols are to be used in practice, protocols must be designed
that are highly efficient. This is especially true when the protocols are to be used on very large
data sets. In such cases, requiring a relatively heavy number-theoretic computation® per bit
of the input is completely infeasible (although computation on this scale is often considered to
be efficient in cryptography). We remark that there are many other open issues in the area of
secure multiparty computation (e.g., secure protocol composition in general network settings).
However, we will focus on issues of efficiency in this paper.

2.2 Definitions of Security

We will present two definitions below: one for the case of semi-honest adversaries and one for
the case of malicious adversaries. In both cases, we focus on the setting of static corruptions
and no honest majority. We will also only consider polynomial-time adversaries. For the sake
of clarity we present definitions for the two-party case only; the generalization to multiparty
computation is straightforward.

Technical Preliminaries

We denote the security parameter by n; essentially, this parameter determines the length of
cryptographic keys (or more exactly, the length of input needed to some hard problem so that
real-world adversaries cannot break the problem in a reasonable amount of time). We say that
a function p(-) is negligible in n (or just negligible) if for every positive polynomial p(-) there
exists an integer N such that for all n > N it holds that pu(n) < 1/p(n). Note that an event
that happens with negligible probability happens so infrequently that we can effectively dismiss
it.

All parties, including the adversary, run in time that is polynomial in n. We assume that
each party has a “security parameter tape” that is initialized to the string of n ones, denoted
1™; the parties then run in time that is polynomial in the input written on that tape. (The
reason why the security parameter is received as 1" rather than just the binary representation
of n is due to a technicality—we want the party to run in time that is polynomial in the length
of its input. Thus, we make the length of the security parameter input n by setting it to be
1™; this technicality can be ignored.)

4A typical such computation is that of a modular exponentiation, computing * mod N, where z,
a and N are all very large numbers, on the scale of hundreds of digits each.
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Let X(n,a) and Y (n,a) be random variables indexed by n and a (n here denotes the
security parameter and a will typically represent the inputs to the protocol), and let X =
{X(n,a)}nenacqo,13* and Y = {Y'(n,a)}nenac{o,1}+ be distribution ensembles. We say that
these two random variables are computationally indistinguishable if no algorithm running in
polynomial-time can tell them apart (except with negligible probability). More precisely, we
say that X and Y are computationally indistinguishable, denoted X = Y, if for every non-uniform
polynomial-time distinguisher D there exists a function p(-) that is negligible in n, such that
for every a € {0,1}",

IPr[D(X (n,a)) = 1] = Pr[D(Y (n,a)) = 1]| < u(n)

Thus, if X and Y are indistinguishable, it holds that for every efficient distinguisher D and
for every positive polynomial p(), there exists an N such that for all n > N it holds that D
cannot distinguish between the two with probability better than 1/p(n). Therefore, X and Y
are the same for all intents and purposes. Typically, the distributions X and Y will denote the
output vectors of the parties in real and ideal executions, respectively. In this case, a denotes
the parties’ inputs. (The outputs of the parties are modeled as random variables since the
operation of the parties is typically probabilistic, depending on random coin tosses (or random
inputs) used by the parties.)

Security in the Presence of Semi-Honest Adversaries

The model that we consider here is that of two-party computation in the presence of static
semi-honest adversaries. Such an adversary controls one of the parties (statically, and so at
the onset of the computation) and follows the protocol specification exactly. However, it may
try to learn more information than allowed by looking at the transcript of messages that it
received. The definitions presented here are according to Goldreich in (21).

Two-party computation. A two-party protocol problem is cast by specifying a random pro-
cess that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process
as a functionality and denote it f : {0,1}* x{0,1}* — {0,1}* x{0,1}*, where f = (f1, f2). That
is, for every pair of inputs z,y € {0,1}", the output-pair is a random variable (fi(z,y), f2(z,y))
ranging over pairs of strings. The first party (with input x) wishes to obtain fi(z,y), and the
second party (with input y) wishes to obtain fa2(z,y). We often denote such a functionality by
(z,y) — (fi(z,y), fo(z,y)). For example, consider the oblivious transfer functionality where
the first party has a pair of strings (zo, z1) for input and the second party has a bit o € {0,1}.
The aim of the protocol is for the second party to receive the message z, (but it should learn
nothing about x1—, and the first party should learn nothing about o). This functionality is
specified by ((xo,x1),0) — (A, zs), where A denotes the empty string (specifying in this case
that the sender learns nothing). When the functionality f is probabilistic, we sometimes use
the notation f(x,y,r), where r is a uniformly chosen random tape used for computing f.

Privacy by simulation. Intuitively, a protocol is secure if whatever can be computed by a
party participating in the protocol can be computed based on its input and output only. This
is formalized according to the simulation paradigm. Loosely speaking, we require that a party’s
view in a protocol execution be simulatable given only its input and output. We remark that in
the semi-honest model, this definitional approach is equivalent to the ideal/real model approach
described above; see (21)). This then implies that the parties learn nothing from the protocol
execution itself, as desired.
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Definition of security. We begin with the following notation:

e Let f = (f1, f2) be a probabilistic polynomial-time functionality and let 7 be a two-party
protocol for computing f.

e The view of the i*® party (i € {1,2}) during an execution of 7 on input (z, y) and security
parameter n is denoted viewT (n,z,y) and equals (1", z, 7%, mi, ..., m}), where 7% equals
the contents of the i*® party’s internal random tape, and m§- represents the 5% message
that it received.

e The output of the i*® party during an execution of = on input (z,y) and security pa-
rameter n is denoted output] (n,z,y) and can be computed from its own view of the
execution. Denote

output™ (n, z,) = (output] (n, z, ), output] (n, z, ).

Note that view] (n, z,y) and output™(n, z,y) are random variables, with the probability taken
over the random tapes of all the parties.

In the definition below we quantify only over inputs xz and y that are of the same length.
Some restriction on input lengths is required, and padding can be used to achieve this restric-
tion; see discussion in (21).

Definition 1. (security w.r.t. semi-honest behavior): Let f = (f1, f2) be a functionality. We
say that 7w securely computes f in the presence of static semi-honest adversaries if there exist
probabilistic polynomial-time algorithms S; and Sz such that for every z,y € {0,1}" where
|z| = |y|, we have:

{(Sl (1n7 T, f1 (.T, y))7 f(xv y))}neN é {(View.{r (’I’L, Z, y)7 OUtPUtW(nv Z, y))}nEN (1)
{(52(1", 9, f2(,9)). F(2,9)}en = {(views (n, 2, ), output™ (n, 2,))},,cx 2

Equations (1) and (2) state that the view of a party can be simulated by a probabilistic
polynomial-time algorithm given access to the party’s input and output only. This can be seen
by the fact that Si is given = and f(z,y) and must generate output that is indistinguishable
from the view of P; in a real execution. We note that it is not enough for the simulator S;
to generate a string indistinguishable from view] (n,z,y). Rather, the joint distribution of
the simulator’s output and the functionality output f(x,y) must be indistinguishable from
(view] (n,z,y),output™(n,z,y)). This is necessary for probabilistic functionalities; see (8} 21))
for a full discussion.

A simpler formulation for deterministic functionalities. In the case that the functionality
f is deterministic, a simpler definition can be used. We refer to (21, Section 7.2.2) for more
discussion.

Security in the Presence of Malicious Adversaries

In this section, we consider malicious adversaries who may arbitrarily deviate from the specified
protocol. When considering malicious adversaries and the case of no honest majority (as in the
important case of two parties), there are certain undesirable actions that cannot be prevented.
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Specifically, a party may refuse to participate in the protocol, may substitute its local input
(and instead use a different input), or may abort the protocol prematurely. One ramification
of the adversary’s ability to abort is that it is impossible to achieve “fairness”. That is, the
adversary may obtain its output while the honest party does not. These adversarial capabili-
ties are therefore not prevented by the definition of security (formally, they are “allowed” by
incorporating them in the ideal execution as well). The definition below is formalized according
to the ideal/real model paradigm described above.

Execution in the ideal model. Let P, and P, be the parties and let I denote the indices
of the corrupted parties controlled by an adversary A. In principle, it is possible for zero,
one, or both parties to be corrupted. However, for the sake of simplicity, we will consider the
most important case, that either I = {1} or I = {2} (i.e., exactly one of the two parties is
corrupted). An ideal execution proceeds as follows:

Inputs: Each party obtains an input; the i*® party’s input is denoted z;. The adversary A
receives an auxiliary input denoted z.

Send inputs to trusted party: The honest party P; for j ¢ I sends its input z; to the
trusted party. The corrupted party P; for ¢ € I (who is controlled by A) may either
abort by replacing the input x; with a special abort message, send its input x;, or send
some other input of the same length to the trusted party. This decision is made by A
and may depend on the value z; for ¢ € I and its auxiliary input z. Denote the inputs
sent to the trusted party by (wi,w2) (note that w; does not necessarily equal x;).

If the trusted party receives an input of the form abort from P;, it sends abort to both
parties and the ideal execution terminates. Otherwise, the execution proceeds to the
next step.

Trusted party sends outputs to adversary: The trusted party computes the pair of out-
puts (fi1(w1,w2), fo(wi,w2)) and sends f;(w1,w2) to the corrupted party P;.

Adversary instructs trusted party to continue or halt: A sends either continue or abort
to the trusted party. If it sends continue, the trusted party sends f;(w1,w2) to the honest
party P;. Otherwise, if A sends abort, the trusted party sends abort to party P;.

Outputs: The honest party always outputs the message it obtained from the trusted party.
The corrupted party outputs nothing. The adversary A outputs any arbitrary (proba-
bilistic polynomial-time computable) function of the initial input z;, the auxiliary input
z, and the output abort or f;(w1,w2) obtained from the trusted party.

