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Abstract: The power of projection using divergence functions is a major theme in
information geometry. One version of this is the variational Bayes (VB) method. This paper
looks at VB in the context of other projection-based methods in information geometry. It also
describes how to apply VB to the regime-switching log-normal model and how it provides
a computationally fast solution to quantify the uncertainty in the model specification. The
results show that the method can recover exactly the model structure, gives the reasonable
point estimates and is very computationally efficient. The potential problems of the method
in quantifying the parameter uncertainty are discussed.
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1. Introduction

While, in principle, the calculation of the posterior distribution is mathematically straightforward, in
practice, the computation of many of its features, such as posterior densities, normalizing constants
and posterior moments, is a major challenge in Bayesian analysis. Such computations typically
involve high dimensional integrals, which often have no analytical or tractable forms. The variational
Bayes (VB) method was developed to generate tractable approximations to these quantities. This method
provides analytic approximations to the posterior distribution by minimizing the Kullback–Leibler (KL)
divergence from the approximations to the actual posterior and has been demonstrated to be
computationally very fast.
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VB gains its computational advantages by making simplifying assumptions about the posterior
dependence structure. For example, in the simplest form, it assumes posterior independence between
selected sets of parameters. Under these assumptions, the resultant approximate posterior is either known
analytically or can be computed by a simple iteration algorithm similar to the Expectation-Maximization
(EM) algorithm. In this paper, we show that, as well as having advantages of computational speed, the
VB algorithm does an excellent job of model selection, in particular in finding the appropriate number
of regimes.

While the simplification in the dependence gives computational advantages, it also comes at a cost.
For example, we also found that the posterior variance may be underestimated. In [1], we propose a
novel method to compute the true posterior covariance matrix by only using the information obtained
from VB approximations.

The use of projections to particular families is, of course, not new to information geometry (IG).
In [2], we find the famous Pythagorean results concerning projection using α-divergences to
α-families, and other important results on projections based on divergences can be found in [3]
and [4] (Chapter 7).

1.1. Variational Bayes

Suppose, in a Bayesian inference problem that we use q(τ ) to approximate the posterior p(τ |y),
where y is the data and τ = {τ1, · · · , τp} the model parameter vector. The KL divergence between them
is defined as,

KL [q(τ )||p(τ |y)] =
∫
q(τ ) log

q(τ )

p(τ |y)
dτ , (1)

provided the integral exists. We want to balance two things, having the discrepancy between p and q
small, while keeping q tractable. Hence, we want to seek q(τ ), which minimizes Equation (1), while
keeping q(τ) in an analytically tractable form. First, note that the evaluation of Equation (1) requires
p(τ |y), which may be unavailable, since in the general Bayesian problem, its normalizing constant is
one of the main intractable integrals. However, we note that:

KL [q(τ )||p(τ |y)] =

∫
q(τ ) log

q(τ )

p(τ |y)p(y)
dτ + log p(y)

= −
∫
q(τ ) log

p(τ ,y)

q(τ )
dτ + log p(y). (2)

Thus, minimizing Equation (1) is equivalent to maximizing the first term of the right-hand side of
Equation (2). The key computational point is that, often, the term p(τ ,y) is available even when the
full posterior p(τ,y)∫

p(τ,y)dτ
is not.

Definition 1. Let F (q) =
∫
q(τ ) log p(τ ,y)

q(τ )
dτ and:

q̂ = argmax
q∈Q

F (q), (3)

where Q is a predetermined set of probability density functions over the parameter space. Then q̂ is
called the variational approximation or variational posterior distribution, and functions of q̂ (such as
mean, variance, etc.), are called variational parameters.
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Some of the power of Definition 1 comes when we assume that all elements of Q have tractable
posteriors. In that case, all variational parameters will then also be tractable when the optimization can
be achieved. A prime example of a choice for Q is the set of all densities that factorize as

q(τ ) =
d∏
i=1

qi(τi).

This reduces the computational problem from computing a high dimensional integral to one of
computing a number of one-dimensional ones. Furthermore, as we see in the example of this paper,
it is often the case that the variational families are standard exponential families (since they are often
‘maximum entropy models’ in some sense), and the optimisation problem (3) can be solved by simple
iterative methods with very fast convergence.

