
 1 Copyright © 2018 by ASME

Proceedings of the ASME 2018 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2018

August 26-29, 2018, Quebec City, Quebec, Canada

IDETC2018

ENABLING GRADUATE ENGINEERING STUDENTS WITH PROFICIENCY IN MOBILE
ROBOTICS

Adhiti Raman
Graduate Student

Department of Automotive
Engineering

Clemson University
Email: adhitir@clemson.edu

Venkat Krovi
Michelin Endowed Chair Professor

Department of Automotive
Engineering

Clemson University
Email: vkrovi@clemson.edu

Matthias Schmid
Research Assistant Professor

Department of Automotive
Engineering

Clemson University
Email: schmidm@clemson.edu

ABSTRACT

In recent years, an aggressive expansion of research as well

as commercialization efforts in autonomous vehicles can be

witnessed. At the same time, many existing companies have

expanded their portfolio to autonomous technologies as well

(e.g. NVIDIA). This has created an already large need for

autonomous-vehicle engineers who are not only proficient in

single traditional engineering fields (e.g. mechanical) and old-

school automotive studies, but who also have acquired the

significantly different, interdisciplinary skillset for mobile

robotics. Unlike students of computer science, mechanical

engineering graduate students are hardly exposed to coding and

robotic system integration in current traditional curricula. The

new demands of the automotive industry require an automotive

engineer who understands the science of autonomy as well as its

impact on the design and implementation of autonomous

vehicles, and is equipped with hands-on experience with the

latest technology in the field.

We describe a unique education program that draws content

from traditional courses on mobile-robotics as well as

incorporates experiential learning by hands-on training in

software, specifically addressing the skill gap in traditional

automotive engineering education. Geared towards engineering

students with no previous training in robotic system integration,

and with only basic undergraduate understanding of

programming languages, the teaching experiment employed an

active learning approach to introduce numerous concepts as a

host of hands-on exercises on multiple robotic platforms.

Beginning with simple tutorials on networked communication to

demonstrate the power of ROS, the course built up to complete

control system design on a student-built RC car that can avoid

obstacles and navigate a racecourse by performing SLAM.

A brief evaluation of the course exhibited good student

performance in general with unique and creative approaches to

the programming tasks in particular. Although employing

different approaches, each student team was able to demonstrate

comparable, efficient performance.

INTRODUCTION

Building high-performance, modular and verified

Autonomous Vehicles (AV) requires solving several challenges

in perception, (semi-)formal verification and control. Certain

themes that AV research thrusts must focus on are:

Safe autonomy: Re-creating dangerous situations in a

simulated Hardware-in-the-Loop (HIL) or Software-in-the-Loop

(SIL) environment to perform risk-based safety analysis of AVs.

Creating AV platforms that that use formally constrained

 2 Copyright © 2018 by ASME

machine learning to learn from its experience and those of other

AVs without departing from the safe behavior that got it certified

(by formal of semi-formal verification techniques) as road

worthy.

Agile autonomy: Developing computationally inexpensive

control algorithms that enable agile maneuvering at high speeds.

Coordinated Autonomy: Using map-data, traffic conditions,

road and visibility conditions for lightweight coordination to

expand vehicle-centric safety bubble to a larger active network

safe-zone.

 All such tasks require high level networking between

different AVs and sharing of computational expense of certain

tasks with external and internal (online and offline) computing

platforms. For this very reason, in the last few years Robotics

Operating System (ROS) has emerged as a popular development

framework in the autonomous vehicle industry. ROS was first

introduced by Quigley et al. [1] in 2009 as an open-source

framework for robot communication. While originally designed

to enable large scale cross platform communication, it quickly

become the de-facto standard in the robotics community. Now

such knowledge and understanding of ROS is already a key

requirement for the majority of open positions in the

Autonomous Vehicle R&D industry.

