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Abstract

Developing code for computing the first- and higher-order derivatives of a function by hand can
be very time-consuming and is prone to errors. Automatic differentiation has proven capable of
producing derivative codes with very little effort on the part of the user. Automatic differentia-
tion avoids the truncation errors characteristic of divided-difference approximations. However, the
derivative code produced by automatic differentiation can be significantly less efficient than one pro-
duced by hand. This shortcoming may be overcome by utilizing insight into the high-level structure
of a computation. This paper focuses on how to take advantage of the fact that the number of
variables passed between subroutines frequently 1s small compared with the number of the variables
with respect to which we wish to differentiate. Such an “interface contraction,” coupled with the
associativity of the chain rule for differentiation, allows us to apply automatic differentiation in a
more judicious fashion, resulting in much more efficient code for the computation of derivatives.
A case study involving a program for maximizing a logistic-normal likelithood function developed
from a problem in nutritional epidemiology is examined, and performance figures are presented. We
conclude with some directions for future study.

1 Introduction

Many problems in computational science require the evaluation of a mathematical function, as
well as the derivatives of that function with respect to certain independent variables. Automatic
differentiation provides a mechanism for the automatic generation of code for the computation of
derivatives, using the program for the evaluation of the function as input [9,19]. However, when
automatic differentiation is applied without insight into the program being processed, the derivative
computation can be almost as expensive as divided differences, especially if the so-called forward
mode is being used. Nonetheless, in Section 4, we show that if the user has high-level knowledge about
the structure of a program, automatic differentiation can be employed more judiciously, resulting in
codes whose performance rivals those produced by many person-hours of hand-coding. In particular,
we show how one can exploit “interface contraction,” that is, instances where the number of variables
passed between subroutines is small compared with the number of variables with respect to which
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derivatives are desired. Combining our knowledge of this interface contraction with the chain rule for
differentiation enables us to compute derivatives considerably more efficiently than is possible using
“black-box” automatic differentiation. We discuss this technique and describe how it was applied to
a program segment that maximizes a likelihood function used for statistical analyses investigating
the link between dietary intake and breast cancer.

The organization of this paper is as follows. The next section provides a brief introduction to
automatic differentiation and explains some of its advantages in comparison with other techniques
used for computing derivatives. Section 3 presents interface contraction and explains how it can
be used to reduce the computational cost of a derivative computation. Sections 4 and 5 describe
the results of our experiments using the application from biostatistics. Section 6 provides a brief
summary and discusses possible directions for future study.

2 Automatic Differentiation

Traditionally, scientists who wish to compute the derivatives of a function have chosen one of
two approaches—derive an analytic expression for the derivatives and implement this expression as
a computer program, or approximate the derivatives using divided differences, for example,

9 _ flto+h) = f(to)
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for small h. The former approach suffers from being tedious and prone to errors, while the latter
can produce large errors if the size of the perturbation is not carefully chosen; even in the best
case, half of the significant digits will be lost. For problems of limited size, symbolic manipulators,
such as Maple [7], are available. These programs can simplify the task of deriving an expression
for derivatives and converting this expression into code, but they are typically unable to handle
functions that are large or contain branches, loops, or subroutines.

An alternative to these techniques is automatic differentiation [9,19]. Automatic differentiation
techniques rely on the fact that every function, no matter how complicated, is executed on a com-
puter as a sequence of elementary operations, such as addition and multiplication, and elementary
functions, such as square root and log. By applying the chain rule, for example,
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repeatedly to the composition of those elementary operations, one can compute derivatives of f
exactly and in a completely mechanical fashion.
For example, the short code segment

y = sin(x)
zZ =y*x + 5

could be augmented to compute derivatives as

y = sin(x)

Vy = cos(x)*Vx

zZ =y*x + 5

Vz = y*Vx + x*Vy

where Vwar is a vector representing the derivatives of war with respect to the independent vari-
able(s). Thus, if x is the scalar independent variable, then Vx is equal to 1 and Vz represents g—i.
This example uses the so-called forward mode of automatic differentiation, wherein derivatives of
intermediate variables with respect to the independent variables are propagated. There is also a
reverse mode of automatic differentiation, which propagates derivatives of the dependent variables

with respect to the intermediate variables.