The core of the method builds on the basis of the principle of the variational free energy minimization
in physics, which is concerned with finding the maxima and minima of a functional over a class of
functions, and the method gains its name from this root. Early developments of the method can be
found in machine learning, especially in applications on neural networks [5,6]. The method has been
successfully applied in many different disciplines and domains, for example, in independent component
analysis [7,8], graphical models [9,10], information retrieval [11] and factor analysis [12].

In the statistical literature, an early application of the variational principle can be found in the work
of [13] to construct Bayes estimators. In recent years, the method has obtained more attention from both
the application and theoretical perspective, for example [14–18].

1.2. Regime-Switching Models

In this paper, we illustrate the strengths and weaknesses of VB through a detailed case study. In
particular, we look at a model that is used in finance, risk management and actuarial science, the so-called
regime-switching log-normal model (RSLN) proposed, in this context, by [19].

Switching between different states, or regimes, is a common phenomenon in many time series,
and regime-switching models, originally proposed by [20], have been used to model these switching
processes. As demonstrated in [21], the maximum likelihood estimate (MLE) does not give a simple
method to deal with parameter uncertainty; for details of this method, see [21]. The asymptotic normality
of maximum likelihood estimators may not apply for sample sizes commonly found in practice. Hence,
to understand parameter uncertainty, [21] considered the RSLN model in a Bayesian framework using
the Metropolis–Hastings algorithm. Furthermore, model uncertainty, in particular selecting the correct
number of regimes, is a major issue. Hence, model selection criteria have to be used to choose the
“best” model. Hardy [19] found that a two-regime RSLN model maximized the Bayes information
criterion (BIC) [22] for both monthly TSE 300 total return data and S&P 500 total return data; however,
according to the Akaike information criterion (AIC) [23], a three-regime model was the optimal on
S&P data. To account for the model uncertainty associated with the number of regimes, [24] offered a
trans-dimensional model using reversible jump MCMC [25]. We note that BIC is not necessarily ideal
for model selection with state space models [26], while it is still commonly used in the literature.

MCMC methods make possible the computation of all posterior quantities; however there are a
number of practical issues associated with their implementation. A primary concern is determining
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that the generated chain has, in fact, “converged”. In practice, MCMC practitioners have to resort
to convergence diagnostic techniques. Furthermore, the computational cost can be a concern. Other
implementational issues include the difficulty of making good initalisation choices, implementing the
MCMC algorithm in one long chain or several shorter chains in parallel, etc. Detailed discussions can
be found in [27].

One of the main contributions of this paper is to apply the variational Bayes (VB) method to the
RSLN model and present a solution to quantify the uncertainty in model specification. The VB method
is a technique that provides analytical approximations to the posterior quantities, and in practice, it is
demonstrated to be a very much faster alternative to MCMC methods.

2. Variational Bayes and Informational Geometry

In this section, we explore the relationship between VB and IG, in particular the statistical properties
of divergence-based projections onto exponential families. Here, we used the IG of [2], in particular
the ±1 dual affine parameters for exponential families. One of the most striking results from [2] is
the Pythagorean property of these dual affine coordinate systems. This is illustrated in Figure 1, which
shows a schematic representing a model space containing the distribution f0(x) and an exponential
family f(x; θ).

Figure 1. Projections onto an exponential family.
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The Pythagorean result comes from using the KL divergence to project onto the exponential family
f(x; θ) = ν(x) exp {s(x)θ − ψ(θ)}, i.e.,

min
θ

∫
− log

f(x; θ)

f0(x)
f0(x)dx.

All distributions that project to the same point form a−1-flat space defined by all distributions f(x) with
the same mean, i.e.,

Eθ̂(s(x)) = Ef(x)(s(x)),

and further, it is Fisher orthogonal to the +1-flat family f(x; θ). The statistical interpretation of this
concerns the behaviour of a model f(x, θ) when the data generation process does not lie in the model.
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In contrast to this, we have the VB method, which uses the reverse KL divergence for the
projection, i.e.,

min
θ

∫
log

f(x; θ)

f0(x)
f(x; θ)dx.

