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ABSTRACT 

In recent years, an aggressive expansion of research as well 

as commercialization efforts in autonomous vehicles can be 

witnessed. At the same time, many existing companies have 

expanded their portfolio to autonomous technologies as well 

(e.g. NVIDIA). This has created an already large need for 

autonomous-vehicle engineers who are not only proficient in 

single traditional engineering fields (e.g. mechanical) and old-

school automotive studies, but who also have acquired the 

significantly different, interdisciplinary skillset for mobile 

robotics. Unlike students of computer science, mechanical 

engineering graduate students are hardly exposed to coding and 

robotic system integration in current traditional curricula. The 

new demands of the automotive industry require an automotive 

engineer who understands the science of autonomy as well as its 

impact on the design and implementation of autonomous 

vehicles, and is equipped with hands-on experience with the 

latest technology in the field. 

We describe a unique education program that draws content 

from traditional courses on mobile-robotics as well as 

incorporates experiential learning by hands-on training in 

software, specifically addressing the skill gap in traditional 

automotive engineering education. Geared towards engineering 

students with no previous training in robotic system integration, 

and with only basic undergraduate understanding of 

programming languages, the teaching experiment employed an 

active learning approach to introduce numerous concepts as a 

host of hands-on exercises on multiple robotic platforms. 

Beginning with simple tutorials on networked communication to 

demonstrate the power of ROS, the course built up to complete 

control system design on a student-built RC car that can avoid 

obstacles and navigate a racecourse by performing SLAM. 

A brief evaluation of the course exhibited good student 

performance in general with unique and creative approaches to 

the programming tasks in particular. Although employing 

different approaches, each student team was able to demonstrate 

comparable, efficient performance. 

INTRODUCTION 

Building high-performance, modular and verified 

Autonomous Vehicles (AV) requires solving several challenges 

in perception, (semi-)formal verification and control. Certain 

themes that AV research thrusts must focus on are: 

Safe autonomy: Re-creating dangerous situations in a 

simulated Hardware-in-the-Loop (HIL) or Software-in-the-Loop 

(SIL) environment to perform risk-based safety analysis of AVs. 

Creating AV platforms that that use formally constrained 
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machine learning to learn from its experience and those of other 

AVs without departing from the safe behavior that got it certified 

(by formal of semi-formal verification techniques) as road 

worthy.  

Agile autonomy: Developing computationally inexpensive 

control algorithms that enable agile maneuvering at high speeds.  

Coordinated Autonomy: Using map-data, traffic conditions, 

road and visibility conditions for lightweight coordination to 

expand vehicle-centric safety bubble to a larger active network 

safe-zone.  

 All such tasks require high level networking between 

different AVs and sharing of computational expense of certain 

tasks with external and internal (online and offline) computing 

platforms. For this very reason, in the last few years Robotics 

Operating System (ROS) has emerged as a popular development 

framework in the autonomous vehicle industry. ROS was first 

introduced by Quigley et al. [1] in 2009 as an open-source 

framework for robot communication. While originally designed 

to enable large scale cross platform communication, it quickly 

become the de-facto standard in the robotics community. Now 

such knowledge and understanding of ROS is already a key 

requirement for the majority of open positions in the 

Autonomous Vehicle R&D industry. 

The main objective behind the design of the course was to 

introduce mechanical/automotive and electronics engineers at 

Clemson University to the complexities and challenges of 

mobile robotics at a graduate level. The lack of previous 

exposure beyond a very basic knowledge of software 

programming made this a challenging objective. Incremental 

experiences and project based-learning had long been proven as 

a reliable format in teaching robotics to computer engineers [2].  

In order to engage beginners quickly, we focused on a 

combined approach of in-depth coding tutorials and code 

implementation from existing repositories and projects. ROS is 

ideally suited for this approach by providing a framework that 

allows the communication of code in different languages over a 

common interface. 

