
E�cient Derivative Codes throughAutomatic Di�erentiation and InterfaceContraction: An Application inBiostatisticsChristian BischofMario CassellaPaul HovlandDonna SpiegelmanCRPC-TR95514-SJanuary 1995Center for Research on Parallel ComputationRice University6100 South Main StreetCRPC - MS 41Houston, TX 77005Also available as MCS-P491-0195 from Argonne NationalLaboratory, Mathematics and Computer Science Division.

E�cient Derivative Codes through AutomaticDi�erentiation and Interface Contraction: AnApplication in Biostatistics�byPaul Hovland,y Christian Bischof,y Donna Spiegelman,z and Mario Casella.xAbstractDeveloping code for computing the �rst- and higher-order derivatives of a function by hand canbe very time-consuming and is prone to errors. Automatic di�erentiation has proven capable ofproducing derivative codes with very little e�ort on the part of the user. Automatic di�erentia-tion avoids the truncation errors characteristic of divided-di�erence approximations. However, thederivative code produced by automatic di�erentiation can be signi�cantly less e�cient than one pro-duced by hand. This shortcoming may be overcome by utilizing insight into the high-level structureof a computation. This paper focuses on how to take advantage of the fact that the number ofvariables passed between subroutines frequently is small compared with the number of the variableswith respect to which we wish to di�erentiate. Such an \interface contraction," coupled with theassociativity of the chain rule for di�erentiation, allows us to apply automatic di�erentiation in amore judicious fashion, resulting in much more e�cient code for the computation of derivatives.A case study involving a program for maximizing a logistic-normal likelihood function developedfrom a problem in nutritional epidemiology is examined, and performance �gures are presented. Weconclude with some directions for future study.1 IntroductionMany problems in computational science require the evaluation of a mathematical function, aswell as the derivatives of that function with respect to certain independent variables. Automaticdi�erentiation provides a mechanism for the automatic generation of code for the computation ofderivatives, using the program for the evaluation of the function as input [9, 19]. However, whenautomatic di�erentiation is applied without insight into the program being processed, the derivativecomputation can be almost as expensive as divided di�erences, especially if the so-called forwardmode is being used. Nonetheless, in Section 4, we show that if the user has high-level knowledge aboutthe structure of a program, automatic di�erentiation can be employed more judiciously, resulting incodes whose performance rivals those produced by many person-hours of hand-coding. In particular,we show how one can exploit \interface contraction," that is, instances where the number of variablespassed between subroutines is small compared with the number of variables with respect to which�This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38, the National Aerospace Agency under Purchase Order L25935D, the U.S. Department of Defensethrough an NDSEG fellowship, the Centers for Disease Control through Cooperative Agreement K01 OH00106, theNational Institutes of Health through Cooperative Agreement R01 CA50597, and the National Science Foundationthrough NSF Cooperative Agreement No. CCR-9120008.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL60439, fhovland, bischofg@mcs.anl.gov.zDepartmentsof Epidemiologyand Biostatistics, Harvard School of Public Health, 677 HuntingtonAvenue, Boston,MA 02115, stdls@gauss.med.harvard.edu.xDepartment of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115,stmbc@gauss.med.harvard.edu. 1