Let f:{0,1}* x {0,1}* — {0,1}* x {0,1}* be a two-party functionality, where f = (f1, f2); let
A be a non-uniform probabilistic polynomial-time machine, and let I = {1} or I = {2} be the
index of the corrupted party. Then, the ideal execution of f on inputs (z1,z2), auxiliary input
z to A and security parameter n, denoted IDEALy 4(.) (7, ®1,®2)), is defined as the output
pair of the honest party and the adversary A from the above ideal execution.

Execution in the real model. We next consider the real model in which a real two-party
protocol 7 is executed (and there exists no trusted third party). In this case, the adversary A
sends all messages in place of the corrupted party, and may follow an arbitrary polynomial-
time strategy. In contrast, the honest party follows the instructions of . (We assume that at
least one of the parties is honest, since we are not required to help a party that deviates from
the protocol; therefore, if both parties are corrupt we are not required to provide any security
guarantee.)
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Let f be as above and let m be a two-party protocol for computing f. Furthermore,
let A be a non-uniform probabilistic polynomial-time machine and let I be the index of the
corrupted party. Then, the real execution of m on inputs (z1,z2), auxiliary input z to A and
security parameter n, denoted REALr 4(z),1(n,Z1,22), is defined as the output vector of the
honest party and the adversary A from the real execution of 7. The auxiliary input z models
side information that the adversary may have and that is important for obtaining meaningful
notions of security (in reality, the adversary may know part of the input or may at least know
what inputs the honest party is unlikely to have; such knowledge is auxiliary information and
is included in z).

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition
asserts that a secure party protocol (in the real model) emulates the ideal model (in which a
trusted party exists). This is formulated by saying that adversaries in the ideal model are able
to simulate executions of the real-model protocol. As in the semi-honest case, we will consider
executions where the inputs are of the same length.

Definition 2. (security w.r.t. malicious adversaries): Let f and 7 be as above. Protocol 7
is said to securely compute f with abort in the presence of malicious adversaries if for every
non-uniform probabilistic polynomial-time adversary A for the real model, there exists a non-
uniform probabilistic expected polynomial-time adversary S for the ideal model, such that for
every I, every z1,z2 € {0,1}" such that |z| = |y|, and every auxiliary input z € {0,1}":

{IDEALf,S(Z),I(TL, X, xg)}neN é {REAL,MA(Z)J(’I%, T, xQ)}neN

We remark that the ideal-model adversary is denoted S because in security proofs it behaves
as a simulator (simulating a real protocol execution for A while it really interacts in the ideal
model). We also allow the ideal-model adversary to run in expected polynomial-time (rather
than strict polynomial-time), because this is often necessary for proving the security of efficient
protocols.

Notice that the security guarantees provided by Definition 2! are very strong. Essentially,
the adversary’s only possible attacks are to choose its input as it wishes (arguably, a legitimate
strategy), and cause an early abort in the protocol. In this light, the feasibility results that we
surveyed in Section 2.1l are truly amazing.

Modular Sequential Composition

Sequential composition theorems for secure computation are important for two reasons. First,
they constitute a security goal within themselves. Second, they are useful tools that help in
writing proofs of security. The basic idea behind these composition theorems is that it is
possible to design a protocol that uses an ideal functionality as a subroutine, then analyze
the security of the protocol when a trusted party computes this functionality. For example,
assume that a protocol is constructed that uses the secure computation of some functionality
as a subroutine. First, we construct a protocol for the functionality in question and prove
its security. Next, we prove the security of the larger protocol that uses the functionality
as a subroutine in a model where the parties have access to a trusted party computing the
functionality. The composition theorem then states that when the “ideal calls” to the trusted
party for the functionality are replaced by real executions of a secure protocol computing this
functionality, the protocol remains secure.
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The f-hybrid model. The aforementioned composition theorems are formalized by consider-
ing a hybrid model, where both parties interact with each other (as in the real model) and use
trusted help (as in the ideal model). Specifically, the parties run a protocol 7 that contains
ideal calls to a trusted party computing a functionality f. These ideal calls are just instructions
to send an input to the trusted party. Upon receiving the output back from the trusted party,
the protocol m continues. We stress that honest parties do not send messages in m between
the time that they send input to the trusted party and the time that they receive back output
(this is because here, sequential composition is considered). Of course, the trusted party may
be used a number of times throughout the m-execution. However, each time is independent
(i-e., the trusted party does not maintain any state between these calls). We call the regular
messages of 7 that are sent amongst the parties standard messages and the messages that are
sent between parties and the trusted party ideal messages.

Let f be a functionality and let 7 be a two-party protocol that uses ideal calls to a trusted
party computing f. Furthermore, let A be a non-uniform probabilistic polynomial-time ma-
chine and let I be the set of corrupted parties. Then, the f-hybrid execution of 7 on inputs
(21, z2), auxiliary input z to .4, and security parameter n, denoted HYBRIDfr!A(z)!I(n, x1,%2),
is defined as the output vector of the honest parties and the adversary A from the hybrid
execution of 7, with a trusted party computing f.

Sequential modular composition. Let f and 7 be as above, and let p be a protocol. Consider
the real protocol n” that is defined as follows. All standard messages of m are unchanged.
When a party P; is instructed to send an ideal message a; to the trusted party, it begins a
real execution of p with input «; instead. When this execution of p concludes with output g;,
party P; continues with 7 as if 3; was the output received by the trusted party (i.e., as if it
were running in the f-hybrid model). The following theorem was proven in (8)):

Theorem 3. Let f be a two-party probabilistic polynomial-time functionality and let p be a
protocol that securely computes f with abort in the presence of malicious (resp., semi-honest)
adversaries. Let g be a two-party functionality, and let 7 be a protocol that securely computes g
with abort in the f-hybrid model in the presence of malicious (resp., semi-honest) adversaries.
Then, 7° securely computes g with abort in the presence of malicious (resp., semi-honest)
adversaries.

The use of this composition theorem (and others similar to it) greatly simplifies proofs
of security. Instead of analyzing a large protocol and proving reductions to subprotocols, it
suffices to analyze the security of the large protocol in the idealized hybrid model.

Other Definitions of Security

The semi-honest and malicious models described above are the most standard. However, to
some extent, both of these models are problematic. First of all, the semi-honest model is too
weak for many settings. Would we accept an election protocol where any party who actively
cheats can sway the outcome, or learn individual parties’ votes? Thus, this model is more
appropriate for settings where the participating parties basically trust each other. However,
they may have other reasons for not joining all of their data. This is the case of hospitals
who wish to carry out joint research on their confidential patient records. Due to privacy laws
they are not allowed to look at each others’ databases; however, they are basically honest.
Thus, the semi-honest model is very suitable for such settings. We remark that the security
guaranteed in this model ensures that no inadvertent leakage of information takes place. In
particular, even if one of the hospital’s computers is broken into after the protocol execution
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takes place, it is guaranteed that nothing is revealed about the other databases. Having said
this, in many (if not most) cases of privacy-preserving data mining, we do not and cannot
trust the participants to not cheat (especially if they can easily do so without getting caught).
This leads to the conclusion that the malicious model is preferable, and indeed from a security
point of view this is definitely the case. However, when it comes to efficiency, the malicious
model poses great difficulties. In particular, although we already know that in principle every
efficient function can be securely computed in this model, until recently we have known of very
few interesting functions (e.g., functions that constitute non-trivial data-mining algorithms)
that can be securely computed in the presence of malicious adversaries and that are even
reasonably efficient. Thus, it is not clear if our goal of constructing privacy-preserving data
mining protocols that can be used in practice will be achieved if we limit ourselves to this model.
Below, we briefly describe two different definitions of security that provide lower guarantees,
but are arguably sufficient in many settings. Importantly, in both of these models it is possible
to construct efficient secure protocols.

Guaranteeing privacy only. As we have discussed, the definition of security that follows the
ideal/real simulation paradigm provides strong security guarantees. In particular, it guarantees
privacy, correctness, independence of inputs, and so on. However, in some settings, it may be
sufficient to guarantee privacy only. We warn that this is not so simple, and in many cases it is
difficult to separate privacy from correctness. Nevertheless, privacy still provides a non-trivial
security guarantee. We will not present a general definition here, because this depends heavily
on the function being computed. Nevertheless, we will present a definition for one specific
function in order to demonstrate how such definitions look. For this purpose, we consider the
oblivious transfer function. In this function, there is a sender S with a pair of input strings
(z0,21) and a receiver R with an input bit o. The output of the function is nothing for the
sender and the string z, for the receiver. Thus, a secure oblivious transfer protocol has the
property that the sender learns nothing about o while the receiver learns at most one of the
strings (zo,z1). Unfortunately, defining privacy here without resorting to the ideal model is
very non-trivial. Specifically, it is easy to define privacy in the presence of a malicious sender
S™*; we simply say that S™ cannot distinguish the case that R has input 0 from the case that it
has input 1. However, it is more difficult to define privacy in the presence of a malicious receiver
R™, because it does learn something. A naive approach to defining this says that for some bit b
it holds that R* knows nothing about x,. However, this value of b may depend on the messages
sent during the oblivious transfer and so cannot be fixed ahead of time. Fortunately, in the case
of two-message oblivious transfer (where the receiver sends one message and the sender replies
with one message), it is possible to formally define this. The following definition of security
for oblivious transfer is based on (25) and states that replacing one of xg and z: with some
other x should go unnoticed by the receiver. The question of which of xo,x1 to replace causes
a problem which is solved in the case of a two-message protocol by fixing the first message;
see below. (In the definition below we use the following notation: for a two-party protocol
with parties S and R, we denote by viewg(S(a), R(b)) the view of S in an execution where it
has input a, and R has input b, and the security parameter is n. Furthermore, we denote by
Sn(a; ) the distribution over the message sent by S upon input a, security parameter n, and
message received q. When the protocol has two messages only and the first message ¢ is sent
by R, the message S(a;q) defines R’s view in the execution.)