Incorporating existing ROS-enabled hardware platforms for 

robotics training has several apparent advantages: the TurtleBot 

robots by Willow Garage, for instance, is well suited for 

educational programs as it allows instructors to focus on the 

theoretical aspects of mobile robotics while at the same time 

allowing for physical learning experience. The use of the 

TurtleBot in education is well supported by literature [4]. Maas 

and Maehle compliment the object-oriented nature of robots 

such as TurtleBot and Bilibot [3], by highlighting their similarity 

to the concepts in object-oriented programming, hence making it 

ideal for introductory lessons. “Encapsulation”, for instance, 

allows the programmer to mask the complexity of the 

programming task by allowing only interfaced access to the 

hardware of the robot. The robots can be similarly controlled at 

a high level allowing the user to gain an intuitive understanding 

of the scope of the physical challenge before exposing the 

complex substructure i.e. the practical details of the 

programming challenge. 

As the focus is on training graduate students, the envisioned 

learning curve was expected to be very steep. The students were 

expected to not only understand and control a ROS-enabled 

robot, but also to assemble their very own. The hardware 

platform for the task was based on the F1tenth competition by 

the University of Pennsylvania [5]. Here, the available Bill of 

Materials and the repository of tutorials allowed the students to 

engage quickly with the subject matter and add modifications of 

their own. The use of the F1tenth mobile base had another 

advantage as well. As mentioned previously, research on AVs 

has complex focus areas. This has also been historically limited 

to experimentation on expensive commercial vehicles, which 

require large teams, diverse skills and power hungry platforms. 

As this is outside the reach of many academic departments, they 

are constrained to teaching pieces of the overall autonomy 

picture, like motion planning and computer vision. An open-

source platform such as this opens up new approaches to 

teaching autonomous perception, planning, control and 

coordination. 

Teaching material for the course employed several 

references: Advanced Mobile Robotics by R. Seigwart [6] was 

mainly utilized for the theoretical knowledge imparted during 

class. The content for ROS tutorials was drawn from online 

resources such as GaiTech [7], the ROS Wiki page [8], 

MooreRobots [9] as well as online textbooks such as Gentle 

Introduction to ROS by author Jason M. O’Kane [10]. 

By the end of the course, students were expected to 

successfully provide answers to the following fundamental 

questions posed by Dudek and Jenkins in Computational 

Principles of Mobile Robotics [11] with competence: 

 Path planning: Is it possible to get the robot from one 

configuration to another while remaining in 𝐶𝑓𝑟𝑒𝑒 (the 

free space or C-space of the robot, i.e. the set of valid 

poses available to the robot). 

 Localization: How can a robot determine its state if it 

has local measurements of 𝐶𝑓𝑟𝑒𝑒? 

 Perception or sensing: How can the robot determine 

which parts of its environment are occupied? 

 Mapping: How can the robot determine 𝐶𝑓𝑟𝑒𝑒, assuming 

it always knows where it is? 
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 Simultaneous localization and mapping: How can a 

robot determine its pose and 𝐶𝑓𝑟𝑒𝑒 if it knows neither? 

The framework for teaching was closely designed on the 

suggested format by Touretzky [4]  which itself draws 

inspiration from  curriculum design principles pertinent to 

abstract subjects as described in Understanding by Design by 

Wiggins and McTighe [12] and asks that the topic in 

consideration be taught in the following manner: 

 Motivate by introducing an essential question, e.g. 

‘How do robots see?’ 

 Demonstrate the answer with an example of technology 

at work 

 Explain how the technology works at a high level 

 Experiment by allowing the students hand-on access to 

the technology through a project assignment 

 Review the work through summarized reports to 

evaluate their understanding 

 This paper is organized as follows: in the following second 

section, we discuss the background, course format, and bi-

weekly projects assigned. In the third section, we demonstrate 

how the relevance of the knowledge imparted helped shape the 

creativity displayed by the students in the final project 

assignment. Finally, we discuss some of the issues and 

challenges that were faced in implementing the subject matter 

and the long and short-term future of autonomy education. 

