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ABSTRACT  
Data from several projects show a significant 
relationship between the size of a module and its defect 
density. Here we address implications of this 
observation. Does the overall defect density of a 
software project vary with its module size distribution? 
Even more interesting is the question- can we exploit this 
dependence to reduce the total number of defects? We 
examine the available data sets and propose a model 
relating module size and defect density.  It takes into 
account defects that arise due to the interconnections 
among the modules as well as defects that occur due to 
the complexity of individual modules. Model parameters 
are estimated using actual data. We then present a key 
observation that allows use of this model for not just 
estimation the defect density, but also potentially 
optimizing a design to minimize defects. This 
observation, supported by several data sets examined, is 
that the module sizes often follow exponential 
distribution.  We show how the two models used together 
provide a way of projecting defect density variation. We 
also consider the possibility of minimizing the defect 
density by controlling module size distribution.  

Keywords 

Module size, defect density, reliability, module size 
distribution 

1 INTRODUCTION 
The defect density is one of the most important of the 
software reliability attributes. It is often one of the 
measures used to ascertain release readiness. There are 
two factors that control the defect density at release. One 
of them is the extent and effectiveness of the testing and 
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debugging effort [1]. The other is the initial defect 
density present at the beginning of testing [2]. A study of 
the factors that influence the initial defect density is 
important due to two reasons. First it provides a 
quantitative method of identifying possible techniques 
for reducing the occurrence of defects. Secondly it 
allows one to estimate initial defect density, which can 
be used to plan the testing effort required. 

There are several models that attempt to estimate the 
defect density. Some of them consider only a single 
factor while others take multiple factors into account. 
Models can be additive where influence of several 
factors is added [3], or they can be multiplicative. 
Multiplicative models allow a submodel for each factor 
to be developed independently. Multiplicative modeling 
is standard for hardware failure rate estimation. Such 
models for software cost estimation have been widely 
used. Multiplicative models to estimate software defect 
density include the RADC model [4,5] and the ROBUST 
model [6,7]. The sub-models considered in the past 
include the effect of the maturity of the development 
process, the skill of the programmers involved, and the 
complexity of the program. The problem including the 
impact of requirement volatility has been studied [8]. 

Development of such models is needed for estimation of 
defect densities. They also offer an interesting 
possibility. They can allow an organization to assess the 
possibility of controlling defect density even before 
testing begins. 

This paper considers the problem of developing a model 
to account for variation in module size distribution, 
which can be used as a submodel in a multiplicative 
model.  A common simplifying assumption is that the 
defects are distributed randomly in a software system. 
However we can intuitively reason that size of a module 
may in some way influence the defect density. It has 
indeed been supported by several studies. 



 

It is popularly believed that decomposing a software 
system into small modules improves the design. 
Surprisingly the projects studied show exactly the 
opposite for a large range of module sizes. Basili and 
Perricone [9] studied a project with 90,000 lines of code. 
They studied 370 modules divided into 5 groups based 
on module size with increments of 50. They observed, 
contrary to their expectation, that larger modules were 
less error prone. This was true even when the larger 
modules were more complex as measured by cyclomatic 
complexity. 

Shen et al. [10] studied three IBM software projects, 
with three separate releases of one of them. The sizes 
ranged from 7 to 326 thousand lines. They give a plot of 
defect densities for 108 modules. While they did not 
provide scales for the plot, they mention that for 24 
modules with sizes exceeding 500 lines, the program 
length did not influence the defect density, which 
remains relatively constant. For the rest of 84 modules, 
the plot clearly shows that defect density declines as size 
grows. They also suggest a simple quantitative model for 
defect density in terms of module size.  

Banker and Kemerer [11] have presented a hypothesis 
that for any given environment there is an optimal 
module size. For lesser sizes, there is rising economy, 
and for greater sizes the economy declines due to rising 
number of communication paths. 

