
Module Size Distribution and Defect Density

Yashwant K. Malaiya and Jason Denton
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

+1 970 491 7031
malaiya|denton@cs.colostate.edu

ABSTRACT
Data from several projects show a significant
relationship between the size of a module and its defect
density. Here we address implications of this
observation. Does the overall defect density of a
software project vary with its module size distribution?
Even more interesting is the question- can we exploit this
dependence to reduce the total number of defects? We
examine the available data sets and propose a model
relating module size and defect density. It takes into
account defects that arise due to the interconnections
among the modules as well as defects that occur due to
the complexity of individual modules. Model parameters
are estimated using actual data. We then present a key
observation that allows use of this model for not just
estimation the defect density, but also potentially
optimizing a design to minimize defects. This
observation, supported by several data sets examined, is
that the module sizes often follow exponential
distribution. We show how the two models used together
provide a way of projecting defect density variation. We
also consider the possibility of minimizing the defect
density by controlling module size distribution.

Keywords

Module size, defect density, reliability, module size
distribution

1 INTRODUCTION
The defect density is one of the most important of the
software reliability attributes. It is often one of the
measures used to ascertain release readiness. There are
two factors that control the defect density at release. One
of them is the extent and effectiveness of the testing and

 This work was supported in part by a BMDO project funded
by ONR and also by an ONR AASERT project.

debugging effort [1]. The other is the initial defect
density present at the beginning of testing [2]. A study of
the factors that influence the initial defect density is
important due to two reasons. First it provides a
quantitative method of identifying possible techniques
for reducing the occurrence of defects. Secondly it
allows one to estimate initial defect density, which can
be used to plan the testing effort required.

There are several models that attempt to estimate the
defect density. Some of them consider only a single
factor while others take multiple factors into account.
Models can be additive where influence of several
factors is added [3], or they can be multiplicative.
Multiplicative models allow a submodel for each factor
to be developed independently. Multiplicative modeling
is standard for hardware failure rate estimation. Such
models for software cost estimation have been widely
used. Multiplicative models to estimate software defect
density include the RADC model [4,5] and the ROBUST
model [6,7]. The sub-models considered in the past
include the effect of the maturity of the development
process, the skill of the programmers involved, and the
complexity of the program. The problem including the
impact of requirement volatility has been studied [8].

Development of such models is needed for estimation of
defect densities. They also offer an interesting
possibility. They can allow an organization to assess the
possibility of controlling defect density even before
testing begins.

This paper considers the problem of developing a model
to account for variation in module size distribution,
which can be used as a submodel in a multiplicative
model. A common simplifying assumption is that the
defects are distributed randomly in a software system.
However we can intuitively reason that size of a module
may in some way influence the defect density. It has
indeed been supported by several studies.

It is popularly believed that decomposing a software
system into small modules improves the design.
Surprisingly the projects studied show exactly the
opposite for a large range of module sizes. Basili and
Perricone [9] studied a project with 90,000 lines of code.
They studied 370 modules divided into 5 groups based
on module size with increments of 50. They observed,
contrary to their expectation, that larger modules were
less error prone. This was true even when the larger
modules were more complex as measured by cyclomatic
complexity.

Shen et al. [10] studied three IBM software projects,
with three separate releases of one of them. The sizes
ranged from 7 to 326 thousand lines. They give a plot of
defect densities for 108 modules. While they did not
provide scales for the plot, they mention that for 24
modules with sizes exceeding 500 lines, the program
length did not influence the defect density, which
remains relatively constant. For the rest of 84 modules,
the plot clearly shows that defect density declines as size
grows. They also suggest a simple quantitative model for
defect density in terms of module size.

Banker and Kemerer [11] have presented a hypothesis
that for any given environment there is an optimal
module size. For lesser sizes, there is rising economy,
and for greater sizes the economy declines due to rising
number of communication paths.

Withrow [12] examined the data for 362 ADA modules
with total 114,000 lines of code. She divided the
modules into 8 groups and gave a plot between module
size and error density. This plot shows a remarkable
minimum for modules with sizes 161-250, after which
the defect density starts increasing with module size. Her
results thus support the hypothesis by Banker and
Kemerer.

 Hatton [13] gave plots of data from a NASA Goddard
project along with Withrow’s data. He suggested two
different models for the two regions. For sizes up to 200
lines, he suggested that the total number of defects grow
logarithmically with module size, giving a declining
defect density. For larger modules, he suggests a
quadratic model.