The main objective behind the design of the course was to

introduce mechanical/automotive and electronics engineers at

Clemson University to the complexities and challenges of

mobile robotics at a graduate level. The lack of previous

exposure beyond a very basic knowledge of software

programming made this a challenging objective. Incremental

experiences and project based-learning had long been proven as

a reliable format in teaching robotics to computer engineers [2].

In order to engage beginners quickly, we focused on a

combined approach of in-depth coding tutorials and code

implementation from existing repositories and projects. ROS is

ideally suited for this approach by providing a framework that

allows the communication of code in different languages over a

common interface.

Incorporating existing ROS-enabled hardware platforms for

robotics training has several apparent advantages: the TurtleBot

robots by Willow Garage, for instance, is well suited for

educational programs as it allows instructors to focus on the

theoretical aspects of mobile robotics while at the same time

allowing for physical learning experience. The use of the

TurtleBot in education is well supported by literature [4]. Maas

and Maehle compliment the object-oriented nature of robots

such as TurtleBot and Bilibot [3], by highlighting their similarity

to the concepts in object-oriented programming, hence making it

ideal for introductory lessons. “Encapsulation”, for instance,

allows the programmer to mask the complexity of the

programming task by allowing only interfaced access to the

hardware of the robot. The robots can be similarly controlled at

a high level allowing the user to gain an intuitive understanding

of the scope of the physical challenge before exposing the

complex substructure i.e. the practical details of the

programming challenge.

As the focus is on training graduate students, the envisioned

learning curve was expected to be very steep. The students were

expected to not only understand and control a ROS-enabled

robot, but also to assemble their very own. The hardware

platform for the task was based on the F1tenth competition by

the University of Pennsylvania [5]. Here, the available Bill of

Materials and the repository of tutorials allowed the students to

engage quickly with the subject matter and add modifications of

their own. The use of the F1tenth mobile base had another

advantage as well. As mentioned previously, research on AVs

has complex focus areas. This has also been historically limited

to experimentation on expensive commercial vehicles, which

require large teams, diverse skills and power hungry platforms.

As this is outside the reach of many academic departments, they

are constrained to teaching pieces of the overall autonomy

picture, like motion planning and computer vision. An open-

source platform such as this opens up new approaches to

teaching autonomous perception, planning, control and

coordination.

Teaching material for the course employed several

references: Advanced Mobile Robotics by R. Seigwart [6] was

mainly utilized for the theoretical knowledge imparted during

class. The content for ROS tutorials was drawn from online

resources such as GaiTech [7], the ROS Wiki page [8],

MooreRobots [9] as well as online textbooks such as Gentle

Introduction to ROS by author Jason M. O’Kane [10].

By the end of the course, students were expected to

successfully provide answers to the following fundamental

questions posed by Dudek and Jenkins in Computational

Principles of Mobile Robotics [11] with competence:

 Path planning: Is it possible to get the robot from one

configuration to another while remaining in 𝐶𝑓𝑟𝑒𝑒 (the

free space or C-space of the robot, i.e. the set of valid

poses available to the robot).

 Localization: How can a robot determine its state if it

has local measurements of 𝐶𝑓𝑟𝑒𝑒?

 Perception or sensing: How can the robot determine

which parts of its environment are occupied?

 Mapping: How can the robot determine 𝐶𝑓𝑟𝑒𝑒, assuming

it always knows where it is?

 3 Copyright © 2018 by ASME

 Simultaneous localization and mapping: How can a

robot determine its pose and 𝐶𝑓𝑟𝑒𝑒 if it knows neither?

The framework for teaching was closely designed on the

suggested format by Touretzky [4] which itself draws

inspiration from curriculum design principles pertinent to

abstract subjects as described in Understanding by Design by

Wiggins and McTighe [12] and asks that the topic in

consideration be taught in the following manner:

 Motivate by introducing an essential question, e.g.

‘How do robots see?’

