Selective modulation of the Glucocorticoid Receptor can distinguish between transrepression of NF-κB and AP-1

Ilse M. Beck

Inflammatory signalling pathways

Source:Beck et al., Endocrine Reviews, 2009

The Glucocorticoid Receptor

Glucocorticoid Receptor-mediated transcriptional mechanisms

Source: Ratman et al. 2013

The Glucocorticoid Receptor: clinical utility

Indications

TNF-implicated/NF-kB-mediated disorders

- -Rheumatoid arthritis
- -Vascular inflammation
- -Asthma
- -Skin inflammation
- -Inflammatory bowel diseases
- -Neurodegenerative diseases

Adverse effects

CpdA is a non-steroidal GR modulator that supports GR-mediated gene repression but no classic GR-mediated transactivation

Compound A favours selective GR transrepression of NF- κ B in the human IL-6 promoter

GENT

Laboratory of Experimental Cancer Research

A strong AP-1-activating signal driving the IL-6 promoter does not concur with an efficient transrepression by **CpdA**-activated GR

In contrast to DEX,

Compound A does not transrepress AP-1-driven promoter activity

The divergent transrepression characteristics of DEX and CpdA are largely maintained across different AP-1 reporter gene models, regardless of the AP-1-activating stimuli.

In contrast to DEX, **Compound A** sustains AP-1-induced gene and protein expression

Confirming **Compound A**'s functionality and dissociated character

A549 Transcriptome Agilent array analysis

Inductions: Solv, DEX, CpdA, TNF, DEX/TNF and CpdA/TNF

Pscan analysis

Genes responding to DEX, but not or to a lesser extent to CpdA

Transcriptome Agilent array analysis IPA : Ingenuity pathway analysis

Gene expression repressed by both DEX and CpdA

Transcriptome Agilent array analysis IPA : Ingenuity pathway analysis

Genes responding to CpdA, but not or to a lesser extent to DEX

Transcriptome Agilent array analysis IPA : Ingenuity pathway analysis

Presence of NF-κB family member motifs in promoters of FOS/JUN target genes

Symbol	Score	Position	Sequence	Strand
SMG1	0.91	-239	GGGGATCTCCA	-
KIF1B	0.88	-432	GGGGGTCACCC	+
PLAT	0.86	-435	GGGGCACCTCC	+
FOSL1	0.84	-154	GGGGCTCCACC	+
PLAUR	0.81	-432	GGGGTTTCACC	+
CREB3L3	0.82	-201	GGGGTACCTCC	

Transcriptome Agilent array analysis **Pscan analysis**

Compound A blocks ERK activation in L929sA

Note: activation of p38 is neither affected by DEX nor by CpdA in L929sA

Yet, Compound A sustains JNK activation in L929sA

(Caelles et al., 1997: DEX blocks JNK activation)

GR plays a role in DEX-mediated P-JNK modulation

But GR knockdown could not impact the CpdA-mediated sustained P-JNK

siControl	_	-		DEX			CpdA		
TNF/STS	0	15	30	0	15	30	0	15	30
P-JNK MAPK I		11	-	II	I	=	-	=	1
Load control -	-	-	-	-	-	-	-	-	-
siGR				DEX			CpdA		
siGR	_	-		_	DE)	Κ		Cpd/	۹
siGR TNF/STS	0	- 15	30	0	DE) 15	< 30	0	Cpd/ 15	A 30
SIGR TNF/STS P-JNK MAPK I	0	- 15	30	0	DEX 15	< 30	0	Cpd/ 15	4 30

GR plays a role in DEX-mediated P-JNK modulation

But GR knockdown could not impact the CpdA-mediated sustained P-JNK

\rightarrow Absence of DUSP1 /MKP1 regulation

GR is essential to mediate the gene expression modulation effect of DEX and Compound A

Compound A, in contrast to DEX, does not support GR recruitment onto the AP-1-dependent *c-jun* gene promoter

L929sA, murine fibrosarcoma cells ChIP analysis

TNF lethality model: Compound A and DEX differentially modulate AP-1-regulated gene expression

TNF lethality model

- GR dim/dim mice → increased sensitivity towards TNFinduced lethality
- DUSP1/MKP1-/- mice
 - \rightarrow TNF-mediated lethality increased
 - \rightarrow P-JNK2 enhanced
- JNK2 -/- mice : significant protection against TNF-induced lethality
- Control of JNK2 activity via a GR dimerization-dependent mechanism (*DUSP1*/MKP-1) protects against systemic TNFinduced lethality

(Vandevyver et al., 2012, JCI).

JNK2 is involved in the **Compound A** -mediated sensitization to TNF toxicity

IL-6 serum protein levels as indicator for murine TNF sensitivity

Concluding model

Our data support the hypothesis that a ligand-induced differential conformation of GR may expose different surfaces to yield a different transcription factor cross-talk profile

Acknowledgements

Our sponsors

IL-6 gene activation by STS and TNF can be discriminated

STS= a microbial alkaloid and protein kinase inhibitor

STS skews the IL-6 promoter activity towards a AP-1-dependent gene activation

FIG. 3. Localization of TNF- and STS-responsive elements in the IL-6 promoter. Various IL-6 promoter-derived recombinant reporter gene constructs were used in induction experiments (*black boxes*, transcription factor-binding sites; *crossed boxes*, mutations of the transcription factor-binding sites yielding the point-mutated versions of p1168hu.IL6P-luc+). Stable cell pools of the promoter reporter gene constructs were left untreated or were induced with 2500 IU/ml TNF for 6 h, with 60 nM STS for 8 h, or added 2 h prior to TNF in a combined treatment.

Source:Vanden Berghe et al., 1999, JBC

CpdA nor DEX affect p38MAPK activation in L929sA

NF-κB is an important mediator of inflammationassociated diseases

• NF- κ B transcription factor family \rightarrow Rel-homology domain

GR and MAPK and AP-1

Source: Smoak and Cidlowski, 2004

Source:Hipskind and Bilbe, Frontiers in Bioscience 1998

Supplementary information: stimulus-independent efficient repression of NF-κB by CpdA