In contrast, Rosenberg [14] has argued that the observed
decrease in defect density with rising module sizes is
misleading. We examine his argument and show that his
observations can be restated to confirm with a model we
propose. Fenton and Ohlsson [15] have studied
randomly selected modules from a large
telecommunications project. They did not observe a
significant dependence. We will see a reason of their

observation.

In the next section we propose a composite defect
density model that takes into account both declining and
rising defect density trends. We then apply it to actual
data to obtain parameter values.

This model would be of little value if we did not know
the module sizes vary in a project. We present a pleasant
surprise. For several projects examined, module sizes
distribution is quite similar. This observation is used to
obtain an expression for the total defect content in a
project with many modules. This allows us to examine
the influence of module size distribution to the overall
defect density. We discuss how module size distribution
can be characterized in a defect density model that takes
several factors into account. Finally we consider the
intriguing possibility that defect density may be reduced
simply by controlling module sizes.

2 A COMPOSITE DEFECT DENSITY MODEL
Here we construct a model that explains the data
presented in the literature. A software system is built
using a number of modules, which are themselves built
using a number of instructions. There are two
mechanisms that give rise to defects. Some faults termed
module-related are related to how the project is
partitioned into modules and how the modules interact.
Other faults termed instruction-related are associated
with the lower level building blocks. These faults arise
because of imperfect interaction of instructions within a
module and their individual implementations. We first
obtain models of each of the two fault-types.

A. Module-related faults: We can term these interface
faults because these will primarily be associated with
parameters passed among the modules. However some
of these may be related with assumptions made by
modules regarding each other. They may also be
associated with handling of global data. We assume that
such faults are uniformly distributed among the modules.

If a module has size s, its defect density Dm for
module-related faults is given by

s

a
sDm =)((1)

where the minimum possible values of s is one and a is a
suitable parameter. In terms of defect density, such
defects represent overhead that proportionately declines
as module size grows. The model of equation one is
consistent with the model given by Shen at al. [10].

Here it is interesting to examine Rosenberg’s analysis
[14]. He assumes that two random variables X and Y

are statistically independent. He gives a simulated scatter
plot of Y/X against X, which looks similar to the defect
density versus module size plot given by Shen et al. [10].
However his assumption implies that the total number of
defects in module is not related to its size, i.e. the defect
density is inversely proportional to size. His basis
assumption is thus equivalent to the model given in
Equation 1. As we see soon, such behavior will be
overcome by another factor in large modules.

B. Instruction-related faults: These are the faults that
will dominate larger modules. We can term these faults
bulk faults [8]. Let us assume that the probability that an
instruction is incorrect has two components. The first
component is a constant b. The other component
depends on the number of other instructions a given
instruction may interact with. We can assume that the
second component is proportional to the module size s.
We can then express the defect density Di due to
instruction-related defects as

csbsDi +=)((2)

where c is another parameter.

Using Equations (1) and (2) we can express the total
defect density D(s) as

csb
s

a

sDsDsD im

++=

+=)()()(
 (3)

The model given in (3) specifies that the defect density
tends to decline due to the first term as s increases. The
third linear term will cause the defect density to rise. The
middle term represents defect density that remains
unaffected. To locate the minimum, we take the
derivative of the RHS and equate it to zero. We get

02 =+− c
s

a

giving the module size smin for minimum defect density

c

a
s =min (4)

and the minimum defect density is given by

)2(min bacD += (5)

It is possible to have a model more complex than in Eq.
(3) using additional parameters. However that will

require us to make further assumptions that will require
justification.

It should be noted that the model implies two different
regions.

Region A: For modules with s< smin

Region B: For modules with s>smin

In region A, defect density declines with rising module
size and in region B the defect density rises.

3 ANALYSIS OF MODULE SIZE-DEFECT
DENSITY DATA

Here we will analyze the available data given in the
tables below. We apply the model given in (3) to the
data to determine the parameter values.

The data given by Basili and Perricone [9] shows a
declining defect density. This is in spite of the fact that
the larger modules were more complex. The region of
rising defect density is not encountered. As Withrow
[12] points out, this is because there are only three
modules larger than 200 lines. In this case, we had set
parameter c equal to zero for curve fitting. The observed
and fitted values are shown in Fig. 1. The data points all
appear to be from region A, as mentioned above.