Several tools have been developed that use automatic differentiation for the computation of
derivatives [16]. In particular, we mention GRESS [13], PADRE-2 [17], Odyssee [20], and ADIFOR
[2] for Fortran programs and ADOL-C [11] and ADIC [4] for C programs. We employed the ADIFOR
tool in our experiments.

ADIFOR (Automatic Differentiation of Fortran) [2] provides automatic differentiation for pro-
grams written in Fortran 77. Given a Fortran subroutine (or collection of subroutines) describing
a “function,” and an indication of which variables in parameter lists or common blocks correspond
to “independent” and “dependent” variables with respect to differentiation, ADIFOR produces
portable Fortran 77 code that allows the computation of the derivatives of the dependent variables
with respect to the independent ones.

3 Interface Contraction

Automatic differentiation tools such as ADIFOR produce derivative code that typically outper-
forms divided difference approximations (see, for example, [1,3,5, 6, 18]), but, not surprisingly, is
usually much less efficient than a hand-derived code probably could be.” We introduce a technique,
called “interface contraction,” that can dramatically reduce the runtime and storage requirements
for computing derivatives via automatic differentiation. This technique takes advantage of a pro-
grammer’s understanding of which subroutines encapsulate the majority of the computation and
knowledge of the number of variables passed to these subroutines. In counting the number of vari-
ables, we count the number of scalar variables; that i1s, a 10 x 10 array would be counted as 100
variables. We now introduce interface contraction in detail.

Consider a function f : R" — RP, and denote its cost by C(f). The “cost” of a computation
is usually measured in terms of memory and floating-point operations, and the following argument
applies to either. If the derivatives of f(x) with respect to x, g—x, are computed using the so-called
forward mode of automatic differentiation, the additional cost of computing these derivatives is
approximately n x C(f), because the derivative code includes operations on vectors of length n.
Now, suppose that f(z) can be interpreted as the composition of two functions A : R™ — R? and
g: R" — R™ such that f(z) = h(g(z)). To compute g—i and % independently, the computational

cost is approximately nC(g) and mC/(h), respectively. Thus, the total cost of computing % is

nC(g)+mC(h) plus the cost of performing the matrix multiplication, % X g—i. The cost of the matrix
multiplication will usually be small compared with the cost of computing the partial derivatives.
If m < n, then the cost of computing derivatives is reduced by using this method. Furthermore,
if C(h) > C(g), this method has a cost of approximately mC/(f), which may be substantially less
than nC(f). The value of m is said to be the width of the “interface” between g and h. Hence, if
m is less than n, we have what we call interface contraction. An even more pronounced effect can
be seen in the case of Hessians, since the cost of computing derivatives using the forward mode is
quadratic in the number of independent variables. Hence, the potential speedup due to interface
contraction is (n/m)? rather than just n/m.

We note that a similar approach to interface contraction was mentioned by Iri [15] as a “vertex
cut” when considering automatic differentiation as applied to a computational graph representation
of a program.

3.1 Microscopic Interface Contraction

A simple case of interface contraction occurs for every complex assignment statement in a pro-
gram. Consider a simple example, the following statement, which computes the product of five
terms:

f = y(1) * y(2) * y(3) * y(4) * y(5)

*In most cases, no hand-derived derivative code was available for comparison.



Using temporaries ri, r2, and r3, we could rewrite this as

rl = y(1) * y(2)
r2 = y(3) % ri
r3 = y(4) * r2
f =y(5) *r3

and apply the forward mode of automatic differentiation to yield, for n independent variables,

rl = y(1) * y(2)

Vri(l:n) = y(1) * Vy(1:n,2) + y(2) * Vy(l:n,1)
r2 = y(3) % ri

Vr2(1:n) = y(3) * Vri(l:n) + r1 * Vy(1:n,3)
r3 = y(4) * r2

Vr3(1l:in) = y(4) * Vr2(1l:n) + r2 * Vy(1l:n,4)

f =y(5) *r3

Vi(1l:n) = y(56) * Vr3(1l:n) + r3 * Vy(1l:n,5)