Withrow [12] examined the data for 362 ADA modules 
with total 114,000 lines of code. She divided the 
modules into 8 groups and gave a plot between module 
size and error density. This plot shows a remarkable 
minimum for modules with sizes 161-250, after which 
the defect density starts increasing with module size. Her 
results thus support the hypothesis by Banker and 
Kemerer. 

  Hatton [13] gave plots of data from a NASA Goddard 
project along with Withrow’s data. He suggested two 
different models for the two regions. For sizes up to 200 
lines, he suggested that the total number of defects grow 
logarithmically with module size, giving a declining 
defect density. For larger modules, he suggests a 
quadratic model.  

In contrast, Rosenberg [14] has argued that the observed 
decrease in defect density with rising module sizes is 
misleading. We examine his argument and show that his 
observations can be restated to confirm with a model we 
propose. Fenton and Ohlsson [15] have studied 
randomly selected modules from a large 
telecommunications project. They did not observe a 
significant dependence. We will see a reason of their 

observation.  

In the next section we propose a composite defect 
density model that takes into account both declining and 
rising defect density trends. We then apply it to actual 
data to obtain parameter values.  

This model would be of little value if we did not know 
the module sizes vary in a project. We present a pleasant 
surprise. For several projects examined, module sizes 
distribution is quite similar. This observation is used to 
obtain an expression for the total defect content in a 
project with many modules. This allows us to examine 
the influence of module size distribution to the overall 
defect density. We discuss how module size distribution 
can be characterized in a defect density model that takes 
several factors into account. Finally we consider the 
intriguing possibility that defect density may be reduced 
simply by controlling module sizes.  

2 A COMPOSITE DEFECT DENSITY MODEL 
Here we construct a model that explains the data 
presented in the literature. A software system is built 
using a number of modules, which are themselves built 
using a number of instructions. There are two 
mechanisms that give rise to defects. Some faults termed 
module-related are related to how the project is 
partitioned into modules and how the modules interact. 
Other faults termed instruction-related are associated 
with the lower level building blocks. These faults arise 
because of imperfect interaction of instructions within a 
module and their individual implementations. We first 
obtain models of each of the two fault-types. 

A. Module-related faults: We can term these interface 
faults because these will primarily be associated with 
parameters passed among the modules. However some 
of these may be related with assumptions made by 
modules regarding each other. They may also be 
associated with handling of global data.  We assume that 
such faults are uniformly distributed among the modules. 

If a module has size s, its defect density Dm for 
module-related faults is given by 

s

a
sDm =)(            (1) 

where the minimum possible values of s is one and a is a 
suitable parameter.  In terms of defect density, such 
defects represent overhead that proportionately declines 
as module size grows. The model of equation one is 
consistent with the model given by Shen at al. [10].  

Here it is interesting to examine Rosenberg’s analysis 
[14].  He assumes that two random variables X and Y 



 

are statistically independent. He gives a simulated scatter 
plot of Y/X against X, which looks similar to the defect 
density versus module size plot given by Shen et al. [10]. 
However his assumption implies that the total number of 
defects in module is not related to its size, i.e. the defect 
density is inversely proportional to size. His basis 
assumption is thus equivalent to the model given in 
Equation 1. As we see soon, such behavior will be 
overcome by another factor in large modules.  

B. Instruction-related faults: These are the faults that 
will dominate larger modules. We can term these faults 
bulk faults [8]. Let us assume that the probability that an 
instruction is incorrect has two components. The first 
component is a constant b. The other component 
depends on the number of other instructions a given 
instruction may interact with. We can assume that the 
second component is proportional to the module size s. 
We can then express the defect density Di due to 
instruction-related defects as 

csbsDi +=)(        (2) 

where c is another parameter.  

Using Equations (1) and (2) we can express the total 
defect density D(s) as 

csb
s

a

sDsDsD im

++=

+= )()()(
   (3) 

The model given in (3) specifies that the defect density 
tends to decline due to the first term as s increases. The 
third linear term will cause the defect density to rise. The 
middle term represents defect density that remains 
unaffected. To locate the minimum, we take the 
derivative of the RHS and equate it to zero. We get 

02 =+− c
s

a
 

giving the module size smin for minimum defect density  

c

a
s =min      (4) 

and the minimum defect density is given by 

)2(min bacD +=     (5) 

It is possible to have a model more complex than in Eq. 
(3) using additional parameters. However that will 

require us to make further assumptions that will require 
justification. 