Table 1: Basili data [9]

Module
Size

(max)

Module
count

Cyclomatic
Complexity

Defect
Density

(/KLOC)

50 258 6 16

100 70 17.9 12.6

150 26 28.1 12.4

200 13 52.7 7.6

225 3 60 6.4

The Withrow data given in Table 2, [12] for Ada
modules is plotted in Fig. 3. The data exhibits both
declining and rising defect density trends. There is a
noticeable jump from the third to the fourth data point in
the plot. A possible explanation is that Withrow’s study
includes data from the test phase. It is possible that
larger modules were not tested as thoroughly tested as
the smaller modules resulting in relatively higher defect
density.

Table 2: Withrow data [12]

Source lines Modules Defect Density

4-62 93 5.4

64-97 39 4.9

103-154 52 3.4

161-250 53 1.8

251-397 46 5.2

402-625 31 5.6

651-949 22 6.8

1050-5160 26 8.3

The Columbus Assembly data given by Hatton [13] is
plotted in Fig. 2 along with fitted curve as given by our
model. The defect density drops sharply until the module
size of about 400 and starts rising gradually. The data
fits the model very well.

0

5

10

15

20

0 50 100 150 200 250

Module Size

D
ef

ec
t D

en
si

ty

Observed

Fitted

Figure 1: Defect density variation for Basili data.

Table 3 gives the values of the parameters obtained. The
second column gives the approximate value for Smin, the
module size corresponding to the minimum defect
density. Since the data available only gives ranges, it
should only be regarded as an approximate round
number. The parameter a is controlled by the defect
density of small modules. The parameter c accounts for
the rise in defect density in larger modules. Its value is
found to be quite small for the Columbus and Withrow
data, and for Basili data there were no sufficiently large
modules. The parameter b is largely influenced the
minimum defect density observed, as we would expect.

0

2

4

6

8

10

12

14

0 1000 2000

Module size

D
ef

ec
t d

en
si

ty

Observed

Fitted

Figure 2: Defect density variation for Columbus data.

Fitting a model with three parameters to experimental
data can be difficult because often one of the three can
be used to compensate the effect of another one.
Depending on the initial estimates, the estimated
parameter values can converge to different combination
of values. In this case, that can be avoided by initially
setting the parameter c to zero while the other two are
adjusted. After a and b have converged to specific
values, c can be made non-zero for fitting.

 In these three data sets, most of the available data points
correspond to the declining defect density, where
parameter c plays little role. The opposite is true for the
data presented by Fenton and Ohlsson [15]. In their
Table 5, the first data point groups all the modules with
sizes lass than 500 LOC. They did not observe the initial
declining trend, which is not surprising since the trend
reverses around size 200-300 lines. Most of their
modules were significantly larger than those in other
studies. Thus they had very little data from region B. For
their project, the data for release n shows a slowly rising
trend, as in the Columbus and Withrow data sets. For
release (n+1), the data does not show a clear trend.

It should be noted that a very accurate fit is not required
since in any given project there will a range of module
sizes. For Withrow data we note that the model does not
fit with the sharp minimum. However overestimation of
the defect density in some modules with be compensated
by underestimation for slightly smaller and larger
modules. It is possible to obtain a better fit by using a
model with more parameters however generally fewer

parameters provide better interpretation of the process.

Table 3: Parameter values for the three data sets

Parameter values
Data Smin

a b c

Basili - 220.9 7.83 0

Columbus 400 223.79 4.73 0.0013

Withrow 200 121.19 1.76 0.0063

4 DISTRIBUTION OF MODULE SIZES
To know the impact of module size variation within a
project, we not only need to know the module-size
defect-density relation, but also the distribution of
module sizes for the project. One might think that there
is a preferred module size and thus we may see a cluster
of size values around the average with a Gaussian-like
distribution. Surprisingly, there is evidence that it is
usually not so.

Fig.4 shows the distribution of module sizes for the
Basili data. Small sized modules are the most common.
There are only a few modules with large sizes. The
distribution curve drops exponentially with increasing
module sizes.

Unlike Basili data, Withrow data includes many larger
modules. Still as we see from Fig. 5, it has a similar
module size distribution. The plots by Shen et al. suggest
the same thing. We also examined module size
distribution for Gnu C library with 792 modules and
again found the same distribution. This surprising
preference for smaller modules may either be due to
programming practices or a natural tendency of the
programming problems to be divisible into segments
with such a distribution.