But, if we notice that this single statement is a scalar function of a vector y € R®, which is itself
a function of n independent variables, we have the situation described above, where p = 1, m =5,
and n = n. Thus, if we compute § = % first, we can compute VI =y x Vy more efficiently. For
computing the derivatives of scalar functions, the reverse mode of automatic differentiation is more
efficient than the forward mode [9,19], so we can use it to compute the values of g. The code for
computing ¥ using the reverse mode is

rl = y(1) * y(2)

r2 =rl * y(3)

r3 =12 * y(4)

f =13 * y(5)

ySbar = r3

r2bar = y(4)*y(5)
y4bar = r2 * y(5)
rilbar = y(3)*r2bar
y3bar = r1 * r2bar
y2bar = y(1) # ribar

ylbar = y(2) # ribar
where each yibar represents g(i). We can then perform the matrix multiplication

Vi(1l:n) = ylbar * Vy(1l:n,1) + y2bar * Vy(l:n, 2)
+ y3bar *# Vy(l:n, 3) + ydbar # Vy(l:n, 4)
+ y5bar *# Vy(l:n, 5)

This hybrid mode of automatic differentiation is employed by ADIFOR [2]. We see that interface
contraction i1s mainly responsible for the lower complexity of ADIFOR-generated code compared
with divided-difference approximations. We also note that, for a moderate number of variables on
the right-hand side, we would still come out ahead if we used the forward mode to compute g,
instead of the reverse mode.

3.2 Macroscopic Interface Contraction

An analogous situation exists for larger program units, in particular, subroutines. Suppose we
have a subroutine subf that computes a function z = f(#) and that simply calls two subroutines,
subg and subh, as follows:



subroutine subf(x,z,n)
integer n

real x(n),z(n)

real y(2)

call subg(x,y,n)
call subh(y,z,n)

return
end

Subroutine subg computes y from x ,and subh computes z from y. Applying ADIFOR to this
subroutine would result in the creation of subroutines g$subf, g$subg, and g$subh, each of which
would work with derivative vectors of length n, representing derivatives with respect to . If we

process subh separately to get a subroutine g$subh that computes g—z, use gsubg to compute g—i,
and then multiply g_z X g—y, we get g_z as before. However, the additional computational cost of
y 3 3

g$subh is no longer n times the cost of subh but merely two times the cost of subh (y is a vector of
length 2, so m = 2). If subh is computationally demanding, this may be a great savings.

The exploitation of interface contraction in this example is illustrated in Figure 1. The width
of an arrow corresponds to the amount of information passing between and computed within the
various subroutines. When automatic differentiation is applied to the whole program (“Before”), the
gradient objects have length n. Thus, large amounts of data must be computed and stored, resulting
in large runtimes and memory requirements. If interface contraction is exploited by processing subg
and subh separately (“After”), the amount of data computed within g$subh is greatly reduced,
resulting in reduced computational demands within this subroutine. If subh is expensive, this
approach results in greatly improved performance and reduced memory requirements.

G$SUBG | Y'/AX | cgsuBH

Before: z.dz/dx

X G$SUBG G$SUBH

After: Z,dZ/dX

Figure 1: Schematic of subroutine calls before and after interface contraction



Note that this process requires a little more work on the user’s part than simply applying a “black-
box” automatic differentiation tool. While previously we just applied the automatic differentiation
tool to subf and the subroutines it called, we now must apply it separately to subg and subh,
and we must provide the matrix-matrix multiply “glue” code as well. Nonetheless, this approach
produces in a short amount of time, and with a fairly low likelihood of human error, a derivative code
with significantly lower complexity than that derived from “black-box” application of an automatic
differentiation tool.

4 An Application of Interface Contraction

The macroscopic version of interface contraction can be used advantageously in the development
of derivative codes for two log-likelihood functions used for biostatistical analysis. These functions
were motivated by a problem in nutritional epidemiology investigating the relationships of age and
dietary intakes of saturated fat, total energy, and alcohol with the four-year risk of developing
breast cancer in a prospective cohort of 89,538 nurses [21]. The likelihood functions take into
account measurement error in total energy and binary misclassification in saturated fat and alcohol
intake, and include an integral that is evaluated numerically by using the algorithm of Crouch and
Spiegelman [8]. The Hessian and gradient are needed for optimization of these nonlinear likelihood
functions, and the Hessian is again needed to evaluate the variance-covariance matrix of the resulting
maximum likelihood estimates. Two likelihood functions were fit to these data, a 33-parameter
function and a 17-parameter function.