This results in a Fisher orthogonal projection, shown in Figure 1, but now using a +1-flat family.
This does not have the property that the mean of s(x) is constant, but as we shall see, it does have nice
computational properties when used in the context of Bayesian analysis.

In order to investigate the information geometry of VB, we consider two examples. The first,
in Section 3.1, is selected to maximally illustrate the underlying geometric issues and to get some
understanding of the quality of the VB approximation. The second, in Section 3.2, shows an important
real-world application from actuarial science and is illustrated with simulated and real data.

3. Applications of Variational Bayes

3.1. Geometric Foundation

We consider the simplest model that shows dependence. Let X1, X2 be two binary random variables,
with distribution π := (π00, π10, π01, π11), where P (X1 = i,X2 = j) = πij , i, j ∈ {0, 1}. Further, let
the marginal distributions be denoted by π1 = P (X1 = 1), π2 = P (X2 = 1). We want to consider the
geometry of the VB projection from a general distribution to the family of independent distributions. This
represents the way that VB gains its computational advantages by simplifying the posterior dependence
structure.

The model space is illustrated in Figure 2, where π is represented by a point in the three simplex, and
the independence surface, where π00π11 = π10π01, is also shown.

Figure 2. Space of distributions with independence surface: marginal probability
and dependence.
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Both the interior of the simplex and independence surface are exponential families, and it is
convenient to use the natural parameters for the interior of the simplex:

ξ1 = log
π10

π00

, ξ2 = log
π01

π00

, ξ3 = log
π11π00

π10π01

where the independence surface is given by ξ3 = 0. The independence surface can also be parameterised
by the marginal distributions π1, π2 or the corresponding natural parameters ξindi := log(πi/(1−πi)). For
any distribution, π, represented in natural parameters by (ξ1, ξ2, ξ3), has its VB approximation defined
implicitly by the simultaneous equations:

ξind1 (π1) = ξ1 + ξ3π2, (4)

ξind2 (π2) = ξ2 + ξ3π1. (5)

These can be solved, as is typical with VB methods, by iterating updated estimates of π1 and π2 across
the two equations. We show this in a realistic example in the following section.

Having seen the VB solution in this simple model, we can investigate the quality of the approximation.
If we were using the forward KL project, as proposed by [2], then the mean will be preserved by the
approximation, while, of course, the variance structure is distorted. In the case of using the reverse KL
projection, as used by VB, the mean will not be preserved, but in this example, we can investigate
the distortion explicitly. Let (ξ1(α), ξ2(α), ξ3(α)) be a +1-geodesic, which cuts the independence
surface orthogonally and is parameterised by α, where α = 0 corresponds to the independence surface.
In this example, all such geodesics can be computed explicitly. Figure 3 shows the distortion associated
with the VB approximation. In the left-hand panel, we show the mean, which is the marginal probability,
P (X1 = 1), for all points on the orthogonal geodesic. We see, as expected, that this is not constant, but it
is locally constant at α = 0, showing that the distortion of the mean can be small near the independence
surface. The right-hand panel shows the dependence, as measured by the log-odds, for points on the
geodesic. As expected, the VB does not preserve the dependence structure; indeed, it is designed to
exploit the simplification of the dependence structure.

Figure 3. Distortion implied by variational Bayes (VB) approximation.
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3.2. Variational Bayes for the RSLN Model

The regime-switching log-normal model [19] with a fixed finite number, K, of regimes can be
described as a bivariate discrete time process with the observed data sequence w1:T = {wt}Tt=1 and
the unobserved regime sequence S1:T = {St}Tt=1, where St ∈ {1, · · · , K} and T is the number of
observations. The logarithm of wt, denoted by yt = logwt, is assumed normally distributed, having
mean µi and variance σ2

i both dependent on the hidden regime St. The sequence of S1:T is assumed
to follow a first order Markov chain having transition probabilities A = (aij) with the probabilities
π = (πi)

K
i=1 to start the first regime.

The RSLN model is a special case of more general state-space models, which were studied in detail
by [28]. In this paper, we use this model and simulated and real data to illustrate the VB method in
practice. We also calibrate its performance by referring to [24], which used MCMC methods to fit the
same model to the same data. Here, we are regarding the MCMC analysis as a form of “gold-standard",
but with the cost of being orders-of-magnitude slower than VB in computational time.