derivatives are desired. Combining our knowledge of this interface contraction with the chain rule fordi�erentiation enables us to compute derivatives considerably more e�ciently than is possible using\black-box" automatic di�erentiation. We discuss this technique and describe how it was applied toa program segment that maximizes a likelihood function used for statistical analyses investigatingthe link between dietary intake and breast cancer.The organization of this paper is as follows. The next section provides a brief introduction toautomatic di�erentiation and explains some of its advantages in comparison with other techniquesused for computing derivatives. Section 3 presents interface contraction and explains how it canbe used to reduce the computational cost of a derivative computation. Sections 4 and 5 describethe results of our experiments using the application from biostatistics. Section 6 provides a briefsummary and discusses possible directions for future study.2 Automatic Di�erentiationTraditionally, scientists who wish to compute the derivatives of a function have chosen one oftwo approaches|derive an analytic expression for the derivatives and implement this expression asa computer program, or approximate the derivatives using divided di�erences, for example,@@t f(t)���t=t0 � f(t0 + h)� f(t0)h (1)for small h. The former approach su�ers from being tedious and prone to errors, while the lattercan produce large errors if the size of the perturbation is not carefully chosen; even in the bestcase, half of the signi�cant digits will be lost. For problems of limited size, symbolic manipulators,such as Maple [7], are available. These programs can simplify the task of deriving an expressionfor derivatives and converting this expression into code, but they are typically unable to handlefunctions that are large or contain branches, loops, or subroutines.An alternative to these techniques is automatic di�erentiation [9,19]. Automatic di�erentiationtechniques rely on the fact that every function, no matter how complicated, is executed on a com-puter as a sequence of elementary operations, such as addition and multiplication, and elementaryfunctions, such as square root and log. By applying the chain rule, for example,@@tf(g(t))���t=t0 = � @@sf(s)���s=g(t0)�� @@tg(t)���t=t0� (2)repeatedly to the composition of those elementary operations, one can compute derivatives of fexactly and in a completely mechanical fashion.For example, the short code segmenty = sin(x)z = y*x + 5could be augmented to compute derivatives asy = sin(x)ry = cos(x)*rxz = y*x + 5rz = y*rx + x*rywhere rvar is a vector representing the derivatives of var with respect to the independent vari-able(s). Thus, if x is the scalar independent variable, then rx is equal to 1 and rz represents @ z@ x .This example uses the so-called forward mode of automatic di�erentiation, wherein derivatives ofintermediate variables with respect to the independent variables are propagated. There is also areverse mode of automatic di�erentiation, which propagates derivatives of the dependent variableswith respect to the intermediate variables. 2

Several tools have been developed that use automatic di�erentiation for the computation ofderivatives [16]. In particular, we mention GRESS [13], PADRE-2 [17], Odyssee [20], and ADIFOR[2] for Fortran programs and ADOL-C [11] and ADIC [4] for C programs. We employed the ADIFORtool in our experiments.ADIFOR (Automatic Di�erentiation of Fortran) [2] provides automatic di�erentiation for pro-grams written in Fortran 77. Given a Fortran subroutine (or collection of subroutines) describinga \function," and an indication of which variables in parameter lists or common blocks correspondto \independent" and \dependent" variables with respect to di�erentiation, ADIFOR producesportable Fortran 77 code that allows the computation of the derivatives of the dependent variableswith respect to the independent ones.3 Interface ContractionAutomatic di�erentiation tools such as ADIFOR produce derivative code that typically outper-forms divided di�erence approximations (see, for example, [1, 3, 5, 6, 18]), but, not surprisingly, isusually much less e�cient than a hand-derived code probably could be.� We introduce a technique,called \interface contraction," that can dramatically reduce the runtime and storage requirementsfor computing derivatives via automatic di�erentiation. This technique takes advantage of a pro-grammer's understanding of which subroutines encapsulate the majority of the computation andknowledge of the number of variables passed to these subroutines. In counting the number of vari-ables, we count the number of scalar variables; that is, a 10 � 10 array would be counted as 100variables. We now introduce interface contraction in detail.Consider a function f : Rn ! Rp, and denote its cost by C(f). The \cost" of a computationis usually measured in terms of memory and
oating-point operations, and the following argumentapplies to either. If the derivatives of f(x) with respect to x, @ f@ x , are computed using the so-calledforward mode of automatic di�erentiation, the additional cost of computing these derivatives isapproximately n � C(f), because the derivative code includes operations on vectors of length n.Now, suppose that f(x) can be interpreted as the composition of two functions h : Rm ! Rp andg : Rn ! Rm such that f(x) = h(g(x)). To compute @ g@ x and @ h@ g independently, the computationalcost is approximately nC(g) and mC(h), respectively. Thus, the total cost of computing @ f@ x isnC(g)+mC(h) plus the cost of performing the matrixmultiplication, @ h@ g� @ g@ x . The cost of the matrixmultiplication will usually be small compared with the cost of computing the partial derivatives.If m < n, then the cost of computing derivatives is reduced by using this method. Furthermore,if C(h) � C(g), this method has a cost of approximately mC(f), which may be substantially lessthan nC(f). The value of m is said to be the width of the \interface" between g and h. Hence, ifm is less than n, we have what we call interface contraction. An even more pronounced e�ect canbe seen in the case of Hessians, since the cost of computing derivatives using the forward mode isquadratic in the number of independent variables. Hence, the potential speedup due to interfacecontraction is (n=m)2 rather than just n=m.We note that a similar approach to interface contraction was mentioned by Iri [15] as a \vertexcut" when considering automatic di�erentiation as applied to a computational graph representationof a program.3.1 Microscopic Interface ContractionA simple case of interface contraction occurs for every complex assignment statement in a pro-gram. Consider a simple example, the following statement, which computes the product of �veterms: f = y(1) * y(2) * y(3) * y(4) * y(5)�In most cases, no hand-derived derivative code was available for comparison.3