It should be noted that the model implies two different 
regions.  

Region A: For modules with s< smin 

Region B: For modules with s>smin 

In region A, defect density declines with rising module 
size and in region B the defect density rises.   

3 ANALYSIS OF MODULE SIZE-DEFECT 
DENSITY DATA 

Here we will analyze the available data given in the 
tables below.  We apply the model given in (3) to the 
data to determine the parameter values. 

The data given by Basili and Perricone [9] shows a 
declining defect density. This is in spite of the fact that 
the larger modules were more complex. The region of 
rising defect density is not encountered.  As Withrow 
[12] points out, this is because there are only three 
modules larger than 200 lines. In this case, we had set 
parameter c equal to zero for curve fitting. The observed 
and fitted values are shown in Fig. 1. The data points all 
appear to be from region A, as mentioned above.  

Table 1: Basili data [9] 

Module 
Size 

(max) 

Module 
count 

Cyclomatic 
Complexity 

Defect 
Density 

(/KLOC) 

50 258 6 16 

100 70 17.9 12.6 

150 26 28.1 12.4 

200 13 52.7 7.6 

225 3 60 6.4 

 

The Withrow data given in Table 2, [12] for Ada 
modules is plotted in Fig. 3. The data exhibits both 
declining and rising defect density trends. There is a 
noticeable jump from the third to the fourth data point in 
the plot. A possible explanation is that Withrow’s study 
includes data from the test phase. It is possible that 
larger modules were not tested as thoroughly tested as 
the smaller modules resulting in relatively higher defect 
density. 

 



 

Table 2: Withrow data [12] 

Source lines Modules Defect Density 

4-62 93 5.4 

64-97 39 4.9 

103-154 52 3.4 

161-250 53 1.8 

251-397 46 5.2 

402-625 31 5.6 

651-949 22 6.8 

1050-5160 26 8.3 

 

The Columbus Assembly data given by Hatton [13] is 
plotted in Fig. 2 along with fitted curve as given by our 
model. The defect density drops sharply until the module 
size of about 400 and starts rising gradually. The data 
fits the model very well. 
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Figure 1: Defect density variation for Basili data. 

Table 3 gives the values of the parameters obtained. The 
second column gives the approximate value for Smin, the 
module size corresponding to the minimum defect 
density. Since the data available only gives ranges, it 
should only be regarded as an approximate round 
number. The parameter a is controlled by the defect 
density of small modules. The parameter c accounts for 
the rise in defect density in larger modules. Its value is 
found to be quite small for the Columbus and Withrow 
data, and for Basili data there were no sufficiently large 
modules. The parameter b is largely influenced the 
minimum defect density observed, as we would expect.  
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Figure 2: Defect density variation for Columbus data.  

 

Fitting a model with three parameters to experimental 
data can be difficult because often one of the three can 
be used to compensate the effect of another one. 
Depending on the initial estimates, the estimated 
parameter values can converge to different combination 
of values.  In this case, that can be avoided by initially 
setting the parameter c to zero while the other two are 
adjusted. After a and b have converged to specific 
values, c can be made non-zero for fitting. 

 In these three data sets, most of the available data points 
correspond to the declining defect density, where 
parameter c plays little role. The opposite is true for the 
data presented by Fenton and Ohlsson [15]. In their 
Table 5, the first data point groups all the modules with 
sizes lass than 500 LOC. They did not observe the initial 
declining trend, which is not surprising since the trend 
reverses around size 200-300 lines. Most of their 
modules were significantly larger than those in other 
studies. Thus they had very little data from region B. For 
their project, the data for release n shows a slowly rising 
trend, as in the Columbus and Withrow data sets. For 
release (n+1), the data does not show a clear trend.  