In the Bayesian framework, we use a symmetric Dirichlet prior for π, that is p(π) =

Dir(π; C
π

K
, · · · , Cπ

K
), for Cπ > 0. Let ai denote the i − th row vector of A. The prior

for A is chosen as p(A) =
∏K

i=1 p(ai) =
∏K

i=1 Dir(ai; C
A

K
, · · · , CA

K
), for CA > 0, and the

prior distribution for {(µi, σ2
i )}Ki=1 is chosen to be normal-inverse gamma, p({µi, σ2

i }Ki=1) =∏K
i=1 N(µi|σ2

i ; γ,
σ2
i

η2
)IG(σ2

i ;α, β). In the above setting, Cπ, CA, γ, η2, α and β are hyper-parameters.
Thus, the joint posterior distribution of π,A, {µi, σ2

i }Ki=1, and S1:T is P (π,A, {µi, σ2
i }Ki=1, S1:T |y1:T ) and

is proportional to:

p(S1|π)
T−1∏
t=1

p(St+1|St;A)
T∏
t=1

p(yt|St; {µi, σ2
i }Ki=1)p(π)p(A)p({µi, σ2

i }Ki=1). (6)

This posterior distribution and its corresponding marginal posterior distributions are analytically
intractable. In VB, we seek an approximation of Equation (6), denoted by q(π,A, {µi, σ2

i }Ki=1, S1:T ),
to which we want to balance two things: having the discrepancy between Equation (6) and q small,
while keeping q tractable. In general, there are two ways to choose q. The first is to specify a particular
distributional family for q, for example the multivariate normal distribution. The other is to choose q with
a simpler dependency structure than that of Equation (6); for example, we choose q, which factorizes as:

q(π,A, {µi, σ2
i }Ki=1, S1:T ) = q(π)

K∏
i=1

q(ai)
K∏
i=1

q(µi|σ2
i )q(σ

2
i )q(S1:T ). (7)

The Kullback–Leibler (KL) divergence [29] can be used as the measure of dissimilarity between
Equations (6) and (7). For succinctness, we denote τ = (π,A, {µi, σ2

i }Ki=1, S1:T ); thus the KL divergence
is defined as:

KL(q(τ) || p(τ |y)) =
∫
q(τ) log

q(τ)

p(τ |y)
dτ. (8)

Note that the evaluation of Equation (8) requires p(τ |y), which is unavailable. However, we note that:

KL(q(τ) || p(τ |y)) = log p(y)−
∫
q(τ) log

p(τ, y)

q(τ)
dτ



Entropy 2014, 16 3839

Given the factorization Equation (7), this can be written as:

KL(q(τ) || p(τ |y)) =

log p(y)−
∫ ∑

S1:T

q(π)q(A)

K∏
i=1

q(µi|σ2
i )q(σ

2
i )q(S1:T ) log

p(π,A, {µi, σ2
i }Ki=1, S1:T , y1:T )

q(π)q(A)
K∏
i=1

q(µi|σ2
i )q(σ

2
i )q(S1:T )

dπdAd{µi, σ2
i }Ki=1

Consider first the q(π) term. The right-hand side can be rearranged as:

KL

q(π)
∣∣∣∣∣∣∣∣
exp

[ ∫ ∑
S1:T

q(S1:T )q(A)

K∏
i=1

q(µi|σ2
i )q(σ

2
i ) log p(π,A, {µi, σ2

i }Ki=1, s1:T , y1:T )dAd{µi, σ2
i }Ki=1

]
Zπ

+Kπ,

(9)

where:

Kπ =

∫ ∑
S1:T

q(S1:T )q(A)
K∏
i=1

q(µi|σ2
i )q(σ

2
i )q(S1:T ) log q(A)

K∏
i=1

q(µi|σ2
i )q(σ

2
i )dAd{µi, σ2

i }Ki=1−logZπ+log p(y),

and Zπ is a normalizing term. The first term of Equation (9) is the only term that depends on
q(π). Thus, the minimum value of KL(q(τ) || p(τ |y)) is achieved when this term equals zero. Hence,
we obtained:

q(π) =

exp

[ ∫ ∑
S1:T

q(S1:T )q(A)
∏K
i=1 q(µi|σ2

i )q(σ
2
i ) log p(π,A, {µi, σ2

i }Ki=1, s1:T , y1:T )dAd{µi, σ2
i }Ki=1

]
Zπ

(10)