Although the current version of ADIFOR, does not support second derivatives, we were able to
apply ADIFOR twice to produce code for computing the Hessian (see [14] for more details). This
method for computing second derivatives is somewhat tedious, and not optimal from a complexity
point of view, but does produce correct results. Direct support for second derivatives will be provided
in a future release of ADIFOR.

The initial results using ADIFOR exhibited linear increase in computational complexity for
gradients and quadratic increase for Hessians as expected. As a result, computing the Hessian
for the 33-parameter function required approximately six hours on a SPARCstation 20. However,
this problem turns out to be very suitable for exploiting interface contraction. The subroutine
defining the function to be differentiated, 1glik3, calls subroutine integr, whose computational
expense dominates the computation (approximately 85% of the overall computation time is spent
in integr). The input variable for subroutine 1glik3, xin, is a vector of length 17 (33), while the
length of the input variable for subroutine integr, x, is 2. The output variables for the routines are
xlogl (a scalar) and £ (a scalar), respectively. So, using the notation of our previous example, we
have n = 17 (33), m = 2, and p = 1. The difference between this situation and the one examined in
Section 3.2 is that rather than being preceded by another subroutine call, integr is surrounded by
code and 1s within a loop. In addition, ADIFOR, is used to generate code for computing a Hessian,
rather than a gradient, as was the case in our previous examples.

Modifying the ADIFOR-generated routines for computing Hessians to accommodate interface
contraction is straightforward. The subroutine integr and the subroutines it calls are processed
separately from 1glik3, making it possible to compute derivatives with respect to x instead of
xin. Since we are computing Hessians, this reduces computational complexity for the derivatives for

integr by a factor of approximately (g:g) ~ T for the 17-parameter problem and (?‘;’:‘;’?) 273

for the 33-parameter problem.

5 Experimental Results

Figures 2 and 3 summarize performance results for the 17- and 33-parameter problems, respec-
tively, on a SPARCstation 20 at the Channing Laboratory, Harvard Medical School, and Brigham
and Women’s Hospital, Boston, Massachusetts. This workstation is equipped with a 50 MHz Super-



Task Method Time Ftfeval Factor Max Error
Func Analytic 10.94 1.0 - -
Grad Analytic 36.65 3.35 1.00 0
Black-Box AD 186.70 17.07 5.09 6.5e-14
ADIFOR & Interface Contr. 54.32 4.97 1.48 6.1e-14
Analytic & Interface Contr. 49.31 4.51 1.34 6.1e-14
Hess Analytic 185.80 16.98 1.00 0
Black-Box AD 5636.00 515.17 30.30 9.9e-11
ADIFOR & Interface Contr. 609.70 55.73 3.28 9.9e-11
Analytic & Interface Contr. 608.90 55.66 3.28 9.9e-11

Figure 2: Experimental results for the 17-parameter problem

Task Method Time Ftfeval Factor Max Error
Func Analytic 11.67 1.0 - -
Grad Black-Box AD 394.25 33.78 4.15 0
Interface Contraction 104.56 8.96 1.10 8.3e-14
Analytic Interface 95.00 8.14 1.00 6.1e-14
Hess Black-Box AD 21130.00 1810.62 7.09 0
ADIFOR & Interface Contr. 3049.10 261.28 1.02 7.4e-14
Analytic & Interface Contr. 2979.30 255.30 1.00 2.7e-13

Figure 3: Experimental results for the 33-parameter problem

SPARC processor and 48MB of memory. All code was compiled by using Sun’s 77 compiler with
the “-O” option. The times provided are the total cpu time in seconds, averaged over several runs.
The column labelled “#feval” shows the number of function evaluations that could be completed in
that time. The cpu time required for a given method divided by the execution time of the fastest
method is reported in the “Factor” column. The maximum (over all components of the gradient or
Hessian) relative error is reported in the “Max Error” column, compared with values obtained by
the method for which the error is listed as 0 in the figures. The column labeled “Task” indicates
whether the function (func), its gradient (grad), or its Hessian (Hess) is being computed. We used
four methods to compute derivatives:

Analytic: For the 17-parameter problem, code was developed over the course of two years of person-
time to compute the derivatives analytically. No such code exists for the 33-parameter problem.