It should be noted that a very accurate fit is not required 
since in any given project there will a range of module 
sizes. For Withrow data we note that the model does not 
fit with the sharp minimum. However overestimation of 
the defect density in some modules with be compensated 
by underestimation for slightly smaller and larger 
modules. It is possible to obtain a better fit by using a 
model with more parameters however generally fewer 



 

parameters provide better interpretation of the process. 

 

Table 3: Parameter values for the three data sets 

Parameter values 
Data Smin 

a b c 

Basili - 220.9 7.83 0 

Columbus 400 223.79 4.73 0.0013 

Withrow 200 121.19 1.76 0.0063 

4 DISTRIBUTION OF MODULE SIZES 
To know the impact of module size variation within a 
project, we not only need to know the module-size 
defect-density relation, but also the distribution of 
module sizes for the project. One might think that there 
is a preferred module size and thus we may see a cluster 
of size values around the average with a Gaussian-like 
distribution. Surprisingly, there is evidence that it is 
usually not so.  

Fig.4 shows the distribution of module sizes for the 
Basili data. Small sized modules are the most common. 
There are only a few modules with large sizes. The 
distribution curve drops exponentially with increasing 
module sizes.  

Unlike Basili data, Withrow data includes many larger 
modules. Still as we see from Fig. 5, it has a similar 
module size distribution. The plots by Shen et al. suggest 
the same thing.  We also examined module size 
distribution for Gnu C library with 792 modules and 
again found the same distribution. This surprising 
preference for smaller modules may either be due to 
programming practices or a natural tendency of the 
programming problems to be divisible into segments 
with such a distribution. 

We can use an exponential function to arrive at a simple 
model for such a distribution. Let the density function 
for the module size distribution be given by this 
equation. 

 

gs
s egsf −= .)(       (6) 

Thus the module size distribution plots are described by 

gsegMsmsd −= ..)(      (7) 
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Figure 3: Defect density variation for Withrow data. 
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Figure 4: Module size distribution for Basili data. 

In this paper, we will use some rule-of-thumb 
approximations to obtain some simplified expressions. 
These approximations are not necessary when dealing 
with an actual data set since a closed form algebraic 
expression and numerical values can always be obtained. 
However the simplified expressions allow us to interpret 
the results, which can be used for rule-of-thumb 
calculations. In an actual case we will know the size of 
the smallest and the largest module. However to obtain 
simple results we will sometimes take the minimum size 
to be one and the maximum size to be infinity. We have 
numerically verified that the approximations are 



 

reasonable. 

Note that the parameter M represents the total number of 
modules since 

∫ ∫
∞

−
∞

≈=
1 1

)( MgeMsmsd gs      (8) 

The available data is all in the form of grouped data, 
which gives the number of modules mi that lie in the 
range (si, si+1). We can estimate the value of msd(si) 
using 

)(
)(

1+−
=

ii

i
i ss

m
smsd     (9) 

The Table 4 gives the values of the parameters M and g. 
The value of M is taken directly to be the total number of 
modules. If the value of M is obtained by using curve 
fitting, it will be slightly different. The value of 
parameter g is within the same range of magnitude; a 
larger value implies fewer large modules. 

Table 4 includes a row for the Gnu C Library which 
includes a wide range of common functions. The size 
distribution of functions, shown in Figure 5 serves as a 
good indicator of the naturally occurring size 
distribution. Thus it is not surprising that we see the 
same distribution for Withrow data in Fig. 6.  

The exponential distribution is not dependant on the 
language used. Our observation that the module-size is 
exponentially distributed for these projects has a 
significant implication. It allows a way of estimating the 
total number of defects for a project with different sized 
modules. Why the exponential distribution arises 
requires further investigation. 