 Demonstrate the answer with an example of technology

at work

 Explain how the technology works at a high level

 Experiment by allowing the students hand-on access to

the technology through a project assignment

 Review the work through summarized reports to

evaluate their understanding

 This paper is organized as follows: in the following second

section, we discuss the background, course format, and bi-

weekly projects assigned. In the third section, we demonstrate

how the relevance of the knowledge imparted helped shape the

creativity displayed by the students in the final project

assignment. Finally, we discuss some of the issues and

challenges that were faced in implementing the subject matter

and the long and short-term future of autonomy education.

BACKGROUND

Robot kits and small hardware platforms have increasingly

been used for science and autonomy education since the 1990s.

For example, Lego Robots have been popular in a wide variety

of educational levels: from beginner lessons in high-schools to

graduate level courses [13]. Menegatti and Moro [13]

recommend the use of LEGO robots by reasoning that the ease

of Lego’s NXT programming allows the lecturers of graduate

classes to focus on a conceptual and theoretical understanding of

complex concepts (such as Monte Carlo Localization) without

spending much time in the unromantic and technical aspect of

robotics. However, it could be argued that in the industrial

setting a technical proficiency may be equally important.

Confronting potential hardware or software roadblocks and

brainstorming solutions can provide a realistic expectation of

challenges faced be an important part of a holistic robotics

education.

A) Course Format

The Department of Automotive Engineering at Clemson

University offers the class AuE893 - Autonomy, Science and

Systems as a 4-credit course for graduate and post-graduate

students in Automotive, Mechanical, Electrical and Electronics

and Communication Engineering. There are no pre-requisites

apart from a basic understanding of programming. The class size

was limited to a maximum of 15 students to foster greater

student-teacher interaction. In Spring ’17, the course had 14

registered students (6 in the Master’s program, 8 in the PhD

program) who were split into 3 teams. While the majority of

students was enrolled into the Automotive Engineering program,

four students pursued degrees in Electrical, Electronics and

Communications Engineering. The two ninety-minute in-class

sessions per week were equally devoted to a lecture as well as

demonstration of the current a problem statement by the

instructor and TAs, and problem resolution combined with

brainstorming in group discussions. Mini-projects and lab

assignments were introduced weekly and were alternated with

problem reviews and new concept introductions. While students

were encouraged to solve the projects in cooperation with their

teammates, they were still require to display their own work and

highlight each team member’s contribution through citations.

The overall course was broadly split into three modules:

1) Module 1: Introduction (5 weeks)

i.Introduction to Python, C++ and working on a Linux

operating system.

ii.An introduction to GitHub and coding as a team.

iii.An introduction ROS – working with catkin, creating

packages, writing publishers and subscribers, launch

files, Turtlesim, Gazebo, RViz and simple

demonstrations with a Turtlebot.

2) Module 2: Coding for Autonomy (6 weeks)

Covering the fundamental problems in mobile robotics with a

Turtlebot and Gazebo

i.Obstacle avoidance and PID control

ii.Sensing the environment, localization and path

planning

iii.Mapping and SLAM with sensor fusion

3) Module 3: Capstone Project (5 weeks)

Building your own ROS-enabled autonomous race car. Each

team was given all the parts and a variety of sensors with the

freedom to build their own navigation controller with the tools

on hand.

Five laboratory assingments or “mini projects” were spread

over the 3 modules. Brief descriptions are given below

Lab Topic Learning Goal

1
Getting

started

Review of programming,

introduction to Ubuntu and GitHub

platforms.

2
Basics of

ROS

Create packages, publish, subscribe

and make launch files. Using

TurtleSim, Gazebo.

 4 Copyright © 2018 by ASME

3 Sensors

Working with simulated sensors,

editing Gazebo worlds and mapping

the worlds.

4
Obstacle

Avoidance

Move-to-goal, obstacle avoidance,

path planning.

5 Navigation
Using PID control to autonomously

navigate a racetrack with obstacles.