Definition 4. A two-message two-party probabilistic polynomial-time protocol (S, R) is said
to be a private oblivious transfer if the following holds:

e Correctness: If S and R follow the protocol, then after an execution in which S has for
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input any pair of strings zo,z1 € {0,1}" and R has for input any bit o € {0, 1}, the
output of R is x,.

e Privacy for R: For every non-uniform probabilistic polynomial-time S* and every auxil-
iary input z € {0, 1}, it holds that

{viewg« (5™ (z), R(0))},,cn = {viewg+(S™(2), R(1)) },en -

e Privacy for S: For every non-uniform deterministic polynomial-time receiver R*, every
auxiliary input z € {0,1}", and every triple of inputs zo,z1,2 € {0,1}" it holds that

either:
{Sn((z0,2); R™(2)}pen

o

{Sn((zo,21); R"(2)) }hen

or

[lle

{Sn((wo, 21); ™ (2) } e = {Sn (2, 21); B (2) }eny -

The way to view the above definition of privacy for S is that R*’s first message, denoted
R*(z) determines whether it should receive xo or z1. If it determines, for example, that it should
receive xo, then the distribution over S’s reply when its input is (zo, 1) is indistinguishable
from the distribution when its input is (zo,z). Clearly this implies that R* cannot learn
anything about x; when it receives x¢ and vice versa.

Note that when defining the privacy for S we chose to focus on a deterministic polynomial-
time receiver R*. This is necessary in order to fully define the message R*(z) for any given
z, which in turn fully defines the string xp, that R*(z) does not learn. By making R* non-
uniform, we see that this does not weaken the adversary (since R™’s advice tape can hold its
“best coins”). We remark that generalizing this definition to protocols that have more than
two messages is non-trivial.

The above example demonstrates that it is possible to define “privacy only” for secure
computation. However, it also demonstrates that this task can be very difficult. In general,
when a party does not receive output, this task is easy. However, when a party does receive
output, defining privacy without resorting to the ideal model is problematic (and often unclear
as to how it can be achieved).

We conclude with one important remark regarding “privacy-only” definitions. As we have
mentioned, an important property of security definitions is a composition theorem that guar-
antees certain behavior when the secure protocol is used as a subprotocol in another larger
protocol. No such general composition theorems are known for definitions that follow the
privacy-only approach. As such, this approach has a significant disadvantage.

Security in the presence of covert adversaries (3). Recently, a new adversarial model was
introduced that lies between the semi-honest and malicious models. The motivation behind
the definition is that in many real-world settings, adversaries are willing to actively cheat
(and as such are not semi-honest), but only if they are not caught (and as such they are not
arbitrarily malicious). This is the case in many business, financial, political and diplomatic
settings, where honest behavior cannot be assumed, but where the companies, institutions, and
individuals involved cannot afford the embarrassment, loss of reputation, and negative press
associated with being caught cheating. Clearly, with such adversaries, it may be the case that
the risk of being caught is weighed against the benefits of cheating, and it cannot be assumed
that players would avoid being caught at any price and under all circumstances. Accordingly,
the definition explicitly models the probability of catching adversarial behavior. The definition
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of security is based on the classical ideal/real simulation paradigm with the following difference:
for a value 0 < € <1 (called the deterrence factor), the definition guarantees that any attempt
to “cheat” by an adversary is detected by the honest parties with probability at least e. Thus,
provided that e is sufficiently large, an adversary that wishes not to be caught cheating will
refrain from attempting to cheat, lest it be caught doing so. Note that the security guarantee
does not preclude successful cheating. Indeed, if the adversary decides to cheat then it may
gain access to the other parties’ private information or bias the result of the computation. The
only guarantee is that if it attempts to cheat, then there is a fair chance that it will be caught
doing so. The above motivation is formulated within the ideal/real paradigm and also has the
benefits of a sequential composition theorem. Importantly, it has also been shown that efficient
protocols can be constructed under this definition; see (3)) for more details.

3 Secure Multiparty Computation — Constructions

In this section, we survey some of the known constructions and techniques for building secure
protocols. With one exception, we do not provide proofs of security but rather present very
basic intuition as to why security is achieved. We warn that such intuitive arguments are in no
way to be accepted as justification for the security of a protocol. We only allow ourselves this
privilege here because all of the protocols that we present have been rigorously proven secure
in the papers that present them.

3.1 Basic Building Blocks

We describe here some simple protocols that are often used as basic building blocks, or primi-
tives, of secure computation protocols. The protocols we describe here include oblivious transfer
and oblivious polynomial evaluation, which are two-party protocols, and homomorphic encryp-
tion, which is an encryption system with special properties.

Oblivious Transfer

Oblivious transfer is a simple functionality involving two parties. It is a basic building block
of many cryptographic protocols for secure computation. (In fact, it was shown by Kilian (29)
that by using an implementation of oblivious transfer, and no other cryptographic primitive,
it is possible to construct any secure computation protocol.)

We will use a specific variant of oblivious transfer, 1-out-of-2 oblivious transfer, which was
suggested by Even, Goldreich and Lempel (14) (as a variant of a different but equivalent type
of oblivious transfer that has been suggested by Rabin (42)). The protocol involves two parties,
a sender and a receiver; its functionality is defined as follows:

e Input: The sender’s input is a pair of strings (xo,x1) and the receiver’s input is a bit
o€ {0,1}.

e Output: The receiver’s output is z, (and nothing else), while the sender has no output.

In other words, 1-out-of-2 oblivious transfer implements the function ((zo,z1),0) — (A, zs),
where A denotes the empty string (i.e., no output).

Oblivious transfer protocols have been designed based on virtually all known assumptions
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which are used to construct specific trapdoor functions (i.e., public key cryptosystems), and
also based on generic assumptions such as the existence of enhanced trapdoor permutations.
There are simple and efficient protocols for oblivious transfer which are secure only against
semi-honest adversaries (14; 21). In particular, one straightforward approach (14) is for the
receiver to generate two random public keys, a key P, whose decryption key it knows, and a
key P1_, whose decryption key it does not know.” The receiver then sends these two keys to
the sender, which encrypts xo with the key Py and encrypts x; with the key P;, and sends
the two results to the receiver. The receiver can then decrypt z, but not zi_,. Intuitively,
it is obvious that the sender does not learn anything about o, since its view in the protocol
can be easily simulated: the only message it receives includes two random public keys. As
for the sender’s privacy, if the receiver follows the protocol, it only knows one private key and
can therefore only decrypt one of the inputs. We also assume the encryption scheme to be
semantically secure (23).” Therefore, in the simulation, given the receiver’s input o and its
output x,, we can send it a message containing an encryption of o with the public key P, and
an encryption of a random value using the public key pi—,. The receiver cannot distinguish
the second value from an encryption of x1_., since it does not know the corresponding private
key.

It is a little more challenging to construct oblivious transfer protocols which are secure
against malicious adversaries. In order to adapt the oblivious transfer protocol described above
we must ensure that the receiver chooses the public keys appropriately. This can be done using
zero-knowledge proofs that are used by the receiver to prove that it chooses the keys correctly.
Fortunately, there are very efficient proofs for this case: an efficient two-message oblivious
transfer protocol following this paradigm was presented by Bellare and Micali and proved
secure in the random oracle model (6). Oblivious transfer protocols with similar overhead that
provide privacy against malicious adversaries (as in Definition 4), were presented in (2} 306)
(based on the Decisional Diffie-Hellman assumption), and later generalized in (25) to use
smooth projective hashing with a special property (and as a result can be based on the Nth
Residuosity assumption, or the Quadratic Residuosity assumption).

Oblivious transfer is often the most computationally intensive operation of secure proto-
cols, and is repeated many times. Each invocation of oblivious transfer typically requires a
constant number of invocations of trapdoor permutations (i.e., public-key operations, or ex-
ponentiations). It is possible to reduce the amortized overhead of oblivious transfer to one
exponentiation per a logarithmic number of oblivious transfers, even in the case of malicious
adversaries (36)). Further, one can extend oblivious transfer in the sense that one has to
compute, in advance, a small number of oblivious transfers. This then allows one to com-
pute an essentially unlimited number of of transfers at the cost of computing hash functions
alone (26} 39). (All these results are proved secure in the random oracle model. In this model,
it is assumed that the parties have access to an external party who computes a random func-
tion for them. Once a protocol is proven secure under this assumption, the external random
function is replaced by some concrete cryptographic hash function, and the security of the
concrete scheme follows from heuristic arguments about the random-looking behavior of the
hash function. See (28| Section 13.1) for a detailed discussion about this model.)

5The actual secure protocol is different because we don’t always know how to sample a public key
without knowing its secret key. Nevertheless, this gives the flavor of the construction.

SNamely, even if it known that an encryption is of one of only two possible messages mg, m1, it is
infeasible to identify the plaintext with probability significantly better than 1/2. See (23) for a precise
definition.
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We note that some of the oblivious transfer protocols described above are proved secure
using definitions which are weaker than Definition 2 (namely they are not proven according
to the real/ideal simulation paradigm but can be proven under a definition like Definition [4).
When such protocols are used as primitives in other protocols, it is not possible to simply plug
them into Theorem [3/ and analyze security in the hybrid model. Rather, more intricate security
proofs are required in order to prove security.

An efficient oblivious transfer protocol. We now present the protocol of (36) and prove
that it achieves privacy, as formalized in Definition 4. (Readers who are not interested in the
details of the implementation of oblivious transfer can proceed to Section 27.)

Protocol 5.

e Input: The sender has a pair of strings (mo,m1) and the receiver has a bit o.

e Auxiliary input: The parties have the description of a group G of order n, and a
generator g for the group; the order of the group is known to both parties.

e The protocol:

1. The receiver R chooses a,b,c €r {0,...,n — 1} and computes 7 as follows:
(a) If o = 0 then v = (9%, ¢", g**, 9°)
(b) If o = 1 then v = (9%, ¢°, 9%, g**)
R sends v to S.