 

Table 4: Module size distribution parameters 

Data Language M (total 
modules) 

Parameter 
g 

Basili Fortran 370 0.0054 

Withrow ADA 362 0.0041 

Shen PL/S 108 0.0029 

Gnu C 
Library 

C 792 0.0097 
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Figure 5: Gnu C Library size distribution 

 

For Fenton data [15], the module size distribution 
appears exponential for all the data points except for the 
first one in their Table 1 with LOC <1000. Having very 
few small modules was perhaps a good choice since it 
reduced the number of very small modules that can 
exhibit high defect density. 
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Figure 6: Module size distribution for Withrow data. 

5 TOTAL DEFECT CONTENT 
The total number of defects in a software system is 
found by adding up the defects in different modules. 
Since we know both the module size distribution and the 
dependence of defect density on module size, we can 
calculate the total number of defects N given by the 
following equation. 

∫ −− ++=
max

1

3 ..10).(
s

gs dsscsb
s

a
MgeN               (10) 



 

where smax is the size of the largest module. Because of 
the exponential function, the number of large modules 
will be small. An approximate value can be obtained by 
setting  smax  to be infinity. Because of the decaying 
exponential term, the result is not very sensitive to 
variation of smax. The factor 10-3 is needed because the 
defect density is generally stated in terms of defects per 
1000 lines of code. 

The overall defect density is then given by  

T

s
gs

S

dsscsb
s

a
Mge

D
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1

3 ..10).(

         (11) 

 

where ST the total size of the project with all the 
modules. Equation (11) can be solved easily to get a 
closed form expression. Since the resulting expression is 
quite long, it is given in the Appendix.  

Example 1: For a software system, there are 400 
modules. The module size is exponentially distributed 
with g=0.004 in Eq. (7). The defect density is related to 
module sizes as given by (3), with a=120, b=1.8 and 
c=0.006. The largest module size is 2000 lines. 

For this system the module size that will have the 
minimum defect density is obtained using (4), 

42.141min =s  

The total number of instructions is given by 

linesdssMgeS
s

gs
tot 000,100..

max

1

== ∫ −  

The total number of defects given by (10) is 

941=N  

and the overall defect density is found by (11) 

KLOCperD 09.7=  

6 VARIATION OF MODULE SIZE 
DISTRIBUTION 

For exponential module size distribution, the parameter 
g may vary due to either process variation or due to 
decisions deliberately made. Assuming that the overall 
size of the system is the same, how will the variation in g 
influence defect density? 

Since overall size of the project ST is fixed, we have 

TSgM .=     (12) 

Substituting for M in (11), we have 

∫ −− ++=
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This expression can be approximated to 

)2(001.0
g

c
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This provides an optimal value of the parameter g given 
by 

a

c
gopt

2=     (14) 

 

Note that from (12) we note that 1/g represents the size 
of an average module. If all the modules were of equal 
sizes, the minimum defect density would occur when 
each of them has the size given by smin from (4). On the 
other hand with a realistic exponential distribution, the 
optimal size sopt of an average module is obtained using 
(14), 

 

22
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c

a
sopt ==    (15) 

 

Equation (15) represents a surprising result. If modules 
of size 250 have the minimum defect density, the lowest 
overall defect density would occur when the average 
module size is about 177. That is because the 
asymmetric distribution of module sizes results in 
smaller modules having more impact on the overall 
defect density. 

Example 2: If we allow the value of the parameter g to 
vary in Example 1, the optimal value of g is found from 
(13) to be 

01.0=optg  

which yields a defect density of 4.2 per KLOC. Note that 
this is significantly less than the overall defect density 
7.09 when the usual exponential distribution is present. 
This suggests that defect density may be reduced by 
breaking modules larger modules and combining smaller 
modules so that resulting modules have sizes close to 



 

sopt. 

7 CHARACTERIZING MODULE SIZE 
DISTRIBUTION 

The values of the parameters a, b, and c depend on the 
programmers’ capabilities, maturity of the process and 
the extent of testing in prior phases. The effect of the 
module size variation is reflected in the parameter g 
above, where an exponential distribution is assumed.  
The exponential distribution was observed in most of the 
data set we examined. It arises due to natural reasons 
that need to be explored further.  