B) ROS-Enabled Robotic Platforms

Two primary robotic platforms were used in class. The

Turtlebot by Willow Garage has long been a popular choice for

beginner robotic courses in ROS development [4,14,15]. The

F1tenth platform was used for the first time as part of an

educational course by us.

Weeks 1-11: For two-thirds of the course we used the newly

released Turtlebot-2 which comes on a Kobuki base on a two

wheeled differential drive system with cliff sensors, wheel

encoders, bumper sensors, an Orrbec Xtion Pro RGB-d camera

and an ASUS laptop running Ubuntu 14.04 with ROS Indigo.

Most of the project coding and implementation was done on a

Gazebo simulation and tested live in class on a real Turtlebot.

There were some challenges faced while using this platform. At

the time of the Turtlebot2 release, the popular Microsoft Kinect

sensor had been taken out of circulation and the last-minute

replacement provided – the Orrbec Xtion Pro -- had not been

sufficiently play tested. As a result, a working ROS driver for the

camera was in development and was not available during the

time of course. A significant amount of time was spent

attempting to modify the existing OpenNI2 driver with little

success. This was an excellent real-world example of software

and hardware roadblocks often faced in the field of robotics and

culminated in an interesting discussion of alternative approaches

to project challenge at hand. With the ability of depth perception

taken out of the running for the nonce, the students explored

using the bumper sensor in their obstacle avoidance code.

Weeks 12-16: In the final five weeks of the course, the robotic

platform used was the F1tenth car developed by the University

of Pennsylvania [5]. The F1tenth Competition is an annual

contest hosted by UPenn every year and in it, student teams

compete to build and race autonomous RC vehicles. The website

for the competition is a well-maintained repository of short

guiding tutorials and part recommendations for the hardware

build of a ROS enabled robotic car. Although the online

repository and bill of materials were outdated at the time, with

many components no longer in circulation, we nonetheless found

this to be an excellent resource base for use in coursework. The

RC car built by the students in the course used a Traxxas Slash

2WD Short Course Truck with laser cut platforms and 3D

printed fixtures for housing the different components and

sensors. The computing platform for running the Linux

operating system and the overlying ROS framework was the

NVIDIA TK1 or TX1. The accompanying sensors were a

Hokuyo UST-10LX LiDAR, a choice of Structure Senor depth

camera or ZED RGB-d stereo camera, and SparkFun’s 9DoF

Razor IMU. A Teensy 3.2 microcontroller board programmable

with Arduino was employed to control the ESC and steering

servos with serial commands through ROS. Peripherals included

a Ubiquiti PicoStation for Wireless access, USB hubs and a

generic power bank with 12V and 20V supplies.

Fig 1: System architecture and connections of the parts in the

F1tenth car.

C) Capstone Project

The five weeks of effort put into the capstone project by the

respective teams was tested in a final examination held at the end

of the semester. The examination included a 20 minute

presentation on the build and working on the car followed by a

live demonstration on a race track. The students were expected

to submit a report on the project in the style of a research thesis.

The objectives of the final project were three-fold: a) apply

the concepts learned in class (path planning, mapping, control)

on a robot built from scratch. b) work in a team, share code and

ideas to create something novel together. c) understand the

challenges in research and the limitations of autonomous

vehicles in a real world scenario. The three teams were tasked

with a achieving a 3-point agenda:

1. Achieve autonomous navigation around an arbitrary

racetrack with the sensors at hand (depth camera,

RGBD camera, LiDAR, IMU).
2. Perform mapping and localization while remote

streaming the data

3. Obtaining quality obstacle avoidance at high speeds and

low speeds.

The final demonstration was held on a racetrack with movable

obstacles.

 5 Copyright © 2018 by ASME

Fig 2: Hector map of the final racetrack taken by one of the

cars

LEARNING OUTCOMES

Each of the teams had unique and creative approaches to the

problem statements. The primary languages supported by ROS

are Python and C++, with significant (and growing) ROS support

available through the MATLAB Robotics Systems Toolbox.