2. Denote the tuple v received by S by (z,y,z0,21). Then, S checks that zo #
z1. If they are equal, it aborts outputting 1. Otherwise, S chooses random

uo, u1,v0,v1 €r {0,...,n — 1} and computes the following four values:
wo = x“° - g”° ko = (20)"° - y™
wp = xul . gvl kl = (Zl)ul . yvl

S then encrypts mo under ko and m; under k;. For the sake of simplicity, assume
that one-time pad type encryption is used. That is, assume that mo and m; are
mapped to elements of G. Then, S computes co = mo - ko and ¢1 = m1 - k1 where
multiplication is in the group G.

S sends R the pairs (wo, co) and (wi,c1).

3. R computes k, = (w,)® and outputs m, = ¢, - (ko) *.

The security of Protocol 5 rests on the decisional Diffie-Hellman (DDH) assumption that
states that tuples of the form (g%, g%, ¢g%) where a,b,c €g {0,...,n — 1} are indistinguishable
from tuples of the form (g%, g%, g°*) where a,b €r {0, ...,n—1} (recall that n is the order of the
group G that we are working in). This implies that an adversarial S* cannot discern whether
the message sent by R is (¢%, g%, ¢*%, %) or (9%, ¢", ¢, ¢*®) and so R’s input is hidden from S*.
The motivation for S’s privacy is more difficult and it follows from the fact that — informally
speaking — the exponentiations computed by S completely randomize the triple (g°, q°, g9%).
Interestingly, it is still possible for R to derive the key k, that results from the randomization
of (g%, g% g**). None of these facts are evident from the protocol itself but are demonstrated
below in the proof. We therefore proceed directly to prove the following theorem:

Theorem 6. Assume that the decisional Diffie-Hellman problem is hard in G with generator g.
Then, Protocol 5l is a private oblivious transfer, as in Definition 4.
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Proof. The first requirement of Definition 4 is correctness, and we prove this first. Let mo, m1
be S’s input and let 0 be R’s input. The message sent by S to R is w, = "7 - g’ and
Co = Mo - ko where ko = (25)"? - y”?. Correctness follows from the fact that:

(’Ll)o—)b _ xua~b . gva-b — g(a,»b)-u(y . gbm” — Z;LG . y'u(, _ ko—
where the third equality is due to the fact that z, = g®°. Thus, R recovers the key ko, and can
compute (k(,)_1 and my = ¢ - (ka)_l.

Next, we prove the requirement of privacy for R. Recall that this requirement is that S™’s
view when R has input 0 is indistinguishable from its view when R has input 1. Now, the view
of an adversarial sender S* in Protocol 5 consists merely of R’s first message v. By the DDH
assumption, we have that

{(g“,gb,g“")} {(g“,gb,gc)}

Now, assume by contradiction that there exists a probabilistic polynomial-time distinguisher
D and a non-negligible function e such that

lle

a,ber{l,...,n—1} a,b,ceg{1,...,n—1}

’Pr[D(ga,gb,g“b,gc) =1] - Pr[D(¢", ¢" g%, ¢"*) = 1]‘ > ¢(n)

where a,b,¢ €r {0,...,n — 1}. Then, by subtracting and adding Pr[D(¢%, ¢°, ¢¢, g%) = 1] we
have:

’Pr[D(g“,gb,g“b,gC) =1] - Pr[D(¢%,¢", 9%, 9") = 1]‘
< ‘Pr[D(g“,gb,g“b,gc) =1] - Pr[D(¢",¢", 9%, 9%) = 1}‘
+ ‘Pr[D(g“,gb,gﬁgd) =1] - Pr[D(g", ¢", 9%, 9*") = 1](

where a,b,c,d €r {0,...,n —1}.

Therefore,
D(g" b g a c e(n
’Pr[ (g ’gb’g b7g):1}—Pr[D(g ,gb,g ’gd):]_]‘ Z% (3)
or
a gb g¢ %) = a b ¢ _aby _ e(n)
PriD(¢g% 9" 9% %) = 1] = Pr[D(¢", 9", 9", 9") = 1]| 2 =~ - (4)

Assume that (3)) holds. We construct a distinguisher D’ for the DDH problem that works as
follows. Upon input v = (z,y, 2), the distinguisher D’ chooses a random d €g {0,...,n — 1}
and hands D the tuple 7' = (w,y,z,gd). The key observation is that on the one hand, if
v = (g% 9% ¢%), then v = (g%, ¢°,¢% ¢%). On the other hand, if v = (g%, ¢, g°°), then v/ =
(g“,gb,g“b,gd), Noting that in this last tuple ¢ does not appear, with ¢ and d distributed
identically, we have v' = (g%, ¢*, ¢*®, g¢). Thus,

‘PY[D'(g"ygﬂg“b) =1] - Pr[D'(g% ¢",9°) = 1]

= ‘PY[D(gavgbygaﬂgc) =1] - Pr[D(¢", ", 9%, 9%) = 1]

> e(n)

2
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in contradiction to the DDH assumption. A similar analysis follows in the case that (4) holds.
It therefore follows that € must be a negligible function. The proof of R’s privacy is concluded
by noting that (g%, g°, g°°, ¢¢) is exactly the distribution over R’s message when o = 0, and
(g%, 9%, g% g°*) is exactly the distribution over R’s message when ¢ = 1. Thus, the privacy of
R follows from the DDH assumption over the group in question.”

However, it remains to prove privacy for the sender S. Let v = (z,y, 20, 21) denote R*(z)’s
first message, and let a and b be such that z = g% and y = ¢°. If 2o = 21, then S sends
nothing and so clearly the requirement in Definition [4/ holds. Otherwise, let 7 € {0,1} such
that z, # g°® (note that since zo # z1 it cannot be that both zy = ¢°® and z; = ¢g°®). The
sender S’s security is based on the following claim:

Claim 3.1. Let z = g%, y = ¢° and 2, = ¢ # ¢g®°. Then, given a, b and ¢, the pair of values
(wr, kr) where w, = "7 - ¢*7 and k; = (2,)"" - y*" is uniformly distributed when u,,v, are
chosen uniformly in {0,...,n —1}.

The proof of this claim is implicit in (38} 44) in the context of a “randomized reduction” of
the DDH problem, and we will not reprove it here. Now, given this claim it follows that k. is
uniformly distributed, even given w- (and k1—-,wi—-). Thus, kr - m- is distributed identically
to kr - m for every m,m, € G. This completes the proof of the sender’s privacy. [l

Homomorphic Encryption

A homomorphic encryption scheme is an encryption scheme which allows certain algebraic
operations to be carried out on the encrypted plaintext, by applying an efficient operation to
the corresponding ciphertext. In addition, we require in this paper that the encryption scheme
be semantically secure (see Footnote [6). In particular, we will be interested in additively
homomorphic encryption schemes where the message space is a ring (or, more commonly,
a field). Here, there exists an efficient algorithm +px whose input is the public key of the
encryption scheme and two ciphertexts, and whose output is Epi(m1)4pk Epk(m2) = Epk(mi+
m2). (Namely, it is easy to compute, given the public key alone and the encryption of the sum
of the plaintexts of two ciphertexts.) There is also an efficient algorithm -pk, whose input
consists of the public key of the encryption scheme, a ciphertext, and a constant ¢ in the ring,
and whose output is ¢ -pk Epk(m) = Epk(c-m).

An efficient implementation of an additive homomorphic encryption scheme with semantic
security was given by Paillier (41). In this cryptosystem, the encryption of a plaintext from
[1, N], where N is an RSA modulus, requires two exponentiations modulo N 2. Decryption
requires a single exponentiation. The Damgard-Jurik cryptosystem (13) is a generalization of
the Paillier cryptosystem which encrypts messages from the range [1, N°] using computations
modulo N*t! where N is an RSA modulus and s a natural number. It enables more efficient
encryption of larger plaintexts than Paillier’s cryptosystem (which corresponds to the case s =
1). The security of both schemes is based on the decisional composite residuosity assumption.

7One may wonder why we bothered to provide such a detailed proof. After all, isn’t it clear that if
(g%, g%, g??) is indistinguishable from (g%, g°, g¢) then it must hold that (g%, g®, g®°, g°) is indistinguish-
able from (g¢, g%, g%, g®®)? Our answer to this is an unequivocal NO! Seemingly intuitive arguments in
cryptography are often incorrect, thus, full proofs are necessary to avoid error.
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Oblivious Polynomial Evaluation

The problem of oblivious polynomial evaluation (OPE) involves two parties, a sender and a
receiver. The input of the sender is a polynomial @ of degree k over some finite field F,
namely a polynomial Q(z) = Zf:o a;z" (the degree of the polynomial, which we will denote
as k, is public). The input of the receiver is an element z € F. After the protocol is run,
the receiver outputs Q(z) without learning anything else about @, while the sender learns
nothing. In other words, OPE implements the functionality (Q, z) — (A, Q(z)), where A is the
empty output. The major motivation for oblivious polynomial evaluation is the fact that the
output of a k degree random polynomial is (k 4+ 1)-wise independent; this is very useful in the
construction of cryptographic protocols. Another motivation is that polynomials can be used
for approximating functions that are defined over the Real numbers.

The OPE problem was introduced in (37), where an efficient solution based on oblivious
transfer was also presented. We will briefly describe a simpler protocol based on homomor-
phic encryption (this protocol is secure in the semi-honest model and achieves privacy—but
not simulatable security—in the face of a malicious adversary). This protocol works in the
following way: The receiver defines a homomorphic encryption system with semantic security
for which only the receiver knows the decryption key. The receiver then sends the encryptions
E(2), E(z%),..., E(z*) to the sender. The sender uses the homomorphic properties to compute
E(Q(2)) = (ak pk B(2%)) 4pk - - - +pk (a1 -pk E(2)) +px E(ao), and sends this encrypted value to
the receiver. The receiver decrypts it and obtains Q(z). This protocol requires O(k) communi-
cation and computation. It is secure against semi-honest adversaries since it is easy to simulate
the views of each of the parties given their inputs and outputs (in particular, the sender only
sees encryptions that were carried out using a semantically secure encryption scheme).