We can use an exponential function to arrive at a simple
model for such a distribution. Let the density function
for the module size distribution be given by this
equation.

gs
s egsf −= .)((6)

Thus the module size distribution plots are described by

gsegMsmsd −= ..)((7)

0

2

4

6

8

0 400 800

Module size

D
ef

ec
t

de
ns

it
y

Observed

Fitted

Figure 3: Defect density variation for Withrow data.

0

50

100

150

200

250

300

0 100 200 300 400

Module size

N
u

m
b

er
 o

f
m

o
d

u
le

s

Figure 4: Module size distribution for Basili data.

In this paper, we will use some rule-of-thumb
approximations to obtain some simplified expressions.
These approximations are not necessary when dealing
with an actual data set since a closed form algebraic
expression and numerical values can always be obtained.
However the simplified expressions allow us to interpret
the results, which can be used for rule-of-thumb
calculations. In an actual case we will know the size of
the smallest and the largest module. However to obtain
simple results we will sometimes take the minimum size
to be one and the maximum size to be infinity. We have
numerically verified that the approximations are

reasonable.

Note that the parameter M represents the total number of
modules since

∫ ∫
∞

−
∞

≈=
1 1

)(MgeMsmsd gs (8)

The available data is all in the form of grouped data,
which gives the number of modules mi that lie in the
range (si, si+1). We can estimate the value of msd(si)
using

)(
)(

1+−
=

ii

i
i ss

m
smsd (9)

The Table 4 gives the values of the parameters M and g.
The value of M is taken directly to be the total number of
modules. If the value of M is obtained by using curve
fitting, it will be slightly different. The value of
parameter g is within the same range of magnitude; a
larger value implies fewer large modules.

Table 4 includes a row for the Gnu C Library which
includes a wide range of common functions. The size
distribution of functions, shown in Figure 5 serves as a
good indicator of the naturally occurring size
distribution. Thus it is not surprising that we see the
same distribution for Withrow data in Fig. 6.

The exponential distribution is not dependant on the
language used. Our observation that the module-size is
exponentially distributed for these projects has a
significant implication. It allows a way of estimating the
total number of defects for a project with different sized
modules. Why the exponential distribution arises
requires further investigation.

Table 4: Module size distribution parameters

Data Language M (total
modules)

Parameter
g

Basili Fortran 370 0.0054

Withrow ADA 362 0.0041

Shen PL/S 108 0.0029

Gnu C
Library

C 792 0.0097

0

50

100

150

200

250

0 100 200 300 400 500

Module Size

M
od

ul
e

co
un

t

Figure 5: Gnu C Library size distribution

For Fenton data [15], the module size distribution
appears exponential for all the data points except for the
first one in their Table 1 with LOC <1000. Having very
few small modules was perhaps a good choice since it
reduced the number of very small modules that can
exhibit high defect density.

0
10
20
30
40
50
60
70
80
90

100

0 1000 2000 3000 4000

Module size

N
um

be
r

of
 m

od
ul

es

Figure 6: Module size distribution for Withrow data.

5 TOTAL DEFECT CONTENT
The total number of defects in a software system is
found by adding up the defects in different modules.
Since we know both the module size distribution and the
dependence of defect density on module size, we can
calculate the total number of defects N given by the
following equation.

∫ −− ++=
max

1

3 ..10).(
s

gs dsscsb
s

a
MgeN (10)

where smax is the size of the largest module. Because of
the exponential function, the number of large modules
will be small. An approximate value can be obtained by
setting smax to be infinity. Because of the decaying
exponential term, the result is not very sensitive to
variation of smax. The factor 10-3 is needed because the
defect density is generally stated in terms of defects per
1000 lines of code.

The overall defect density is then given by

T

s
gs

S

dsscsb
s

a
Mge

D
∫ −− ++

=

max

1

3 ..10).(

 (11)

where ST the total size of the project with all the
modules. Equation (11) can be solved easily to get a
closed form expression. Since the resulting expression is
quite long, it is given in the Appendix.

Example 1: For a software system, there are 400
modules. The module size is exponentially distributed
with g=0.004 in Eq. (7). The defect density is related to
module sizes as given by (3), with a=120, b=1.8 and
c=0.006. The largest module size is 2000 lines.

For this system the module size that will have the
minimum defect density is obtained using (4),

42.141min =s

The total number of instructions is given by

linesdssMgeS
s

gs
tot 000,100..

max

1

== ∫ −

The total number of defects given by (10) is

941=N

and the overall defect density is found by (11)

KLOCperD 09.7=

6 VARIATION OF MODULE SIZE
DISTRIBUTION

For exponential module size distribution, the parameter
g may vary due to either process variation or due to
decisions deliberately made. Assuming that the overall
size of the system is the same, how will the variation in g
influence defect density?

