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The classification of rings of algebraic integers which 
are Euclidean (not necessarily for the norm function) is a 
major unsolved problem. Assuming the Generalized Rie- 
mann Hypothesis, Weinberger [7] showed in 1973 that for 
algebraic number fields containing infinitely many units 
the ring of integers R is a Euclidean domain if and only 
if it is a principal ideal domain. Since there are principal 
ideal domains which are not norm-Euclidean, there should 
exist examples of rings of algebraic integers which are Eu- 
clidean but not norm-Euclidean. In this paper, we give 
the first example for quadratic fields, the ring of integers 
of 

Introduction 
Let R be the ring of integers of an algebraic number field 

K. A Euclidean algorithm on R is a map r : R ~ N such 
that r ~ 0 for r ~ 0 and for all a,b E R, b r 0, there 
exist q,r E R w i t h a  = q b + r  andr  < r I f r  
pletely multiplicative, namely r = r162 then r can be 
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extended to a completely multiplicative function on K. Thus, 
the Euclidean property for ,ompletely multiplicative Euclidean 
algorithms can be expressed as follows: for every x E K there 
is 7 E R such that r - 7 )  < 1. The completely multiplica- 
tive Euclidean algorithm that has most often been studied in 
algebraic number fields is the absolute value of the norm. We 
will refer to such fields as being norm-Euclidean. It is easy to 
show that an integral domain equipped with a Euclidean algo- 
rithm is a principal ideal domain; therefore, we will consider 
only principal ideal domains. 

In the Supplement XI to Dirichlet's Vorlesungen (Lber ZahIen- 
theorie [5], Dedekind showed that Q(v/d) is norm-Euclidean for 

d = - I ,  -2 , -3 , -7 , -11 ,2 ,3 ,5 ,  13. 

In 1927 Dickson [4] claimed that this list of norm-Euclidean 
quadratic fields is complete. Perron [6] observed that Dickson's 
argument was valid only for imaginary quadratic fields. Perron 
gave additional examples. Over the next twenty years the qua- 
dratic fields which are Euclidean for the norm were completely 
characterized, namely for the additional values 

d = 6, 7, II, 17, 19, 21,29, 33, 37, 41, 57, 73. 

For references and a correction, see Barnes and Swinnerton- 
Dyer [1]. 

Weinberger [7] showed that, assuming the Generalized Rie- 
mann Hypothesis for Dedekind zeta functions, if the ring of 
integers of an algebraic number field contains infinitely many 
units, then the ring is Euclidean if and only if it is a princi- 
pal ideal domain. Note that the algorithm need not be the 
absolute value of the norm. Since there are examples of such 
principal ideal domains which are not norm-Euclidean (see be- 
low), he showed, conjecturally, that there exist Euclidean fields 
which are not norm-Euclidean. In [2] and [3] the first examples 
of such fields were given. However, the method developed in 
these papers is restricted to totally real Galois extensions of Q 
of degree greater than or equal to three. 

In this paper we verify that the ring of integers, Z[a], of 
Q(v /~ )  is Euclidean, where a = (1 + x /~) /2 .  In the course of 
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the proof, we will see that this ring is not norm-Euclidean. See 
also Barnes and Swinnerton-Dyer [1]. 

L e m m a  1. The only coprime residue classes modulo any ele- 
ment of Z[0`] which do not contain an element of smaller norm 
are 4-(16 + 40`) modulo (10 + 30̀ ). 

L e m m a  2. The only coprime residue classes modulo any ele- 
ment of Z [a] which do not contain an element of smaller norm 
not divisible by 10 + 30` are +(16 + 40`) modulo (10 + 30,). 

If we assume these two lemmas, then the proof that Z[a] is 
Euclidean is almost immediate. Define a completely multiplica- 
tire Euclidean algorithm r on the prime elements by 

f N(Tr), if T r y 1 0 + 3 0 `  
[ 26, if 7r = 10 + 3a, 

where N is the absolute value of the norm. Since N(16 + 4 a )  = 
25, Lemma 2 implies that every coprime residue class contains 
an dement with lower C-value. Hence, because r is completely 
multiplicative, r is a Euclidean algorithm. 

Note that Lemma 2 implies that any integer greater than 25 
could be used in place of 26 in the definition of r 

P roof s  o f  t h e  L e m m a s  
To prove Lemma 1, we verified by computer that the funda- 

mental domain of the lattice of integers of the field can be cut 
into small squares such that there is a translate of each small 
square by an element of the ring of integers with the norm less 
than 1 in the translate. We are left with two small squares 
containing the "bad" points mentioned in the lemma. Next, we 
use the method of "automorphs" (see Barnes and Swinnerton- 
Dyer [1]) to verify that there is only one bad point in each of 
the squares that remain. The method consists of multiplying 
the bad squares by units of the field and observing that this 
must map the set of actual bad points into itself. Multiplica- 
tion of the bad squares increases the size of the squares, so a 
fixed point argument shows there is only one bad point in each 
of the squares. 
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Lemma 2 is a stronger result than Lemma 1. The proof is 
similar except that we must find (again using a computer) two 
translations of each small square such that the norm is less than 
one in each translate and the difference of the two integers used 
for the translations is not divisible by 10 -{- 3c~. We are left with 
3 small bad squares. Two contain the "bad" points mentioned 
in the lemma and a third contains the origin. The method of 
automorphs shows that there can be at most one bad point in 
each square. The possible "bad" point in the third square is 
0, which certainly satisfies the condition of the lemma. To see 
that this proves the lemma, consider any coprime residue class 
a modulo an element b with b ~ 10 + 3ce. We have found two 
elements r l , r2  of Z[ol] such that g ( a / b +  ri) < 1 for i = 1,2. 
At least one of the elements a -{- rib is not divisible by 10 + 3c~, 
which proves the lemma. 
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