3.2 Generic Constructions

There are generic protocols that implement secure computation for any probabilistic polynomial-
time function. These protocols are different for a scenario in which there are two parties, and
for the multiparty scenario where there are m > 2 parties.

The Two-Party Case

Secure computation in the two-party case can be efficiently implemented by a generic protocol
due to Yao (45). The protocol (or rather, simple variants of it) are proved to be secure,
according to Definitions [1l and 2, against both semi-honest and malicious adversaries (32} [33)).

Denote the two parties participating in the protocol as Alice (A) and Bob (B), and denote
their respective inputs by = and y. Let f be the function that they wish to compute (for
simplicity, assume that Bob alone learns the value f(z,y)). The protocol is based on expressing
f as a combinatorial circuit with gates expressing any function ¢ : {0,1} x {0,1} — {0,1}
(including simple or, and, and not gates). Note that it is known that any polynomial-time
function can be expressed as a combinatorial circuit of polynomial size. The input to the circuit
consists of the bits of the inputs z and y, and the output of the circuit is the value f(z,y).

The protocol is based on evaluating this circuit. The number of rounds of the protocol is
constant. Its communication overhead depends on the size of the circuit, while its computation
overhead depends on the number of input wires (more specifically, it requires running one
oblivious transfer protocol for every input wire of party B, and, in addition computing efficient
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symmetric encryption/decryption functions for each gate of the circuit). A more detailed
analysis of the overhead of the protocol is given below. More details on the protocol, including
a proof of security, can be found in (32). We now provide a high level description of Yao’s
protocol.

Encoding the circuit. Yao’s protocol works by having one of the parties (say, Alice) first
generate an “encrypted” or “garbled” circuit computing f, and send its representation to Bob.
The encrypted circuit is generated in the following way:

e First, Alice “hardwires” her input into the circuit, generating a circuit computing f(z, -).

o Alice then assigns to each wire i of the circuit two random (“garbled”) values (W, W}),
corresponding to values 0 and 1 of the wire (the random values should be long enough
to be used as keys to a symmetric encryption scheme, e.g., 128 bits long).

e For every gate g (say, computing the value of wire k as a function of wires ¢ and j)
Alice prepares a table T, that encrypts the garbled value of the output wire using the
garbled values of the two input wires as keys. The table has four entries, one entry for
every combination of input values, and each entry contains the encryption of the garbled
value of the corresponding value of the output wire. For example, in an or gate, the
garbled input values (Wio, le) are used as keys for encrypting the garbled output value
Wi, (The encryption is carried out using a semantically secure symmetric encryption
scheme. Note that such schemes can be realized in practice by primitives such as block
ciphers and are therefore very efficient.) The table enables computation of the garbled
output of g, from the garbled inputs to g. Furthermore, given the two garbled inputs
to g, the table does not disclose information about the output of g for any other inputs,
nor does it reveal the values of the actual input bits.

Before proceeding, we present a concrete example of a garbled AND gate. Let the input wires
to the gate be labeled 1 and 2, and let the output wire be labeled 3. We then choose 6
random 128-bit strings (symmetric encryption keys) WP, Wi, W2, W, W9, W4 and compute
the following four encryptions, based on the gate’s truth table:

Wire 1 input | Wire 2 input | Wire 3 output | Garbled value
0 0 0 EW? (EWQO(WS?))
0 1 0 EW{’ (EW21 (Wao))
1 0 0 Ewll (EW,Q (W3))
1 1 1 Ewll (EWZ} (Wsl))

Observe that when the output value is 0 the key that is encrypted is W2, and when the output
value is 1 the key that is encrypted is W4 . Furthermore, given W{ and W7 (for example), it
is possible to correctly decrypt Ewlo (EW21 (W3)) to obtain W3, but it is impossible to decrypt
any other entry of the table. We remark that with the encryption scheme used, it is possible
for the decryption process to detect that it has received an incorrect decryption. Thus, given
the one garbled value per input wire and the four encryptions of the garbled gate in random
order, Bob attempts to decrypt them all. Exactly one will decrypt correctly, and he will
thus receive exactly one of the garbled values on the output wire (but not the other). The
interesting property here is that Bob receives the correct garbled value for the output wire
without knowing anything about the computation he has carried out. In particular, he has
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no idea what values are associated with the garbled values and what gate he has computed.
Nevertheless, it is guaranteed that he has correctly computed the gate. As we have mentioned
above, garbled gates are prepared for all gates in the circuit.

The representation of the circuit includes the wiring of the original circuit (namely, a
mapping from inputs or gate outputs to gate inputs), the tables T, and the tables that translate
the garbled values of the output wires of the circuit to actual 0/1 values. In this form, the
representation reveals nothing but the wiring of the circuit, and therefore Bob learns nothing
from this stage. (We assume that the wiring of the circuit is not secret, which is obviously the
case if the function f is public and the only secret information of Alice is her input z. If the
wiring of the circuit implementing f is secret and is known only to Alice, it can be encoded
by representing the circuit as part of Alice’s input and letting the parties evaluate a universal
circuit, i.e., a circuit whose input is ((f, z),y) and whose output is f(z,y).)

Encoding Bob’s input. The tables described above enable the computation of the garbled
output of any gate from its garbled inputs. Therefore, given these tables and the garbled
values of the input wires of the circuit, it is possible to compute the garbled values of the
output wires of the circuit and then translate them to actual values. In order for Bob to
compute the circuit, he must obtain the garbled values of all input wires. This is achieved by
having Bob and Alice run a 1-out-of-2 oblivious transfer protocol for each input wire of Bob.
In these protocol executions, Alice is the sender, and her inputs are the two garbled values
of this wire; Bob is the receiver, and his input is his input bit associated with that wire. As
a result of the oblivious transfer protocol, Bob learns the garbled value of his input bit and
learns nothing about the garbled value of the other bit, and Alice learns nothing.

Computing the circuit. The full protocol for computing the circuit starts by letting the
parties execute the oblivious transfer stage. Afterwards, Alice sends Bob the description of
the garbled circuit as detailed above, and the garbled values of her input wires. Bob now has
sufficient information to compute the output of the circuit on his own. After computing f(z,y),
he can send this value to Alice if she requires it.

To show that the protocol is secure we must prove that the parties learn nothing that cannot
be computed in the ideal model, namely computed based on the input and output only. This
proof is provided in (32) for the case of semi-honest adversaries (and in (33) for a variant of this
protocol, which handles the case of malicious adversaries). The main observation regarding
the security of each gate is that the function used to encrypt gate entries ensures that without
knowledge of the correct keys, i.e., garbled values of input wires, the encrypted values of the
gate look random. Therefore, for every gate it holds that knowledge of one garbled value of
each of the input wires discloses only a single one of the four key combinations of garbled input
values, and therefore only a single garbled output value of the gate; Bob cannot distinguish
the other garbled value from random. As for the security of the complete circuit, the oblivious
transfer protocol ensures that Bob learns only a single garbled value for each input wire, and
Alice does not learn which value it was. Inductively, Bob can compute only a single garbled
output value of each gate, and in particular, only a single output of the circuit. We stress that
the method in which the tables were constructed hides the values of intermediate results (i.e.,
of gates inside the circuit).

It is possible to adapt the protocol for circuits in which gates have more than two inputs,
and even for wires with more than two possible values (which is possible since there is no need
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for a physical realization of the circuit; this might enable the construction of more compact
circuits). The size of the table for a gate with ¢ inputs, where each input can have d values is
d’.

Overhead. The overhead of the protocol described above involves: (1) Alice and Bob engaging
in an oblivious transfer protocol for every input wire of the circuit that is associated with Bob’s
input, (2) Alice sending Bob tables of size that are linear in the size of the circuit, and (3)
Bob decrypting a constant number of ciphertexts for every gate of the circuit (this is the cost
incurred in evaluating the gates).

The computation overhead is dominated by the oblivious transfer stage, since the evaluation
of the gates uses symmetric encryption which is very efficient compared to oblivious transfers
that require modular exponentiations (this holds for small circuits; if the circuit is large then the
circuit computation may begin to dominate). The computation overhead is therefore roughly
linear in the length of Bob’s input. The number of rounds of the protocol is constant (namely,
the variant described here has two rounds using the two-round oblivious transfer protocols
of (14; 21} 36)). The communication overhead is linear in the size of the circuit. (The variant
of the protocol described in (33), which provides security against malicious adversaries, requires
sending s copies of the circuit in order to limit the probability of cheating to be exponentially
small in s. See also (27) for a different variant, which provides security against malicious
adversaries at the cost of applying public key operations for every gate.)

A major factor dominating the overhead is, therefore, the size of the circuit representation
of f. There are many functions for which we do not know how to create linear size circuits
(e.g., functions computing multiplications or exponentiations, or functions that use indirect
addressing). However, there are many other functions, notably those involving additions and
comparisons, which can be computed by linear size circuits. The size of the input should also be
reasonable. For example, we cannot expect that two parties, each of them holding a database
with millions of entries, could run the protocol for computing a function whose inputs are the
entire databases.

We note that an implementation of Yao’s protocol exists (the Fairplay project (34)). This
system receives as input a description of a function in a high-level language, and generates a
circuit computing it, along with two programs, one for each of the parties, implementing Yao’s
protocol for this circuit.

The Multiparty Case

As we described in Section 2.1} there are well known constructions which enable a set of m > 2
parties to compute any function of their inputs without revealing any other information. As
with Yao’s protocol, these constructions are based on expressing the function as a circuit and
applying a secure computation protocol to this circuit. These protocols are pretty efficient if
the resulting circuit is of reasonable size, but they do have some drawbacks compared to the
two-party protocol. For example, some of the protocols require public-key operations (rather
than symmetric key operations) for every gate of the circuit, some have a number of rounds
which is linear in the size of the circuit (rather than a constant number of rounds), all protocols
require communication between every pair of the m participating parties, and some of them
require the use of a broadcast channel.