Given the joint distribution of p(π,A, {µi, σ2
i }Ki=1, s1:T , y1:T ) in the form of Equation (6), the

straightforward evaluation of Equation (10) results in:

q(π) ∝
K∏
i=1

π
CKπ
K

+wsi−1

i = Dir(π,wπ1 , · · · , wπK); wπi =
CK
π

K
+ wsi , w

s
i = Eq(S1:T )[S1,i]

(11)

where S1,i = 1, if the process is in state i at time 1, and zero otherwise.
Similarly, we can rearrange Equation (9) with respect to {q(ai)}Ki=1, {q(µi|σ2

i )}Ki=1, {q(σ2
i )}Ki=1 and

q(S1:T ), respectively, and using the same arguments, then we can obtain:

q(A) =
k∏
i

Dir(ai;wAi1, ..., w
A
ik); w

A
ij =

CA

K
+ vsij, (12)

q(µi|σ2
i ) = N

(
γ′i,

σ2
i

κi

)
, γ′i =

η2γ + psi
η2 + qsi

, κi = η2 + qsi (13)

q(σ2
i ) = IG (α′i, β

′
i) , α

′
i = α +

qsi
2
, β′i = β +

rsi
2
+
η2

2
(γ

′

i − γ)2 (14)

q(S1:T ) =

k∏
i=1

π
∗S1,i

i

T−1∏
t=1

k∏
i=1

k∏
j=1

a
∗St,iSt+1,j

ij

T∏
t=1

k∏
i=1

θ∗St,i

Z̃
, (15)
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where St,i = 1, if the process in state i at time t, and zero otherwise, and with π∗i = eEq(π)[log πi], a∗ij =

eEq(A)[log(aij)], θ∗i,t = e
E
q(µi|σ2i )q(σ

2
i
)
[log φi(yt)], vsij =

∑T−1
t=1 Eq(S1:T ) [St,iSt+1,j], psi =

∑T
t=1 Eq(S1:T )[st,i]yt,

qsi =
∑T

t=1 Eq(S1:T )[st,i], r
s
i =

∑T
t=1(γ

′
i − yt)

2Eq(S)[st,i]. Here, ψ is the digamma function, φ is the
normal density function and the exact functional forms used in the updates are shown in Algorithm 1.

Algorithm 1 Variational Bayes algorithm for the regime-switching log-normal model (RSLN) model.

Initialize wsi
(0), vsij

(0), psi
(0), qsi

(0), and rsi
(0) at step 0

while wπi
(t−1), wAij

(t−1), γ′i
(t−1), α′i

(t−1), β′i
(t−1), π∗i

(t−1), a∗ij
(t−1), and θ∗i,t

(t−1) do not converge do
1. Compute wπi

(t), wAij
(t), γ′i

(t), κi(t), α′i
(t), and β′i

(t)at step t by

wπi
(t) =

CK
π

K
+ wsi

(t−1), wAij
(t)

=
CA
π

K
+ vsij

(t−1), γ′i
(t)

=
η2γ + psi

(t−1)

η2 + qsi
(t−1)

,

κi
(t) = η2 + qsi

(t−1), α′i
(t)

= α +
qsi

(t−1)

2
, β′i

(t)
= β +

rsi
(t−1)

2
+
η2

2
(γ

′

i

(t) − γ)2

2. Compute π∗i
(t), θ∗i,t

(t) and a∗ij
(t) at step t by:

π∗i
(t) = exp

(
ψ(wπi

(t))− ψ(
∑
i

wπi
(t))
)
, a∗ij

(t) = exp
(
ψ(wAij

(t)
)− ψ(

∑
j=1

wAij
(t)
)
)

θ∗i,t
(t) = exp

(
− 1

2
log 2π − 1

2
(log β′i

(t) − ψ(α′i
(t)
))− 1

2

(
(yt − γ′i

(t)
)2α

′
i
(t)

β′i
(t)

+
1

κi(t)