Since overall size of the project ST is fixed, we have

TSgM .= (12)

Substituting for M in (11), we have

∫ −− ++=
max

1

32 ..10).(
s

gs dsscsb
s

a
egD

This expression can be approximated to

)2(001.0
g

c
bagD ++≈ (13)

This provides an optimal value of the parameter g given
by

a

c
gopt

2= (14)

Note that from (12) we note that 1/g represents the size
of an average module. If all the modules were of equal
sizes, the minimum defect density would occur when
each of them has the size given by smin from (4). On the
other hand with a realistic exponential distribution, the
optimal size sopt of an average module is obtained using
(14),

22
mins

c

a
sopt == (15)

Equation (15) represents a surprising result. If modules
of size 250 have the minimum defect density, the lowest
overall defect density would occur when the average
module size is about 177. That is because the
asymmetric distribution of module sizes results in
smaller modules having more impact on the overall
defect density.

Example 2: If we allow the value of the parameter g to
vary in Example 1, the optimal value of g is found from
(13) to be

01.0=optg

which yields a defect density of 4.2 per KLOC. Note that
this is significantly less than the overall defect density
7.09 when the usual exponential distribution is present.
This suggests that defect density may be reduced by
breaking modules larger modules and combining smaller
modules so that resulting modules have sizes close to

sopt.

7 CHARACTERIZING MODULE SIZE
DISTRIBUTION

The values of the parameters a, b, and c depend on the
programmers’ capabilities, maturity of the process and
the extent of testing in prior phases. The effect of the
module size variation is reflected in the parameter g
above, where an exponential distribution is assumed.
The exponential distribution was observed in most of the
data set we examined. It arises due to natural reasons
that need to be explored further.

The total defect density is influenced significantly as the
plot in Fig. 7 shows. At g=0.01, the overall defect
density is about 4.2 per KLOC compared with 7.1 at
g=0.002. This behavior is dependent on the parameter
values a, b and c as given in (14). This allows us
provides us with a model to take into account the module
size distribution. The multiplicative factor Fms that takes
into account module size distribution can be written as

)(
g

C
BAgFms ++= (16)

The parameters A, B and B will need to be estimated
from a similar project, such that for a default value of g,
Fms is unity.

3

4

5

6

7

8

9

0 0.005 0.01 0.015 0.02 0.025

Parameter g

T
ot

al
 d

ef
ec

t d
en

si
ty

Figure 7: Variation of defect density with parameter
g.

Example 3: If the values of a, b and c are as used in the
above examples above, and if the typical value of g is
0.005, the model of (16) will be

)
10.5.2

375.025(
3

g
gFms

−

++= (17)

When g is unknown, the default value of Fms will be
unity, as required [7].

An interesting possibility is provided by the fact that
there is an optimal module size. It is a common
recommendation to break very large modules into
smaller ones. If there is a magic module size, say 200
LOC, at which inherently the defect density is likely to
be lower, that would reduce the overall defect density.
This would approximately correspond to the HP policy
reported by Grady [16] that a cyclomatic complexity
greater than 16 is undesirable. In many projects there can
be a number of modules on the lesser side of the magic
size. It would make sense to minimize the number of
very small modules, say those smaller than 100 LOC. A
possible approach can be to examine very small modules
and attempt to coalesce them into larger modules. It can
potentially reduce the overall defect density significantly
provided the newly created modules contain fairly
cohesive code.

The Ericsson Telecom data reported by Fenton and
Ohlsson [15] suggests that there were very few small
modules among those randomly chosen for the study.
For their releases n and (n+1), the smallest modules were
37 and 196 lines of code. Reducing the number of very
small modules would minimize the number of surface
defects. Specifically adjusting the module size
distribution will require the exponential distribution
assumption to be modified. A possible approach to use
Weibull distribution, which generalizes the exponential
distribution. In cases where extensive module resizing is
done, a discrete module size distribution may need to be
used.

All the data sets used in this and previous studies came
from actual industrial or space projects where objective
was to produce a working system, rather than to collect
data. The number of defects in a module could have been
influenced by a number of factors. Some modules could
have gone through more careful inspection and testing.
Modules having been reused from previous releases with
little modification would have lower defect density than

new modules or those, which have been extensively
modified. It would be desirable to collect data where
such variations are carefully controlled. However since
the data sets come from different projects and different
organizations, they support the observations of the
researchers. We can see that some of the differences in
observations for different data sets are explained by the
fact that some data sets cover only region A and some
only region B. A clear trend may not be seen if the
number of modules is small, one needs to use grouped
data to observe a pattern.