The multiparty construction of Goldreich, Micali, and Wigderson (18]) is based on describing
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the function as a binary circuit (or rather, a circuit with addition and multiplication gates over
GF[2]), and starting from a state in which each party knows a share of each input wire. The
protocol requires every pair of parties to run a short computation (e.g., an oblivious transfer)
for each multiplication gate of the circuit. The number of rounds is therefore linear in the depth
of the circuit, and the communication is O(m?k|C|) for a circuit C' and security parameter k.
If the number of corrupt parties ¢ is smaller than m/3, then the construction provides security
against malicious adversaries, with fairness and guaranteed delivery. If t < m/2, this level of
security can be achieved if there is access to a broadcast channel. Otherwise (m/2 <t < m),
security can be provided against malicious adversaries, but without fairness and guaranteed
delivery. There exists a construction, due to Beaver, Micali, and Rogaway (5), which runs in a
constant number of rounds. Like the construction of (18), it is based on assuming the existence
of trapdoor permutations. However, the construction is somewhat more intricate: it includes
a first stage in which the parties jointly construct garbled tables for each gate, and a second
stage in which these gates are evaluated without additional communication.

The constructions of Ben-Or, Goldwasser, and Wigderson (7), and of Chaum, Crépeau,
and Damgéard (10) are based on the assumption that a private channel exists between every
pair of parties (in this respect they are different than the constructions described above, which
are based on cryptographic assumptions). We will describe here the basic properties of the
construction of (7)) by first describing the function as an arithmetic circuit over an arbitrary
ring, with addition and multiplication gates (note that Binary circuits are a special case of
arithmetic circuits). The protocol starts with each party knowing a share (over the ring) of
each input wire, and ends with each party knowing a share of each output wire. Addition gates
are computed locally by every party, while multiplication gates require each pair of parties to
exchange a message. This results, like in the protocol of (18), in a number of rounds which
is linear in the depth of the circuit. It also results in the total communication of O(m?2k|C|).
However, unlike the protocols of (18; [5)), there is no need to compute public-key operations.
Instead, the computation involves only simple additions and multiplications. Security against
malicious adversaries is provided as long as t < m/3, and against semi-honest adversaries as
long as t < m/2.

Threshold decryption. Threshold decryption is an example of a multiparty functionality.
The setting includes m parties and an encryption scheme. It is required that any m’ < m
of the parties is able to decrypt messages, while any coalition of strictly less than m’ parties
learns nothing about encrypted messages. This functionality can, of course, be implemented
using generic constructions, but there are specific constructions implementing it for almost any
encryption scheme, and these are far more efficient than applying the generic constructions to
compute this functionality. Interestingly, threshold decryption of homomorphic encryption can
be used as a primitive for constructing a very efficient generic protocol for secure multiparty
computation, with a communication overhead of only O(mk|C|) bits (see (16) for a construction
secure against semi-honest adversaries, and (12)) for a construction secure against malicious
adversaries).

3.3 Specialized Constructions
Although generic constructions for secure computation can, in principle, efficiently compute

any polynomial function, the resulting overhead is often unacceptable. This might be due to the
size of the circuit computing the function, or to the fact that each input value (or sometimes,
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as in the two-party case, each input bit) incurs expensive operations such as input sharing
or computing an oblivious transfer. In general, when considering semi-honest adversaries and
a reasonably sized circuit, the protocols are reasonably efficient. However, when considering
malicious adversaries these protocols are typically not practical even for small circuits.

We describe in this section three specialized constructions which are considerably more
efficient than applying generic constructions to the same functions. The constructions we
describe are secure against semi-honest adversaries, although for some of them there exist
variants which are secure against malicious adversaries. The constructions are based on the
use of homomorphic encryption, oblivious polynomial evaluation, and the reduction of the
computed function to simpler functionalities, with the analysis of the resulting protocol in the
hybrid model (as in Theorem [3). For each function, we describe the overhead of applying
a generic construction, then describe the basic details of the specialized construction and its
overhead.

Set Intersection

Consider two parties, Alice and Bob, who each have a set of k items drawn from a large domain
of size N. Denote Alice’s and Bob’s sets as x1,...,xr and y1,..., Yk, respectively. The parties
wish to compute the intersection of their two sets, without revealing any other information.
This problem was investigated in (17) and is denoted as the set intersection problem or as the
private matching problem (the multiparty case was investigated in (30)).

Private equality test. As a warm-up, consider a simpler case where each party has a single
item (k = 1). The function outputs 1 if the inputs of the two parties are equal (namely, z = y),
and 0 otherwise. A simple way to implement this function is to use Yao’s protocol, applied to
a circuit which compares each bit of Alice’s input to the corresponding bit of Bob’s input and
outputs the result of applying an and operator to the results of these comparisons. The circuit
is of reasonable size, O(log N) gates, and therefore the resulting protocol is quite efficient.
There are several alternative solutions to this problem, with similar overhead (15;[37).

Let us also describe another solution to the private equality test problem, which is based
on the use of homomorphic encryption: Let Alice define a homomorphic encryption system
for which only she knows the private key. She then encrypts « and sends the encryption E(x)
to Bob. Bob chooses a random value r and uses the homomorphic properties to compute
(E(z) 4+px E(—y)) -px 7 = E((x —y) - ), and sends this result back to Alice. Alice decrypts this
message, and outputs 1 if and only if the decrypted value is equal to 0. Note that if z = y,
then Bob indeed sends Alice an encryption of 0. If, on the other hand, = # y, Bob sends to
Alice an encryption of a random value (generated by multiplying  — y by the random value
r). Alice, therefore, does not learn anything about y except for whether it is equal to x. (This
is proved according to Definition [1, by showing that given Alice’s input and output, it is easy
to simulate her view in the protocol. Indeed, if the output is z = y, we know that the message
that Alice receives is an encryption of 0, and if the output is x # y, the message she receives is
an encryption of a random value.) Bob does not learn anything about z, since we assume the
encryption system to be semantically secure.

Set intersection. Solving the set intersection problem is more involved than private equality
testing since each item in Alice’s set might be equal to any of Bob’s items. Therefore, a
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simple reduction to private equality testing requires O(k2) comparisons (comparing each of
Alice’s inputs to all of Bob’s inputs), which we would like to avoid. A straightforward circuit
comparing the sets is of size O(k?*log N) and an alternative method of similar complexity but
using OPE was presented in (37). (There are also simple constructions which use only O(k)
public key operations, but are only proved in the random oracle model.)

An efficient protocol for set intersection, due to (17), can be based on homomorphic encryp-
tion: let Alice define a homomorphic encryption system for which only she knows the private
key. Alice then defines a polynomial P of degree k whose roots are her inputs, namely

k
Ply)=(z1—y)(@2—y) - (xr—y) = Z iy’

The coefficients of the polynomial are «p,...,ar. Alice then encrypts each of the coefficients
of the polynomial and sends these encrypted values to Bob. Note that for each y; in Bob’s list
he can compute

(E(o) pi ) ok (E(ar=1) pe y2 ") +pk ++ +pk (B(a1) i ¥i) +pk E(ao) = E(P(ys)).

Bob will actually pick a random value r; for each y; in his list and compute E(r - P(y;) + y).
If y; is equal to an element in Alice’s list, then this is an encryption of y;, whereas otherwise
it is an encryption of a random element. Bob sends the k resulting encryptions to Alice, who
decrypts them. If any of the decrypted values is in her input set, she decides that this value
is in the intersection. It is easy to see that, as in the private equality test, no information is
revealed except for the identities of the items in the intersection (the proof here, too, is by
showing a simulation satisfying Definition [I)).

The major computational overhead of this protocol is the multiplication of the homomor-
phically encrypted values by constants, which is implemented using exponentiations, and is
repeated O(kz) times in the protocol. The protocol can be changed, using hashing, to es-
sentially require only O(k) exponentiations and O(k) communication (the exact asymptotic
expression involves also a loglog k expression, but for any feasible value of & it is bounded by
a small constant). Variants of the protocol exist which compute only the size of the inter-
section, or which indicate if the size of the intersection is greater than some threshold. The
basic protocol is secure only against semi-honest adversaries. There is also a variant which is
secure against malicious adversaries, but it is analyzed in the random oracle model (see (17)
for details of all these variants).

Computing the Median

Assume now that Alice and Bob each have a list of n distinct numerical values from a domain
of size N. They wish to compute the median of the union of their two lists while revealing no
other information. More generally, they might wish to compute the kth ranked element (i.e,
the kth largest element) in this union (the median is the case where k = n because overall
there are 2n values). Applying any of the generic constructions requires using all input bits
of each of the parties, therefore yielding an overhead of at least Q(nlog N). This overhead
might be too large if the parameters are large (say, if the lists include millions of items). We
will describe here a protocol, due to (1), which has a sublinear overhead of O(lognlog N) (or
O(log klog N) in the general case).

The protocol is based on reducing the computation of the median to logn secure compar-
isons of log N bit numbers. Namely, it is a reduction to a simpler protocol in which each party
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has a private input, and the output is 1 if and only if Bob’s item is greater than Alice’s item.
(This function is known as the millionaires problem. Applying Yao’s generic protocol to solve
it results in a protocol which uses O(log N) oblivious transfers and O(log N) communication.)

The protocol for computing the median works in the following way: Alice and Bob sepa-
rately compute the median value of their own lists, which we will denote as ma and mp (we
assume that the lengths of the list are powers of two, and define the median of a list of length
n = 2% to be the item ranked 2°~! in the list). The parties run the secure comparison protocol
to find out if ma < mp. If this is the case, Alice removes all items smaller or equal to m 4 from
her list, while Bob removes all items in his list which are greater than mp. If the result is that
ma > mp, then each party removes the other half of his/her list. It is easy to see that the
length of the lists is reduced by a factor of 2 using this computation. It is also straightforward
to verify that the median of the union of the two original lists is guaranteed to be in the short
lists, which remain after this step (this observation holds since every item that is removed is
guaranteed to be smaller than more than half of the items, or greater than at least half of
the items). Given these two observations, we apply this computation again to the new lists,
repeating this step log 2n times until we are left with a single item, which is guaranteed to be
the median of the union of the original lists.