BACKGROUND 

Robot kits and small hardware platforms have increasingly 

been used for science and autonomy education since the 1990s. 

For example, Lego Robots have been popular in a wide variety 

of educational levels: from beginner lessons in high-schools to 

graduate level courses [13]. Menegatti and Moro [13] 

recommend the use of LEGO robots by reasoning that the ease 

of Lego’s NXT programming allows the lecturers of graduate 

classes to focus on a conceptual and theoretical understanding of 

complex concepts (such as Monte Carlo Localization) without 

spending much time in the unromantic and technical aspect of 

robotics. However, it could be argued that in the industrial 

setting a technical proficiency may be equally important. 

Confronting potential hardware or software roadblocks and 

brainstorming solutions can provide a realistic expectation of 

challenges faced be an important part of a holistic robotics 

education. 

A) Course Format 

The Department of Automotive Engineering at Clemson 

University offers the class AuE893 - Autonomy, Science and 

Systems as a 4-credit course for graduate and post-graduate 

students in Automotive, Mechanical, Electrical and Electronics 

and Communication Engineering. There are no pre-requisites 

apart from a basic understanding of programming. The class size 

was limited to a maximum of 15 students to foster greater 

student-teacher interaction. In Spring ’17, the course had 14 

registered students (6 in the Master’s program, 8 in the PhD 

program) who were split into 3 teams. While the majority of 

students was enrolled into the Automotive Engineering program, 

four students pursued degrees in Electrical, Electronics and 

Communications Engineering. The two ninety-minute in-class 

sessions per week  were equally devoted to a lecture as well as 

demonstration of the current a problem statement by the 

instructor and TAs, and problem resolution combined with 

brainstorming in group discussions. Mini-projects and lab 

assignments were introduced weekly and were alternated with 

problem reviews and new concept introductions. While students 

were encouraged to solve the projects in cooperation with their 

teammates, they were still require to display their own work and 

highlight each team member’s contribution through citations. 

The overall course was broadly split into three modules: 

1) Module 1: Introduction (5 weeks) 

i.Introduction to Python, C++ and working on a Linux 

operating system. 

ii.An introduction to GitHub and coding as a team. 

iii.An introduction ROS – working with catkin, creating 

packages, writing publishers and subscribers, launch 

files, Turtlesim, Gazebo, RViz and simple 

demonstrations with a Turtlebot. 

2) Module 2: Coding for Autonomy (6 weeks) 

Covering the fundamental problems in mobile robotics with a 

Turtlebot and Gazebo 

i.Obstacle avoidance and PID control 

ii.Sensing the environment, localization and path 

planning 

iii.Mapping and SLAM with sensor fusion 

3) Module 3: Capstone Project (5 weeks) 

Building your own ROS-enabled autonomous race car. Each 

team was given all the parts and a variety of sensors with the 

freedom to build their own navigation controller with the tools 

on hand. 

Five laboratory assingments or “mini projects” were spread 

over the 3 modules. Brief descriptions are given below 

Lab Topic Learning Goal 

1 
Getting 

started 

Review of programming, 

introduction to Ubuntu and GitHub 

platforms. 

2 
Basics of 

ROS 

Create packages, publish, subscribe 

and make launch files. Using 

TurtleSim, Gazebo. 
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3 Sensors 

Working with simulated sensors, 

editing Gazebo worlds and mapping 

the worlds. 

4 
Obstacle 

Avoidance 

Move-to-goal, obstacle avoidance, 

path planning. 

5 Navigation 
Using PID control to autonomously 

navigate a racetrack with obstacles. 

 

B) ROS-Enabled Robotic Platforms 

Two primary robotic platforms were used in class. The 

Turtlebot by Willow Garage has long been a popular choice for 

beginner robotic courses in ROS development [4,14,15]. The 

F1tenth platform was used for the first time as part of an 

educational course by us.  