Two teams chose to build their controller in Python and one team

chose MATLAB. The most significant divergence in tactics

employed to solve a given problem was demonstrated in their

respective solutions to the problem steering and velocity control

during racecourse navigation using the LiDAR laser scan output.

Team A: Pure Pursuit

Pure pursuit works from the idea of determining a goal point

in the vehicle frame, and then calculating the necessary steering

angle and velocity inputs to reach this goal point. This pure

pursuit problem is broken down into three sections: calculating

the goal point, calculating the required steering inputs to get to

the goal, and calculating the appropriate velocity commands

based on the goal point.

Goal Point Determination: The formulation of a goal point

was slightly unconventional. Information of the surroundings is

local information taken from the LiDAR sensor, and the goal

point selected was the centroid of all the data points.

[
𝑥𝑡

𝑦𝑡
] = 𝑟𝑖 [

cos(𝜃𝑠𝑡𝑎𝑟𝑡 + 𝑖Δ𝜃)

sin(𝜃𝑠𝑡𝑎𝑟𝑡 + 𝑖Δ𝜃)
]

Steer Control: For simplicity, the Ackerman steered vehicle

was modelled as an equivalent bicycle. Using the goal point, the

look ahead distance was calculated by taking the hypotenuse of

the triangle, which is formed by the goal point, and the vehicles

heading and position. The look ahead distance is then used to

calculate the curvature of the desired trajectory (arc) from the

rear axle to the goal point. By incorporating the wheelbase of the

vehicle, the desired steering angle 𝜙 was calculated. Instead of

using this steering angle directly, a gain factor 𝑘𝑠𝑡 was

introduced to tune the responsiveness of the steering. A steering

bias 𝑏𝑠𝑡 was introduced to tune the steering trim and compensate

for misaligned wheels.

𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑡𝑤𝑖𝑠𝑡 = 𝑘𝑠𝑡𝜙 + 𝑏𝑠𝑡

Velocity Control: Conventional pure pursuit determines a

goal point as a function of the vehicle velocity. In this

implementation, the velocity was determined from the goal

point. Not only does the goal point shift laterally as the vehicle

navigates the track, but it also shifts longitudinally. In the

sections of the track where there is a clear path far from the

vehicle, the goal point is further away thus the look ahead

distance is greater. When the vehicle could calculate a trajectory

to a greater distance, the vehicle would go faster. Conversely, if

the vehicle could only calculate the trajectory which is very

close, the vehicle would slow down. Using this methodology, the

velocity was calibrated to a given look ahead distance linearly.

Team B: “The Potential Field”

Steering control: The potential field is found by finding the

sector that has the largest average distance. The angle between

the target sector and the centerline 𝛼𝑝𝑓is the first component of

the input error to the steering PD controller.

For collision avoidance and centering the PD control

algorithm was extended further to incorporate two more error

terms. The first term 𝛼𝑎𝑣𝑜𝑖𝑑 was calculated as a function of the

sum of the distance along x-axis of each laser point. To ensure

that objects not lying directly in the path of the robot do not affect

the performance of the obstacle avoidance code, the laser scan

data was trimmed down to take the shape of the “M” shaped path

in the center. (|x|<=0.2)

Finally, for centering during cornering, the laser scan was

divided into four sectors on right and four sectors on the left side.

The average distances along X axis and Y axis are calculated

based on the average range of each sector. The distances on each

side are then merged into a straight line separately by using line

fit. With the two fit lines, the distance D between the vehicle

center O and the track center can be estimated and used to

calculate the final error, 𝛼𝑐𝑒𝑛 .

Speed control: A simple P controller was used to control the

vehicle speed. The speed controller takes input from keyboard.