Black-Box Automatic Differentiation: This method corresponds to the code generated by
ADIFOR. Thus, even for the smaller (17-parameter) problem, the code generated via automatic
differentiation is much slower than the code generated by hand. However, it also took almost no
person-time to develop.

To implement the interface contraction (IC) approach, we used two different versions of the
derivative code for integr:

Analytic and Interface Contraction: Code already existed for analytically computing the deriva-
tives of the output variables of integr with respect to its input variables, and we employed this
code to compute the derivatives of integr.



ADIFOR and Interface Contraction: We employed the derivative code generated by ADIFOR,
for integr.

As arough estimate, it can be expected that, for n independent variables, computing derivatives
by using the forward mode of automatic differentiation requires n and n? the cost of computing
the function for gradient and Hessian, respectively. For our problems, this would amount to the
equivalent of 17 (33) and 289 (1089) function evaluations to compute the gradient and Hessian of
the 17- (33-) parameter function. As can be seen from the #feval column, the gradient computed
by ADIFOR conforms well to this rough estimate, while the Hessian computation performs worse
by a factor of less than two. This is due to the fact that the Hessian code (which was derived by
applying ADIFOR to the ADIFOR-generated first-order derivative code) cannot internally exploit
the symmetry inherent in Hessian computations.

The exploitation of interface contraction significantly improved performance. There is little
difference in the performance of the two implementations of interface contraction with analytic and
ADIFOR-generated derivative code for integr, respectively. The fact that the ADIFOR-generated
Hessian code for integr does not exploit symmetry is of little importance here since we compute
only a 2 x 2 Hessian. For the 17-parameter problem, interface contraction allows us to obtain the
gradient by a factor less than 1.5 slower than the hand-derived version, corresponding to the time
taken by about five function evaluations. The gradient for the 33-parameter problem is obtained at
the cost of about eight function evaluations. The 17 x 17 (33 x 33) Hessian is obtained at the cost
of about 55 (260) function evaluations.

The fact that interface contraction does worse, in comparison with the analytic approach, for
Hessians is due to an effect akin to that described by Amdahl’s law [12]. For the 17-parameter

problem, the cost of the black-box version of the first- (second-) derivative code of integr can be
o
The speedup of about 2.8 (10) that we measured is due to the fact that some small amount of
time is spent in parts of the code outside of integr. In the interface contraction version of the
derivative code, the ratio of time outside of the derivative code for integr to time within increases,
resulting in a smaller speedup. For example, if the black-box version spends 85% of execution time
for computing the second derivatives of subroutine integr and 15% of execution in the rest of the
program, the interface contraction version will require .15 + .85 * % = .161 the execution time of
the black-box version, for a speedup factor of about 6.2. By the same token, interface contraction
leads to a smaller decrease in computation time for the 33-parameter problem, as the portion of the

execution time outside of integr increases.

expected to be approximately % =8.5( /2 75) times that of the interface contraction version.

6 Conclusions

Although automatic differentiation i1s an excellent tool for developing accurate derivative codes
quickly, the resultant code can sometimes be significantly more expensive than analytic code written
by a programmer. We introduced an approach for reducing derivative complexity that capitalizes
on chain rule associativity and what we call “interface contraction.” By combining the technique
of automatic differentiation with techniques capitalizing on high-level program-specific information,
such as interface contraction, a user can create codes in the span of a few days that rival the
performance of codes that require months to develop by hand. Application of this approach to a
biostatistics problem validated the promise of this approach.

Computational differentiation (CD) is an emerging discipline that, in addition to “black-box”
automatic differentiation, exploits insight into program structure and underlying algorithms. Its
goal is the generation of efficient derivative codes with minimal human effort, Future research in
CD will further explore how a computational scientist can exploit knowledge about a program (such
as interface contraction) or an underlying algorithm (such as the solution of a nonlinear system of
equations [10]) to reduce the cost of computing derivatives. Research in CD will also lead to the



development of a tool infrastructure to make it easier to employ this knowledge in building derivative
codes.
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