Using temporaries r1, r2, and r3, we could rewrite this asr1 = y(1) * y(2)r2 = y(3) * r1r3 = y(4) * r2f = y(5) * r3and apply the forward mode of automatic di�erentiation to yield, for n independent variables,r1 = y(1) * y(2)rr1(1:n) = y(1) * ry(1:n,2) + y(2) * ry(1:n,1)r2 = y(3) * r1rr2(1:n) = y(3) * rr1(1:n) + r1 * ry(1:n,3)r3 = y(4) * r2rr3(1:n) = y(4) * rr2(1:n) + r2 * ry(1:n,4)f = y(5) * r3rf(1:n) = y(5) * rr3(1:n) + r3 * ry(1:n,5)But, if we notice that this single statement is a scalar function of a vector y 2 R5, which is itselfa function of n independent variables, we have the situation described above, where p = 1, m = 5,and n = n. Thus, if we compute y = @ f@ y �rst, we can compute rf = y �ry more e�ciently. Forcomputing the derivatives of scalar functions, the reverse mode of automatic di�erentiation is moree�cient than the forward mode [9,19], so we can use it to compute the values of y. The code forcomputing y using the reverse mode isr1 = y(1) * y(2)r2 = r1 * y(3)r3 = r2 * y(4)f = r3 * y(5)y5bar = r3r2bar = y(4)*y(5)y4bar = r2 * y(5)r1bar = y(3)*r2bary3bar = r1 * r2bary2bar = y(1) * r1bary1bar = y(2) * r1barwhere each yibar represents y(i). We can then perform the matrix multiplicationrf(1:n) = y1bar * ry(1:n,1) + y2bar * ry(1:n, 2)+ y3bar * ry(1:n, 3) + y4bar * ry(1:n, 4)+ y5bar * ry(1:n, 5)This hybrid mode of automatic di�erentiation is employed by ADIFOR [2]. We see that interfacecontraction is mainly responsible for the lower complexity of ADIFOR-generated code comparedwith divided-di�erence approximations. We also note that, for a moderate number of variables onthe right-hand side, we would still come out ahead if we used the forward mode to compute y,instead of the reverse mode.3.2 Macroscopic Interface ContractionAn analogous situation exists for larger program units, in particular, subroutines. Suppose wehave a subroutine subf that computes a function z = f(x) and that simply calls two subroutines,subg and subh, as follows: 4