The up and down arrow key will adjust the lower speed limit and

the controller will calculate the vehicle speed in proportion to

the minimum distance along x axis. The vehicle will stop if the

x

y

Figure 3: (Left) Finding the potential field. (Right)

Path trimming for collision avoidance

 6 Copyright © 2018 by ASME

space key is pressed or the average range of the middle sector

r_avg (middle) is below the minimum allowed threshold r_(avg-

critical). The functionality of the speed controller can be

described by the following equation:

Team C: Overlapping Sectors

Steering control: The designed heading was chosen as the

centerline of the section where the LiDAR data had the largest

value. The error used to implement a proportional–derivative

(PD) controller was defined as the error between the current

heading section and the desired heading section.

To handle the

width of the vehicle,

the size of the section

was set as 45 degrees.

The step size of LiDAR

scan was defined as 5

degrees. Therefore, the

overlapped size of two

adjacent sections was

40 degrees. The weight of each section was defined as the sum

all the feedback values of LiDAR beams. The section with has

maximum weight was chosen as the desired heading section, and

the angle of the its center line is the desired heading angle.

Speed control: The Lidar based speed is also designed for

reach the highest speed in turning. To achieve this the vehicle

needed to decelerate when approaching the corner, and reach a

smaller speed. Moreover, the shape of the corner determined the

speed at the corner. The vehicle should be accelerated as soon as

possible when it departures the corner. A proportional controller

was used to achieve this goal. The input of this controller is the

same error that used for steering control. The vehicle always runs

in maximum speed in straight line and no obstacle in the front

(error = 0), keep decelerating when it approaches the corner until

it near to the center of the corner. After passing the center of the

corner, it will accelerate if the LiDAR sees a free space in the

front.

Implementations of the following control systems can be

found on the course YouTube channel [17]

DISCUSSION

By the end of the term, the standalone car models that had

been built and designed by each of the student teams bespoke

controller models for navigation, which were comparably

efficient. There were logistical problems and delays faced in

sourcing the components required. Unexpected problems with

hardware and software compatibility that arose were dealt with

by the students’ ingenuity, resourcefulness and teamwork.

There are many important theoretical concepts that go

beyond the scope of the current curriculum that would need to

be addressed in future revisions such as motion planning using

A* and Dijkstra algorithms. Further implementations on

advanced algorithm design such as achieving robot localizations

and goal point determination and path planning on a pre-existing

Hector SLAM [18] maps using only scan-matching could be

attempted. Other robotic platforms that may enhance and

supplement the future course format were built and deployed by

student developers. Two of the most successful robotic platforms

for this purpose that may be implemented in future classwork are

the NVIDIA Jetbot and Q-bot by Quanser. The JetBot ships with

an NVIDIA Jetson TX1 on a differential drive platform with an

Arduino Mega for ROS-serial control of the driving servos and

Ultrasound sensors for navigation. The Q-bot by Quanser is

operated on a Kobuki base similar to the Turtlebot2 and ships

with a Microsoft Kinect. It is not a ROS-enabled robot but

contains a useful MATLAB interface which serves as an

excellent introduction to Simulink and MATLAB Real-time

Workshop for robotic applications.

All of the above can be further expanded upon into two

semester course module with the second phase focused on

advanced algorithms, dynamic control, incorporating machine

learning and control for object recognition and path planning

incorporated within a ROS-wrapper using the NVIDIA Jetbot

and the F1tenth.

For a student majoring in engineering today, targeted

courses in mobile robot autonomy could pave way for the

establishment of a “Department of Autonomy” focused on

teaching perception, planning, control, coordination for

transportation, industrial automation and energy systems set in

the socio-economic context of safety, fairness and affordability.

There is already a rising trend favoring autonomy education in

the context of intelligent transportation systems and industrial

robots. In the future we plan to expand upon these ideas and

develop new courses a) combining machine learning and control

and b) a hands on course on “agile” autonomy, where various

aspects on autonomy are tested in an arena that is made up of

race tracks, obstacles, barriers and visual markers.