The analysis above establishes the correctness and the overhead of the protocol. We should
also convince ourselves of its security. It is sufficient to show that, assuming the number of
elements held by each party is public information, Alice (and similarly Bob), given its own
input and the value of the median, can simulate the execution of the protocol in the hybrid
model, where the comparisons are carried out by a trusted party (the proof follows Theorem [3—
the composition theorem). Consider the simulation of the first step of the protocol: we know
Alice’s input and final output—the median of the union of the lists. Since this value must be
in the lists which are retained for the second step, we can easily deduce the result of the first
comparison. Namely, if the median is strictly greater than m 4, then ma < mp (therefore Alice
removes all items smaller or equal to ma). Otherwise ma > mp. We can therefore simulate
the first step. Similarly, we can simulate all steps of the protocol. A similar argument holds
for Bob’s part in the protocol. The interested reader can consult (1)) for a detailed description
and analysis of the protocol, and also for variants for the case of malicious adversaries, and for
the multiparty case.

Computing ID3

ID3 is a basic algorithm for constructing decision trees, which are a tool for solving the classi-
fication problem in machine learning and data mining. The input to a classification problem
is a structured database in which each row represents a transaction and each column is an
attribute taking on different values (for example, each row could represent a patient, and each
column a different symptom). One of the attributes in the database is designated as the class
attribute (e.g., it could denote whether the patient has a certain disease). The goal is to use
the database in order to predict the class of a new transaction by viewing only the non-class
attributes.

A decision tree is a rooted tree in which each internal node corresponds to an attribute, and
the edges leaving it correspond to the possible values taken on by that attribute. The leaves
of the tree contain the expected class value for transactions matching the path from the root
to that leaf. Given a decision tree, one can predict the class of a new transaction by traversing
the nodes from the root down. The value of the leaf at the end of this path is the expected
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class value of the new transaction.

The ID3 algorithm is used to design a decision tree based on a given database. The
tree is constructed top-down in a recursive fashion. At the root, each attribute is tested to
determine how well it alone classifies the transactions. The “best” attribute is then chosen,
and the remaining transactions are partitioned by it. ID3 is then recursively called on each
partition, i.e., on a smaller database containing only the appropriate transactions, and without
the splitting attribute.

The central principle of ID3 is to choose the best predicting attribute by checking which
attribute reduces the information (in the information-theoretic sense) of the class-attribute to
the greatest degree. Namely, to choose the attribute that maximizes the information gain,
defined as the difference between the entropy of the class attribute and the entropy of the
class attribute given the value of the chosen attribute. This decision rule results in a greedy
algorithm that searches for a small decision tree consistent with the database. (Note that we
only discuss the basic ID3 algorithm, and assume that each attribute is categorical and has a
fixed set of possible values.)

Privacy preserving distributed computation of ID3. The setting we examine involves two
parties, each with a database of different transactions, where all transactions have the same
set of attributes (this scenario is also denoted as a “horizontally partitioned” database). The
parties wish to compute a decision tree by applying the ID3 algorithm to the union of their
databases. An efficient privacy preserving protocol for this problem was described in (31). We
describe its basic details below, and refer the reader to (31) for the complete solution.

Applying Yao’s generic protocol encounters some major obstacles: the size of the databases
is typically very large (e.g., it is common to have millions of transactions) and invoking an
oblivious transfer protocol per input bit is too costly. In addition, the circuit representation
of ID3 is very large, since the basic step of the algorithm, repeated multiple times per node,
involves computing the difference between two entropy values (each defined as Y p; log(p;:),
where each p; is the fraction of transactions in which the class attribute, and possibly other
attributes, have certain values). Computing the logarithm function, which is defined over the
Real numbers, is also problematic, since most cryptographic protocols compute functions over
finite fields. Running ID3 also involves many rounds, with each round depending on the results
of the previous rounds; therefore a naive circuit implementation could require an encoding of
many copies of each step, each corresponding to a specific result of the previous rounds.

Computing ID3. The secure protocol is based on the observation that each node of the tree
can be computed separately, with the output made public, before continuing to the next node.
This is true since the assignments of attributes to each node are part of the output and may
therefore be revealed. The computation starts from the root of the tree. Once the attribute of a
given node has been found, both parties can separately partition their remaining transactions
accordingly for the coming recursive calls. As a result, the protocol is reduced to privately
finding the attribute of a node, namely the attribute with the highest information gain.

Let A be some attribute obtaining values a1, ..., am and let T'(a;) be the subset of transac-
tions obtaining value a; for A. Let Ta(a;) and T(a;) be the corresponding subsets in Alice’s
and Bob’s inputs (therefore, T'(a;) = Ta(a;) UTs(a;)). The computation which quantifies the

information gain in identifying the class of a transaction in T given the value of A involves
[T (a;)] [T (a;)|
[T IT|

expressions of the form and log , where |T'| is the size of the database. The value
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|T'| is constant and can therefore be ignored, since we are only interested in comparing values
to each other. The main challenge is computing the logarithm function, namely computing
log(Ta(a;) + Tr(aj)), where Ta(a;) is known to Alice and Tg(b;) is known to Bob. (More
accurately, the parties compute two shares, Z4 and Zp, which are random under the constraint
that Za4 + Zp = log(Ta(a;) + Ts(a;)).) The logarithm function can be approximated using
the Taylor approximation, which is essentially a polynomial. This computation can be securely
computed using oblivious polynomial evaluation. The actual details of the protocol are quite
intricate. We refer the interested reader to (31) for details.

4 Common Errors in Applications of Secure Computation

There are common errors which often occur when designing secure protocols. Protocols in
which these errors exist cannot, of course, be proven secure according to the definitions of
Section [2. There are, however, multiple examples of published protocols which suffer from
these errors. We would like to use this section to highlight some of these errors in order to
inform readers of common pitfalls in the design of secure protocols.

4.1 Semi-honest Behavior does not Preclude Collusions

Assuming that adversaries are semi-honest does not ensure that no two parties collude. The
“semi-honest adversary” assumption merely ensures that an adversary follows the protocol and
only tries to learn information from messages it received during protocol execution. It is still
possible, however, that the adversary controls more than a single party and might use the
information it learns from all the parties it controls.

Consider, for example, the following protocol run between n parties, denoted Pi, ..., P,.
The parties have private inputs z1,...,x, and they wish to compute the sum z; + -+ + z,,.
The protocol starts by P choosing a random value r and sending 1 +7 to P> (assume that the
computations are done in a finite field). Each party P;, for 2 < ¢ < n, receives a message m;
from P;_1, and sends the message mi;+1 = m; + z; to P;+1. Finally, P, sends m,, + z, to P,
who subtracts r from this value and publishes the result (which indeed equals z1 + -+ - + ).

This protocol is indeed secure against semi-honest parties as long as no two parties collude.
However, an adversary controlling parties P; and P;, where j > ¢ 4+ 1, can learn the sum
Zi+1 + -+ + xj—1 by computing m;_1 — m;. This is something that cannot be learned in the
ideal model (given only the overall sum), even when an adversary controls P; and P;, and thus
this protocol is not secure.

4.2 Input Dependent Flow

Consider the following example: two parties run a protocol to decide if their two inputs are
equal (assume that each input is of length k). The protocol works by running a simpler protocol
which compares two bits. The input to this simpler protocol is a pair of bits taken from the
same location in both inputs. The first comparison is of the most significant bits of both
inputs, and afterwards successive bits are compared, until a difference is found or it is decided
that the two inputs are equal. Note that this protocol executes only a single comparison if
the two inputs differ in their most significant bit, but might perform more comparisons (say,
k comparisons if the inputs differ only in their least significant bit). The protocol therefore
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leaks information. If it exits after ¢ comparisons the parties can conclude that the ¢ — 1 most
significant bits of their inputs are equal. This is information that cannot be deduced in the
ideal model where the parties are only told if the inputs are equal or not equal.

The source of the error in the protocol above is that the flow of the protocol (namely, the
decision which parts of it to execute) depends on the private input of the parties. Consequently,
the flow cannot be simulated by Alice, given her input and output alone (even if the output
shows that Alice’s input is different than Bob’s, it does not tell her the first location in which
the inputs differ). The protocol, therefore, is not secure according to Definition 1l (or any
reasonable definition).

Note that the flow of execution in the protocol for computing the median and the protocol
for computing ID3 (discussed above) depends on the results of previous computations in the
protocol. (For example, in the median protocol the decision of which parts of the inputs will be
removed depends on the result of the previous comparisons executed in the protocol.) However,
in these protocols the control flow decisions can be simulated, given the output of the computed
function (e.g., given the median value), and therefore they do not contradict the security of
the protocol. It is important to note that sometimes it is not trivial to identify whether the
flow of execution can be simulated by the output alone. For example, exchanging the order
of two consecutive steps in the ID3 protocol (both of which returning a leaf node and then
terminating the protocol) results in a protocol which cannot be simulated (see (31, page 13)).

4.3 Deterministic Encryption Reveals Information

A common misconception is that encrypting data, or hashing it, using any encryption system
or hash function, keeps the data private. To show why this is not necessarily true, consider the
following example, which illustrates an incorrect solution to the private matching problem of
Section [3.3: Alice and Bob each have a list of k items, x1,...,xr and y1,...,yk, respectively.
They wish to compute the intersection of their lists without revealing any other informa-
tion. They use a deterministic hash function H which is believed to be collision intractable
(and therefore suitable for cryptographic applications). Each party applies H to each of the
k items in his or her list, and then they publish the resulting lists: H(z1),..., H(zr) and
H(y1),...,H(yx). If a value occurs in both lists, they conclude that it corresponds to an item
which appeared in the intersection of the two original lists. This solution indeed finds the
intersection of the lists, but it might provide additional information if it is known that items in
the list come from a relatively small domain. Bob can, for example, apply H to each possible
value of z1, and check whether the result is equal to the value H(z1), published by Alice. If
this equality holds, Bob can deduce that he found x;.