8 CONCLUSIONS
The paper presents a model giving influence of module
size on defect density based on data that has been
reported. It provides an interpretation for both declining
defect density for smaller modules and gradually rising
defect density for larger modules. We observe that for
several projects, distribution of module sizes is given by
an exponential expression. We analyze the combination
of the two to address how the overall defect density for a
project with many modules can vary. We identify the
condition for optimal distribution. A model for
characterizing variation of defect density due to module
size variation has been obtained which can be used as a
sub-model for a multi-factor defect density model.

The exponential distribution occurs naturally in many
software projects, for reasons that are yet to be studied.
When module are specifically broken or coalesced to
bring them closer to the size that is expected to give the
minimal defect density, the exponential distribution may
no longer be applicable. If small modules can be
combined into optimal sized modules without reducing
cohesion significantly, than the inherent defect density
may be significantly reduced.

REFERENCES
[1] J. Musa, Software Reliability Engineering,

McGraw-Hill, 1999.

[2] J. C. Munson and T. M. Khoshgoftar, “Software
metrics in reliability assessment,” in Handbook of
Software Reliability Engineering, Ed. M.R. Lyu,
IEEE-CS Press/McGraw-Hill, 1996.

[3] M. Takahashi and Y. Kamayachi, " An empirical
study of a model for program error prediction,"
Proc. of 8th International IEEE Conference on
Software Engineering, pp. 330-33, Aug. 1985.

[4] Methodology for software reliability prediction
and assessment. Technical Report RL-TR-95-52,
Vol. 1 and 2, Rome Labs, 1992.

[5] W. Farr, “Software reliability modeling survey,”
in Handbook of Software Reliability Engineering,
Ed. M.R. Lyu, IEEE-CS Press/McGraw-Hill,
1996.

[6] N. Li and Y.K. Malaiya, “ROBUST: A Next
Generation Software Reliability Engineering
Tool” Proc. IEEE Int. Symposium on Software
Reliability Engineering, pp. 375-380, Oct. 1995.

[7] Y.K. Malaiya and J.A. Denton, “What do
software reliability parameters represent?,” Proc.
International Symposium on Software Reliability
Engineering, pp. 124-135, Nov. 1997.

[8] Y.K. Malaiya and J.A. Denton, “Requirement
volatility and defect density,” Proc. International
Symposium on Software Reliability Engineering,
pp. 285-294, Nov. 1999.

[9] V. R. Basili and B. R. Perricone, "Software errors
and complexity," Comm. ACM, vol. 27, pp. 42-
52, Jan. 1984.

[10] V.Y. Shen, T. Yu, S. M. Thebut, “Identifying
error-prone software-An empirical study,” IEEE
Trans. Software engineering, vol. SE-11, pp. 317-
324, April 1985.

[11] R. D. Banker and C. F. Kemerer, "Scale
Economies in new software development," IEEE
Trans. Software Engineering, pp. 1199-1205,
Oct. 1989.

[12] C. Withrow, "Error density and size in Ada
software," IEEE Software, pp. 26-30, Jan. 1990.

[13] L. Hatton, "Reexamining the fault density-
component size connection," IEEE Software, pp.
89-97, March 1997.

[14] J. Rosenberg, “Some misconceptions about lines
of code,” Proc. Int. Software Metrics
Symposium, pp. 137-142, Nov. 1997.

[15] N.E. Fenton and N. Ohlsson, ‘Quantitative
analysis of faults and failures in a complex
software system,” IEEE Trans. Software
Engineering, to appear.

[16] R.B. Grady, Practical software metrics for project
management and process improvement, Prentice-
Hall, 1992.

9 APPENDIX
Equation (11) above gives an expression for the overall
defect density as

T

s
gs

S

dsscsb
s

a
Mge

D
∫ −− ++

=

max

1

3 ..10).(

This is easily solved although the resulting expression is
complex. The numerator is

and the denominator is given by

The approximations mentioned above have been verified
using numerical values.

max
1

2222
2

3

)]2

2(
10

[

S

sg

cbg

agsgcbsgscge
g

M

+

++++
−

max
1]

)1(
[SsgMe

g

sg −+−