Beyond the classroom, the fleet of platforms can be

employed to enable scaled research and traffic modelling such as

platooning and for research in autonomous driving in general.

ACKNOWLEDGEMENT

The authors thank the students of the course for their

enthusiastic participation and positive attitude when faced with

challenges in this experimental course. We would also like to

thank the doctoral students, Howard Brand and Yi Chen, without

whose help and contribution this course would not have been the

success it was. Finally, we would like to give our thanks to the

Figure 4: Overlapped Section

 7 Copyright © 2018 by ASME

members of the Clemson IT services who were vital to the

smooth running of the class.

REFERENCES

[1] Quigley M. et al., “ROS: an open-source Robot Operating

System,” Icra, vol. 3, no. Figure 1, p. 5, 2009.

[2] Nourdine, A., “Teaching fundamentals of robotics to

computer scientists” In Computer Applications in Engineering

Education Volume 19, Issue 3, pages 615–620, September 2011

[3] Maas, R. and Maehle, E. "An Easy to Use Framework for

Educational Robots," ROBOTIK 2012; 7th German Conference

on Robotics, Munich, Germany, 2012, pp. 1-5.

[4] Touretzky, D. S., “Seven big ideas in robotics, and how to

teach them,” Proc. 43rd ACM Tech. Symp. Comput. Sci. Educ.

- SIGCSE ’12, p. 39, 2012.

[5] F1Tenth Competition, http://f1tenth.org/

[6] Seigwart, R. and Nourbakhsh, I.R., 2004, Advanced Mobile

Robotics, The MIT Press, Cambridge, Massachusetts

[7] Koubaa A., Lee, Z., 2016, “Gaitech EDU”

http://edu.gaitech.hk/ros/ros-tutorials.html

[8] ROS Wiki, http://wiki.ros.org/ROS/Tutorials

[9] MooreRobots, http://moorerobots.com/blog

[10] Kane, J. M. O., “A Gentle Introduction to ROS”, 2014,

[11] Dudek, G. and Jenkin, M., 2010, Computational Principles

of Mobile Robotics, Cambridge University Press

[12] Wiggins, G. and McTighe, J., 2005, Understaning by

Design, Assn. for Supervision & Curriculum Development

[13] Menegatti, E. and Moro, M., “Educational Robotics from

high-school to Master of Science,” Proc. SIMPAR 2010 Work.

Intl. Conf. Simulation, Model. Program. Auton. Robot., no.

March, pp. 639–648, 2010.

[14] Riek, J.D., “Embodied computation: An active-learning

approach to mobile robotics education,” IEEE Trans. Educ., vol.

56, no. 1, pp. 67–72, 2013.

[15] Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., and

Fiorini, P., “A Review of Robotics Kits for Tertiary Education,”

Proc. 3rd Int. Work. Teach. Robot. Teach. with Robot. Integr.

Robot. Sch. Curric., pp. 153–162, 2012.

 [16] Krovi, V., “Autonomy Science and Systems”,

http://cecas.clemson.edu/aue893_autonomy

[17] YouTube Channel:

https://www.youtube.com/channel/UCy9IYh5KCgeei4LzDg9h

mHA

[18] Kohlbrecher, Stefan, et al. "Hector open source modules

for autonomous mapping and navigation with rescue robots."

Robot Soccer World Cup. Springer, Berlin, Heidelberg, 2013.

http://f1tenth.org/
http://edu.gaitech.hk/ros/ros-tutorials.html
http://wiki.ros.org/ROS/Tutorials
http://moorerobots.com/blog
http://cecas.clemson.edu/aue893_autonomy
https://www.youtube.com/channel/UCy9IYh5KCgeei4LzDg9hmHA
https://www.youtube.com/channel/UCy9IYh5KCgeei4LzDg9hmHA