))
3. Compute wsi

(t), vsij
(t), psi

(t), qsi
(t), and rsi

(t) at step t by:

wsi
(t) = Eq(t)(S1:T )[S1,i], v

s
ij

(t) =
T−1∑
t=1

Eq(t)(S1:T ) [St,iSt+1,j] , p
s
i
(t) =

T−1∑
t=1

Eq(t)(S1:T )[st,i]yt,

qsi
(t) =

T−1∑
t=1

Eq(t)(S1:T )[st,i], r
s
i

(t) =
T−1∑
t=1

(γ′i
(t) − yt)2Eq(t)(S)[st,i]

t⇐ t+ 1

end while

The VB method proceeds, as was shown with the simple Equations (4) and (5), by iterative updating
the variational parameters to solve a set of simultaneous equations. In this example, the update equations
for the variables π,A, {µi, σ2

i }Ki=1, S1:T are given explicitly by Algorithm 1. For the initialisation, we
choose symmetric values for most of the parameters and choose random values for others, as appropriate.
For this example, this worked very satisfactory, although we note that for more general state space
models [28], states that find good initial values can be non-trivial.

3.3. Interpretation of Results

First, all approximating distributions above turn out to lie in well-known parametric families.
The only unknown quantities are the parameters of these distributions, which are often called the
variational parameters.
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The evaluation of parameters of q(π), q(A), q(µi|σ2
i ), and q(σ2

i ) requires knowledge of q(S1:T ), and
also, the evaluation of π∗i , a∗ij and θ∗i,t requires knowledge of q(π), q(A), q(µi|σ2

i ) and q(σ2
i ). This

structure leads to an iterative updating scheme, described in Algorithm 1.
The main computational effort in Algorithm 1 is computing Eq(S1:T )[St,i] and Eq(S1:T ) [St,iSt+1,j],

which have no simple tractable forms. We note that the distributional form of q(S1:T ) has a very similar
structure as the conditional distribution of p(S1:T |Y1:T , τ) for which the forward-backward algorithm [30]
is commonly used to compute Ep(S1:T |Y1:T ,τ)[St,i|Y1:T , τ ] and Ep(S1:T |Y1:T ,τ) [St,iSt+1,j|Y1:T , τ ]. Therefore,
we also use the forward-backward algorithm to compute Eq(S1:T )[St,i] and Eq(S1:T ) [St,iSt+1,j].

The conditional distribution of q(µi|σ2
i ) is N

(
µi|σ2

i ; γ
′
i,
σ2
i

κi

)
, then the marginal distribution of µi is

the location-scale t distribution, denoted as t2α′
i
(µi; γ

′
i,

κi
β′
i/α

′
i
), where the density function of tν(x;µ, λ) is

defined as p(x|ν, µ, λ) = Γ( ν+1
2

)

Γ( ν
2

)

(
λ
πν

) 1
2

[
1 + λ(x−µ)2

ν

]− ν+1
2

, for x, µ ∈ (−∞,+∞) and ν, λ > 0.

4. Numerical Studies

4.1. Simulated Data

In this section, we applied the VB solutions to four sets of simulated data, which are used in [24].
Through these simulated studies, we will test the performance of VB on detecting the number of regimes
and compare it with those of the BIC and the MCMC methods [24]. For this paper, we present only
an initial study with a relatively small number of datasets. The results are highly promising, but more
extensive studies are needed to draw comprehensive conclusions. Furthermore, see [28] for general
results on VB in hidden state space models.

To estimate the number of regimes, we construct a matrix, called the relative magnitude matrix
(RMM), defined as A′ =

(
â′ij
)
, where â′ij =

wAij
wA0
, wA0 =

∑K
i=1

∑K
j=1w

A
ij and wAij is the parameter of

q(A). Our model selection procedure is to fit a VB with a large number of regimes and to examine the
rows and columns in the RMM. If the values of the entries in the i − th row and the i − th column of
A′ are all equal to CA/K

T−1+CA×K , then we will declare the regime i nonexistent. This method is validated
by the following observations. It can be shown that the parameter of vsij in wAij is equal to the number of
times the process leaves regime i and enters regime j. Therefore, for the i− th regime, the values of zero
for all of vsji and vsij with j = 1, · · · , K indicate that there is no transition process entering or leaving
regime i.