The problem exists if the domain is sufficiently small to enable one to exhaustively apply
H to each item of the domain, or if the domain has limited min-entropy. For example, if
Alice’s items are known to be names of people, Bob can exhaustively apply H to every possible
name, ordering his guesses according to the popularity of the names. We stress that although
concrete attacks exist if the domain is (or may be) sufficiently small, the problem arises even
for a large domain (unless one assumes that the function H is a random oracle). In particular,
when a concrete hash function is applied to a large random value, it is still possible that partial
information on the input is leaked, again revealing something that cannot be deduced in the
ideal model.

The root of the problem is the use of a deterministic function (be it a hash function or
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a deterministic encrypting scheme such as textbook RSA). One should therefore never apply
a deterministic function to an item and publish the result. Instead, a semantically secure
encryption scheme must be used. Unfortunately, this rules out a number of “simple and
efficient” protocols that appear in the literature (indeed, these protocols are not and cannot
be proven secure).

4.4 Security Proofs

It is tempting to prove security by stating what constitutes a “bad behavior” or an “illegitimate
gain” by the adversary, and then proving that this behavior is impossible. Any other behavior
or gain is considered benign and one need not bother with it. This approach is often easier
than the use of simulation based proofs. The latter might also be considered overly cautious
in preventing some far-fetched adversarial scenarios, whose gain to the adversary is unclear.

Consider, for example, a protocol in which Alice receives an encrypted message. We might
assume that the only possible bad behavior is for her to try and decrypt the message, and that
the only illegitimate gain she might obtain is learning information about the encrypted value.
The use of a semantically secure encryption scheme should prevent this behavior. Assume,
however, that Alice participates in an auction protocol and that the encrypted message contains
another party’s bid. Alice’s goal might be to generate an encrypted bid which is only slightly
higher than the other bid. The use of a semantically secure encryption system might not
prevent this attack (especially if the encryption scheme is homomorphic).

It is hard to predict what type of corrupt behavior an adversary might take and thus
dangerous to disregard any other behavior that we have not thought of as useless for the
adversary. Indeed, real world attackers often act in ways which were not predicted by the
designers of the system they attack. It is also hard to define what constitutes a legitimate gain
by the adversary, and allow it, while preventing illegitimate or harmful gains. The notion of
“harmful” might depend on a specific application or a specific scenario, and even then it might
be very hard to define. We therefore urge protocol designers to prove security according to the
simulation based definitions of Section 2, which prevent any attack which is not possible in an
idealized scenario.

5 Secure Computation and Privacy-Preserving Data Min-
ing

As we have seen, it is possible to securely compute every efficient functionality! Given this very
strong result, it is tempting to state that the problems of privacy-preserving data mining are all
solved in principle. Of course, it is still necessary to construct protocols that are efficient enough
to be used in practice, but at least we know that “polynomial-time” solutions always exist.
Unfortunately, this view of the role of secure computation in privacy-preserving data mining
is far from accurate. The main reason for this is the following very important observation:

The field of secure multiparty computation deals with the question of how to
securely compute a functionality, but does not ask the question of whether the
functionality should be computed in the first place.

Stated differently, secure multiparty computation tells us that for any functionality, it is possible
to compute it without revealing anything beyond the output. However, it does not consider the
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question of how much information about the input is revealed by that output. Take the example
of computing the “average”. A secure protocol can compute the average of parties’ salaries
without revealing anything beyond the output. However, if two parties run the protocol, then
each party can compute the other party’s salary exactly (given its own salary and the average).
Thus, even though the protocol revealed nothing, the output itself reveals everything. This
implies that although secure computation is an extraordinarily powerful tool and one that is
very helpful in the field of privacy-preserving data mining, it can only be applied once it has
been determined that the function in question is “safe” (i.e., the function output does not reveal
sensitive information). This latter question—of what functions can be safely computed—is the
focus of the field of “privacy”. We stress that we do not belittle the role of secure computation
in privacy-preserving data mining in any way. Rather, we see the fields of privacy and secure
computation as complementary: the first is needed to decide that a given function is safe, and
the second is needed in order to compute the function so that it remains safe (i.e., by using
secure computation we are guaranteed that only the output is revealed and so the determination
that the function is safe suffices for saying that it can be computed).

Privacy and statistics. Another area where privacy is crucial is that of public statistics.
One classic case is that of the Census bureau that needs to publicize tables that sum up
each census. This task is extremely dangerous because census questionnaires contain alot
of sensitive information, and it is crucial that it not be possible to identify a single user in
the publicized tables. In this area, it seems that secure computation is not much help. In
particular, it seems that the function being computed is the tables, and there is no need to
use any cryptography once the tables are deemed safe. Although this may seem obvious, we
stress it because often it is suggested that the Census Bureau should run secure protocols
with individuals and organizations who wish to carry out research on the census data, rather
than have them simply release the tables. This suggestion is not helpful at all, in part due to
the following two reasons: first, allowing citizens to obtain arbitrary statistics on the census
data can be much more problematic than providing the data in the form of carefully prepared
tables (maliciously prepared statistical queries can be used to target an individual citizen’s
data). Second, the Census bureau is a public body and as such must act in a transparent
manner. The fact that some (or much) of the census results can be verified by comparing them
to other studies means that the public has confidence in the accuracy of the census results.
However, if secure protocols are run separately (in secret) between organizations seeking data
and the Census bureau, this transparency is lost. Having said this, we strongly believe that the
rigorous approach that is typical to cryptography will be instrumental in providing satisfactory
solutions to the questions of privacy in this setting.

Applying secure computation. We conclude by remarking that even in cases where secure
computation can be used, one must be careful in how it is applied. Specifically, we make
the argument here that it is crucial to understand what the exact privacy concerns are when
applying secure computation to privacy-preserving data mining problems. Consider an online
shopping scenario in which a user’s shopping habits are recorded. By applying data mining
techniques, these records can be used to improve customer experience by offering products that
are likely to be of interest. One example of the successful use of this technique is by Amazon. com,
who offers products to its customers based on their previous purchases and searches (and on
information gathered from other customers as well). If such a technique is used in a broad
manner in which all of a user’s buying habits are aggregated together, then this naturally
raises privacy concerns. This is because what we consume says a lot about who we are. Thus,
anyone with access to all of this information immediately knows a lot about our interests and
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habits. Despite this, there can be considerable gain to the consumer by applying data mining
techniques here. Targeted advertising, when done well, can bring to our attention products
that we really are interested in purchasing and may therefore provide significant benefit. It
therefore seems that we must choose between the desire to keep our personal information to
ourselves and the desire to use that information to our benefit.

Given the background we have provided above in this paper, it is not hard to reach the
conclusion that the ultimate solution is to run a secure computation protocol where each
consumer holds their purchase history and personal interests, and each online store holds an
algorithm that takes users’ purchase histories and creates a personalized shopping catalog.
Ignoring issues of efficiency, such a protocol seems to solve all problems. On the one hand, the
consumer is provided with a personalized catalog that is based on his/her interests. On the
other hand, the online store learns nothing about the consumer’s private purchase history.

The problem with the above solution is that it does not address the real privacy concern
that arises in the scenario of online shopping and users’ purchase histories. In particular,
although technology for personalizing shopping catalogs can be useful and positive, it can also
be used for unfair price discrimination. For example, if a user’s profile shows that they do
not “shop around” and usually buy as soon as they find what they are interested in, then the
shopping site may charge the user higher prices. Now, price discrimination is often considered
a positive economic force as it enables sellers to charge more to those willing to pay more
and less to others. However, in our example there is an inherent asymmetry: the seller has a
lot of information about the buyer and what they are willing to pay; in contrast, the buyer
does not have equivalent information about what price the seller is willing to sell for. To
make things worse, the buyer is not even aware that the seller has their purchase profile and
typically assumes that they are being charged the same amount as everyone else. This lack of
symmetry between the buyer and seller creates an unfair disadvantage to the buyer. Notice
now that the secure computation solution that we suggested above does not solve this problem!
This is because the algorithm that the seller inputs to the protocol is part of its input, and
so may determine rules for unfair price discrimination. Of course, the solution is very simple:
the algorithm used by the seller must be public. It can thereby be scrutinized for elements of
unfair price discrimination before a consumer agrees to use it. We are therefore not claiming
that secure computation doesn’t solve the problem. Rather, we are arguing that one needs to
take care that the true concerns are addressed before implementing a solution. Fortunately,
given the modeling of secure computation, it suffices to be convinced that the ideal-model
functionality solves the privacy problem at hand (and one does not need to look at a complex
protocol).

6 Future Challenges

Cryptographic protocols for secure computation achieve remarkable results: it has been shown
that generic constructions can be used to compute any function securely, and it has also been
demonstrated that some functions can be computed even more efficiently using specialized
constructions. Still, a secure protocol for computing a certain function will always be more
costly than a naive protocol that does not provide any security.

Cryptographers seek to make secure protocols as efficient as possible in order to minimize
the performance gap between secure and naive protocols. Yet, another possible goal could be
to examine the objective of secure computation. The current definitions of security provide a
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very strong guarantee: minimal loss of information in the face of strong adversaries. As we have
mentioned above, in some cases it makes sense to relax the definition of security in order to
achieve security. We stress that this is always preferable to the approach of suggesting a highly
efficient protocol that is not proven secure under any model. Such relaxations can come in
many forms, from relaxing the adversary’s power to allowing some leakage of information. We
believe that further research in this area is crucial for the development of secure and efficient
protocols in this field. Of course, this must go hand in hand with research on privacy in general
and the question of what information leakage is acceptable and what is not.
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