The total defect density is influenced significantly as the 
plot in Fig. 7 shows. At g=0.01, the overall defect 
density is about 4.2 per KLOC compared with 7.1 at 
g=0.002. This behavior is dependent on the parameter 
values a, b and c as given in (14). This allows us 
provides us with a model to take into account the module 
size distribution. The multiplicative factor Fms that takes 
into account module size distribution can be written as 

 

)(
g

C
BAgFms ++=         (16) 

  

The parameters A, B and B will need to be estimated 
from a similar project, such that for a default value of  g, 
Fms is unity.  
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Figure 7: Variation of defect density with parameter 
g. 

 

Example 3: If the values of a, b and c are as used in the 
above examples above, and if the typical value of g is 
0.005, the model of  (16) will be 

 

 )
10.5.2

375.025(
3

g
gFms

−

++=      (17) 

 

When g is unknown, the default value of Fms will be 
unity, as required [7]. 

An interesting possibility is provided by the fact that 
there is an optimal module size. It is a common 
recommendation to break very large modules into 
smaller ones. If there is a magic module size, say 200 
LOC, at which inherently the defect density is likely to 
be lower, that would reduce the overall defect density. 
This would approximately correspond to the HP policy 
reported by Grady [16] that a cyclomatic complexity 
greater than 16 is undesirable. In many projects there can 
be a number of modules on the lesser side of the magic 
size. It would make sense to minimize the number of 
very small modules, say those smaller than 100 LOC.  A 
possible approach can be to examine very small modules 
and attempt to coalesce them into larger modules. It can 
potentially reduce the overall defect density significantly 
provided the newly created modules contain fairly 
cohesive code.  

The Ericsson Telecom data reported by Fenton and 
Ohlsson [15] suggests that there were very few small 
modules among those randomly chosen for the study. 
For their releases n and (n+1), the smallest modules were 
37 and 196 lines of code. Reducing the number of very 
small modules would minimize the number of surface 
defects. Specifically adjusting the module size 
distribution will require the exponential distribution 
assumption to be modified. A possible approach to use 
Weibull distribution, which generalizes the exponential 
distribution. In cases where extensive module resizing is 
done, a discrete module size distribution may need to be 
used. 

All the data sets used in this and previous studies came 
from actual industrial or space projects where objective 
was to produce a working system, rather than to collect 
data. The number of defects in a module could have been 
influenced by a number of factors. Some modules could 
have gone through more careful inspection and testing. 
Modules having been reused from previous releases with 
little modification would have lower defect density than 



 

new modules or those, which have been extensively 
modified. It would be desirable to collect data where 
such variations are carefully controlled. However since 
the data sets come from different projects and different 
organizations, they support the observations of the 
researchers. We can see that some of the differences in 
observations for different data sets are explained by the 
fact that some data sets cover only region A and some 
only region B. A clear trend may not be seen if the 
number of modules is small, one needs to use grouped 
data to observe a pattern.  

8 CONCLUSIONS 
The paper presents a model giving influence of module 
size on defect density based on data that has been 
reported. It provides an interpretation for both declining 
defect density for smaller modules and gradually rising 
defect density for larger modules. We observe that for 
several projects, distribution of module sizes is given by 
an exponential expression. We analyze the combination 
of the two to address how the overall defect density for a 
project with many modules can vary. We identify the 
condition for optimal distribution. A model for 
characterizing variation of defect density due to module 
size variation has been obtained which can be used as a 
sub-model for a multi-factor defect density model. 

The exponential distribution occurs naturally in many 
software projects, for reasons that are yet to be studied. 
When module are specifically broken or coalesced to 
bring them closer to the size that is expected to give the 
minimal defect density, the exponential distribution may 
no longer be applicable. If small modules can be 
combined into optimal sized modules without reducing 
cohesion significantly, than the inherent defect density 
may be significantly reduced. 
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9 APPENDIX 
Equation (11) above gives an expression for the overall 
defect density as  
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This is easily solved although the resulting expression is 
complex. The numerator is 

and the denominator is given by 

 

The approximations mentioned above have been verified 
using numerical values.
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