Table 1 specifies the parameters for the four cases, and we generate 671 observations for each case
(equal to the number of months from January 1956 to September 2011). The parameters used in
Case 1 are identical to the maximum likelihood estimates for TSX monthly return data from 1956 to
1999 [19]. Case 2 only has one regime present. Case 3 is similar to Case 1, but the two regimes have
the same mean. Case 4 adds a third regime. For each case, we use MLE to fit a one-regime, two-regime,
three-regime and four-regime RSLN model and report the corresponding BIC and log-likelihood scores.
We then misspecify the number of regimes and run a four-regime VB algorithm.
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Table 1. Parameters of the simulated data.

Case
Regime 1 Regime 2 Regime 3

Transition Probability
(µi, σi) (µi, σi) (µi, σi)

1 (0.012, 0.035) (−0.016, 0.078) -
(
0.963 0.037

0.210 0.790

)

2 (0.014, 0.050) - - -

3 (0.000, 0.035) (0.000, 0.078) -
(
0.963 0.037

0.210 0.790

)

4 (0.012, 0.035) (−0.016, 0.078) (0.04, 0.01)

0.953 0.037 0.01

0.210 0.780 0.01

0.80 0.190 0.01



Table 2 shows the number of iterations that VB takes to converge in each case and the corresponding
computational time (on a MacBook, 2 GHz processor). On average, VB converges after a hundred
iterations and takes about one minute. On the same computer, a 104-iteration Reverse Jump MCMC
(RJMCMC) will take about 10 h to finish. Using diagnostics, this seemed to be enough for convergence,
while not being an “unfair” comparison in terms of time with VB. We can see that the computational
efficiency will be a very attractive feature of the VB method. The results of the BIC with the
log-likelihood (in parentheses), the relative magnitude matrices and the posterior probabilities for the
models with the different number of regimes estimated by MCMC (cited from Hartman and Heaton [24])
are given in Table 3. In Case 1, the BIC favors the two-regime model. The posterior probability estimated
by MCMC for the one-regime model is the largest, but there is still a large probability for the two regime
model. Note that the prior specification for the number of regimes can effect these numbers and is always
an issue with these forms of multidimensional MCMC. The relative magnitude matrix clearly shows that
there are only two regimes whose â′ij are not negligible. This implies VB removes excess transition and
emission processes and discovers the exact number of hidden regimes. In Case 2 and Case 3, both VB
and the BIC can select the correct number of regimes, and the posterior probability for the one-regime
model estimated by MCMC is still the largest. In Case 4, VB does not detect the third regime. The
transition probability to this regime is only 0.01, and the means and standard deviations of Regime 1
make the rare data from Regime 3 easily merged within the data from Regime 1. From Table 3, it is clear
that for all of the cases, the log-likelihood always increases as the number of regimes increase.

Table 2. Computational efficiency of VB.

Case 1 Case 2 Case 3 Case 4

Iterations to converge 62 182 132 94
Computational time [s] 27.161 80.842 58.510 45.044
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Table 3. The estimated number of regimes by VB, BIC and MCMC.

No. of MLE RJMCMC VB
Case Regimes BIC (Log

Likelihood)
Posterior

Probability
Relative Magnitude Matrix

1
1

2

3

4

1, 108.875(1, 115.384)

1, 158.227(1, 174.499)

1, 156.370(1, 182.405)

1, 153.150(1, 188.948)

0.647

0.214

0.088

<0.052


0.14357 0.00004 0.00004 0.03153

0.00004 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004

0.03018 0.00004 0.00004 0.79428



2
1

2

3

4

1, 045.448(1, 051.957)

1, 038.360(1, 054.632)

1, 030.733(1, 056.768)

1, 026.882(1, 062.680)

0.864

0.109

0.020

<0.006


0.99944 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004



3
1

2

3

4

1, 110.903(1, 117.411)

1, 139.214(1, 155.486)

1, 131.904(1, 157.719)

1, 121.921(1, 157.940)

0.629

0.221

0.098

<0.052


0.11322 0.00004 0.00004 0.02647

0.00004 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004

0.02659 0.00004 0.00004 0.83327



4
1

2

3

4

1, 044.819(1, 051.328)

1, 092.610(1, 108.881)

1, 087.435(1, 113.470)

1, 080.240(1, 116.038)

0.641

0.203

0.094

<0.06


0.22643 0.00004 0.00004 0.05518

0.00004 0.00004 0.00004 0.00004

0.00004 0.00004 0.00004 0.00004

0.05377 0.00004 0.00004 0.66417



4.2. Real Data

In this section, we apply the VB solution to the TSX monthly total return index in the period from
January, 1956, to December, 1999 (528 observations in total and studied in [19,21]).