Weeks 1-11: For two-thirds of the course we used the newly 

released Turtlebot-2 which comes on a Kobuki base on a two 

wheeled differential drive system with cliff sensors, wheel 

encoders, bumper sensors, an Orrbec Xtion Pro RGB-d camera 

and an ASUS laptop running Ubuntu 14.04 with ROS Indigo. 

Most of the project coding and implementation was done on a 

Gazebo simulation and tested live in class on a real Turtlebot. 

There were some challenges faced while using this platform. At 

the time of the Turtlebot2 release, the popular Microsoft Kinect 

sensor had been taken out of circulation and the last-minute 

replacement provided – the Orrbec Xtion Pro -- had not been 

sufficiently play tested. As a result, a working ROS driver for the 

camera was in development and was not available during the 

time of course. A significant amount of time was spent 

attempting to modify the existing OpenNI2 driver with little 

success. This was an excellent real-world example of software 

and hardware roadblocks often faced in the field of robotics and 

culminated in an interesting discussion of alternative approaches 

to project challenge at hand. With the ability of depth perception 

taken out of the running for the nonce, the students explored 

using the bumper sensor in their obstacle avoidance code.  

Weeks 12-16: In the final five weeks of the course, the robotic 

platform used was the F1tenth car developed by the University 

of Pennsylvania [5]. The F1tenth Competition is an annual 

contest hosted by UPenn every year and in it, student teams 

compete to build and race autonomous RC vehicles. The website 

for the competition is a well-maintained repository of short 

guiding tutorials and part recommendations for the hardware 

build of a ROS enabled robotic car. Although the online 

repository and bill of materials were outdated at the time, with 

many components no longer in circulation, we nonetheless found 

this to be an excellent resource base for use in coursework. The 

RC car built by the students in the course used a Traxxas Slash 

2WD Short Course Truck with laser cut platforms and 3D 

printed fixtures for housing the different components and 

sensors. The computing platform for running the Linux 

operating system and the overlying ROS framework was the 

NVIDIA TK1 or TX1. The accompanying sensors were a 

Hokuyo UST-10LX LiDAR, a choice of Structure Senor depth 

camera or ZED RGB-d stereo camera, and SparkFun’s 9DoF 

Razor IMU. A Teensy 3.2 microcontroller board programmable 

with Arduino was employed to control the ESC and steering 

servos with serial commands through ROS. Peripherals included 

a Ubiquiti PicoStation for Wireless access, USB hubs and a 

generic power bank with 12V and 20V supplies.   

Fig 1: System architecture and connections of the parts in the 

F1tenth car. 

C) Capstone Project 

The five weeks of effort put into the capstone project by the 

respective teams was tested in a final examination held at the end 

of the semester. The examination included a 20 minute 

presentation on the build and working on the car followed by a 

live demonstration on a race track. The students were expected 

to submit a report on the project in the style of a research thesis. 

The objectives of the final project were three-fold: a) apply 

the concepts learned in class (path planning, mapping, control) 

on a robot built from scratch. b) work in a team, share code and 

ideas to create something novel together. c) understand the 

challenges in research and the limitations of autonomous 

vehicles in a real world scenario. The three teams were tasked 

with a achieving a 3-point agenda: 

1. Achieve autonomous navigation around an arbitrary 

racetrack with the sensors at hand (depth camera, 

RGBD camera,  LiDAR, IMU).  
2. Perform mapping and localization while remote 

streaming the data 

3. Obtaining quality obstacle avoidance at high speeds and 

low speeds. 

The final demonstration was held on a racetrack with movable 

obstacles.  
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Fig 2: Hector map of the final racetrack taken by one of the 

cars 

LEARNING OUTCOMES 

Each of the teams had unique and creative approaches to the 

problem statements. The primary languages supported by ROS 

are Python and C++, with significant (and growing) ROS support 

available through the MATLAB Robotics Systems Toolbox. 

Two teams chose to build their controller in Python and one team 

chose MATLAB. The most significant divergence in tactics 

employed to solve a given problem was demonstrated in their 

respective solutions to the problem steering and velocity control 

during racecourse navigation using the LiDAR laser scan output. 