A four-regime VB is implemented first. VB converges after 100 iterations about 34.284 s (on a
MacBook, 2 GHz processor). The relative magnitude matrix, given in Table 4, clearly shows that VB
identifies two regimes. This matches both of the BIC and AIC-based results [19]. Based on these results,
we then fit a two-regime VB, which converges after 83 iterations in about 14.241 s. Table 5 gives the
marginal distributions for all of the parameters. Figure 4 presents the corresponding density functions,
where we can see that all of the plots show a symmetric and bell-shaped pattern.
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Table 4. Estimations of the number of regimes for TSXdata.

January 1956–December 1999

R. M. M.


0.11496 0.00005 0.00005 0.02803

0.00005 0.00005 0.00005 0.00005

0.00005 0.00005 0.00005 0.00005

0.02853 0.00005 0.00005 0.82791



Table 5. The marginal distributions of the parameters estimated by VB.

Parameter Distribution Mean s.d. Transition
Probability

µ1 t454.61(0.0123, 370778.19) 0.0123 0.00165 -
σ2

1 IG(227.30, 0.28) 0.00122(0.0349) 0.00008 -
µ2 t80.39(−0.0161, 12987.55) −0.0161 0.00889 -
σ2

2 IG(40.20, 0.24) 0.00603(0.0777) 0.00098 -

p1,2

p2,1

Beta(15.21, 434.78)
Beta(15.00, 61.21)

0.0338

0.1969

0.00851

0.04525

(
0.9662 0.0338

0.1969 0.8031

)

Figure 4. The VB marginal distributions of the parameters. (a) µ2 (left) and µ1 (right);
(b) σ2

1 (left) and σ2
2 (right) ; (c) p1,2 (left) and p2,1 (right) .
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Table 6 (the upper part) gives the maximum likelihood estimates (cited from [19]), mean
parameters computed by the MCMC method (cited from [21]) and mean parameters computed by VB.
It clearly shows that the point estimates by VB are very close to those by MLE and MCMC. The numbers
in parenthesis in Table 6 are the standard deviations computed by the three methods, respectively.
It is worth noting that all of the variance estimated by VB are smaller than those by the MLE or
MCMC methods. In fact, some other researchers also report the underestimation of posterior variance in
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other VB applications, for example [31,32]. In the paper [1], we look at some diagnostics methods that
can assess how well the VB approximates the true posterior, particularly with regards to its covariance
structure. The methods proposed also allow us to generate simple corrections when the approximation
error is large.

Table 6. Estimates and standard deviations by VB, MLE and MCMC.

µ1 σ1 p1,2 µ2 σ2 p2,1

VB 0.0123(0.00165) 0.0349(0.00008) 0.0338(0.00851) −0.0161(0.00889) 0.0777(0.00098) 0.1969(0.04525)
MLE 0.0123(0.002) 0.0347(0.001) 0.0371(0.012) −0.0157(0.010) 0.0778(0.009) 0.2101(0.086)

MCMC 0.0122(0.002) 0.0351(0.002) 0.0334(0.012) −0.0164(0.010) 0.0804(0.009) 0.2058(0.065)

5. Conclusions

Variational Bayes can be thought of in terms of information geometry as a projection-based
approximation technique; it provides a framework to approximate posteriors. We applied this method to
the regime-switching log-normal model and provide solutions to account for both model uncertainty and
parameter uncertainty. The numerical results show that our method can recover exactly the number
of regimes and gives reasonable point estimates. The VB method is also demonstrated to be very
computationally efficient.

The application on the TSX monthly total return index data in the period from January 1956 to
December 1999, confirms the similar results in the literature in finding the number of regimes.
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