Team A: Pure Pursuit  

Pure pursuit works from the idea of determining a goal point 

in the vehicle frame, and then calculating the necessary steering 

angle and velocity inputs to reach this goal point. This pure 

pursuit problem is broken down into three sections: calculating 

the goal point, calculating the required steering inputs to get to 

the goal, and calculating the appropriate velocity commands 

based on the goal point. 

Goal Point Determination: The formulation of a goal point 

was slightly unconventional. Information of the surroundings is 

local information taken from the LiDAR sensor, and the goal 

point selected was the centroid of all the data points.  

[
𝑥𝑡

𝑦𝑡
] = 𝑟𝑖 [

cos(𝜃𝑠𝑡𝑎𝑟𝑡 + 𝑖Δ𝜃)

sin(𝜃𝑠𝑡𝑎𝑟𝑡 + 𝑖Δ𝜃)
]  

Steer Control: For simplicity, the Ackerman steered vehicle 

was modelled as an equivalent bicycle. Using the goal point, the 

look ahead distance was calculated by taking the hypotenuse of 

the triangle, which is formed by the goal point, and the vehicles 

heading and position. The look ahead distance is then used to 

calculate the curvature of the desired trajectory (arc) from the 

rear axle to the goal point. By incorporating the wheelbase of the 

vehicle, the desired steering angle 𝜙 was calculated. Instead of 

using this steering angle directly, a gain factor 𝑘𝑠𝑡 was 

introduced to tune the responsiveness of the steering. A steering 

bias 𝑏𝑠𝑡 was introduced to tune the steering trim and compensate 

for misaligned wheels.  

𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑡𝑤𝑖𝑠𝑡 =  𝑘𝑠𝑡𝜙 + 𝑏𝑠𝑡 

Velocity Control: Conventional pure pursuit determines a 

goal point as a function of the vehicle velocity. In this 

implementation, the velocity was determined from the goal 

point. Not only does the goal point shift laterally as the vehicle 

navigates the track, but it also shifts longitudinally. In the 

sections of the track where there is a clear path far from the 

vehicle, the goal point is further away thus the look ahead 

distance is greater. When the vehicle could calculate a trajectory 

to a greater distance, the vehicle would go faster. Conversely, if 

the vehicle could only calculate the trajectory which is very 

close, the vehicle would slow down. Using this methodology, the 

velocity was calibrated to a given look ahead distance linearly. 

Team B: “The Potential Field” 

Steering control: The potential field is found by finding the 

sector that has the largest average distance. The angle between 

the target sector and the centerline 𝛼𝑝𝑓is the first component of 

the input error to the steering PD controller.  

For collision avoidance and centering the PD control 

algorithm was extended further to incorporate two more error 

terms. The first term 𝛼𝑎𝑣𝑜𝑖𝑑  was calculated as a function of the 

sum of the distance along x-axis of each laser point. To ensure 

that objects not lying directly in the path of the robot do not affect 

the performance of the obstacle avoidance code, the laser scan 

data was trimmed down to take the shape of the “M” shaped path 

in the center. (|x|<=0.2) 

Finally, for centering during cornering, the laser scan was 

divided into four sectors on right and four sectors on the left side. 

The average distances along X axis and Y axis are calculated 

based on the average range of each sector. The distances on each 

side are then merged into a straight line separately by using line 

fit. With the two fit lines, the distance D between the vehicle 

center O and the track center can be estimated and used to 

calculate the final error, 𝛼𝑐𝑒𝑛 . 

Speed control: A simple P controller was used to control the 

vehicle speed. The speed controller takes input from keyboard. 

The up and down arrow key will adjust the lower speed limit and 

the controller will calculate the vehicle speed in proportion to 

the minimum distance along x axis. The vehicle will stop if the 

x 

y 

Figure 3: (Left) Finding the potential field. (Right) 

Path trimming for collision avoidance 
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space key is pressed or the average range of the middle sector 

r_avg (middle) is below the minimum allowed threshold r_(avg-

critical). The functionality of the speed controller can be 

described by the following equation: 

Team C: Overlapping Sectors 

Steering control: The designed heading was chosen as the 

centerline of the section where the LiDAR data had the largest 

value. The error used to implement a proportional–derivative 

(PD) controller was defined as the error between the current 

heading section and the desired heading section.  

To handle the 

width of the vehicle, 

the size of the section 

was set as 45 degrees.  

The step size of LiDAR 

scan was defined as 5 

degrees. Therefore, the 

overlapped size of two 

adjacent sections was 

40 degrees. The weight of each section was defined as the sum 

all the feedback values of LiDAR beams. The section with has 

maximum weight was chosen as the desired heading section, and 

the angle of the its center line is the desired heading angle.  

Speed control: The Lidar based speed is also designed for 

reach the highest speed in turning. To achieve this the vehicle 

needed to decelerate when approaching the corner, and reach a 

smaller speed. Moreover, the shape of the corner determined the 

speed at the corner. The vehicle should be accelerated as soon as 

possible when it departures the corner. A proportional controller 

was used to achieve this goal. The input of this controller is the 

same error that used for steering control. The vehicle always runs 

in maximum speed in straight line and no obstacle in the front 

(error = 0), keep decelerating when it approaches the corner until 

it near to the center of the corner. After passing the center of the 

corner, it will accelerate if the LiDAR sees a free space in the 

front. 

Implementations of the following control systems can be 

found on the course YouTube channel [17] 

DISCUSSION 

By the end of the term, the standalone car models that had 

been built and designed by each of the student teams bespoke 

controller models for navigation, which were comparably 

efficient. There were logistical problems and delays faced in 

sourcing the components required. Unexpected problems with 

hardware and software compatibility that arose were dealt with 

by the students’ ingenuity, resourcefulness and teamwork.  

There are many important theoretical concepts that go 

beyond the scope of the current curriculum that would need to 

be addressed in future revisions such as motion planning using 

A* and Dijkstra algorithms. Further implementations on 

advanced algorithm design such as achieving robot localizations 

and goal point determination and path planning on a pre-existing 

Hector SLAM [18] maps using only scan-matching could be 

attempted. Other robotic platforms that may enhance and 

supplement the future course format were built and deployed by 

student developers. Two of the most successful robotic platforms 

for this purpose that may be implemented in future classwork are 

the NVIDIA Jetbot and Q-bot by Quanser. The JetBot ships with 

an NVIDIA Jetson TX1 on a differential drive platform with an 

Arduino Mega for ROS-serial control of the driving servos and 

Ultrasound sensors for navigation. The Q-bot by Quanser is 

operated on a Kobuki base similar to the Turtlebot2 and ships 

with a Microsoft Kinect. It is not a ROS-enabled robot but 

contains a useful MATLAB interface which serves as an 

excellent introduction to Simulink and MATLAB Real-time 

Workshop for robotic applications.  

All of the above can be further expanded upon into two 

semester course module with the second phase focused on 

advanced algorithms, dynamic control, incorporating machine 

learning and control for object recognition and path planning 

incorporated within a ROS-wrapper using the NVIDIA Jetbot 

and the F1tenth.  

For a student majoring in engineering today, targeted 

courses in mobile robot autonomy could pave way for the 

establishment of a “Department of Autonomy” focused on 

teaching perception, planning, control, coordination for 

transportation, industrial automation and energy systems set in 

the socio-economic context of safety, fairness and affordability. 

There is already a rising trend favoring autonomy education in 

the context of intelligent transportation systems and industrial 

robots. In the future we plan to expand upon these ideas and 

develop new courses a) combining machine learning and control 

and b) a hands on course on “agile” autonomy, where various 

aspects on autonomy are tested in an arena that is made up of 

race tracks, obstacles, barriers and visual markers.  

Beyond the classroom, the fleet of platforms can be 

employed to enable scaled research and traffic modelling such as 

platooning and for research in autonomous driving in general.  
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