subroutine subf(x,z,n)integer nreal x(n),z(n)real y(2)call subg(x,y,n)call subh(y,z,n)returnendSubroutine subg computes y from x ,and subh computes z from y. Applying ADIFOR to thissubroutine would result in the creation of subroutines g$subf, g$subg, and g$subh, each of whichwould work with derivative vectors of length n, representing derivatives with respect to x. If weprocess subh separately to get a subroutine g$subh that computes @ z@ y , use g$subg to compute @ y@ x ,and then multiply @ z@ y � @ y@ x , we get @ z@ x as before. However, the additional computational cost ofg$subh is no longer n times the cost of subh but merely two times the cost of subh (y is a vector oflength 2, so m = 2). If subh is computationally demanding, this may be a great savings.The exploitation of interface contraction in this example is illustrated in Figure 1. The widthof an arrow corresponds to the amount of information passing between and computed within thevarious subroutines. When automatic di�erentiation is applied to the whole program (\Before"), thegradient objects have length n. Thus, large amounts of data must be computed and stored, resultingin large runtimes and memory requirements. If interface contraction is exploited by processing subgand subh separately (\After"), the amount of data computed within g$subh is greatly reduced,resulting in reduced computational demands within this subroutine. If subh is expensive, thisapproach results in greatly improved performance and reduced memory requirements.
Before:

G$SUBG G$SUBHx

z,dz/dx

y,dy/dx

After:

G$SUBG G$SUBH ChainRule

dy/dx

x

y
z,dz/dx

z,dz/dyFigure 1: Schematic of subroutine calls before and after interface contraction5

Note that this process requires a little more work on the user's part than simply applying a \black-box" automatic di�erentiation tool. While previously we just applied the automatic di�erentiationtool to subf and the subroutines it called, we now must apply it separately to subg and subh,and we must provide the matrix-matrix multiply \glue" code as well. Nonetheless, this approachproduces in a short amount of time, and with a fairly low likelihood of human error, a derivative codewith signi�cantly lower complexity than that derived from \black-box" application of an automaticdi�erentiation tool.4 An Application of Interface ContractionThe macroscopic version of interface contraction can be used advantageously in the developmentof derivative codes for two log-likelihood functions used for biostatistical analysis. These functionswere motivated by a problem in nutritional epidemiology investigating the relationships of age anddietary intakes of saturated fat, total energy, and alcohol with the four-year risk of developingbreast cancer in a prospective cohort of 89,538 nurses [21]. The likelihood functions take intoaccount measurement error in total energy and binary misclassi�cation in saturated fat and alcoholintake, and include an integral that is evaluated numerically by using the algorithm of Crouch andSpiegelman [8]. The Hessian and gradient are needed for optimization of these nonlinear likelihoodfunctions, and the Hessian is again needed to evaluate the variance-covariance matrix of the resultingmaximum likelihood estimates. Two likelihood functions were �t to these data, a 33-parameterfunction and a 17-parameter function.Although the current version of ADIFOR does not support second derivatives, we were able toapply ADIFOR twice to produce code for computing the Hessian (see [14] for more details). Thismethod for computing second derivatives is somewhat tedious, and not optimal from a complexitypoint of view, but does produce correct results. Direct support for second derivatives will be providedin a future release of ADIFOR.The initial results using ADIFOR exhibited linear increase in computational complexity forgradients and quadratic increase for Hessians as expected. As a result, computing the Hessianfor the 33-parameter function required approximately six hours on a SPARCstation 20. However,this problem turns out to be very suitable for exploiting interface contraction. The subroutinede�ning the function to be di�erentiated, lglik3, calls subroutine integr, whose computationalexpense dominates the computation (approximately 85% of the overall computation time is spentin integr). The input variable for subroutine lglik3, xin, is a vector of length 17 (33), while thelength of the input variable for subroutine integr, x, is 2. The output variables for the routines arexlogl (a scalar) and f (a scalar), respectively. So, using the notation of our previous example, wehave n = 17 (33), m = 2, and p = 1. The di�erence between this situation and the one examined inSection 3.2 is that rather than being preceded by another subroutine call, integr is surrounded bycode and is within a loop. In addition, ADIFOR is used to generate code for computing a Hessian,rather than a gradient, as was the case in our previous examples.Modifying the ADIFOR-generated routines for computing Hessians to accommodate interfacecontraction is straightforward. The subroutine integr and the subroutines it calls are processedseparately from lglik3, making it possible to compute derivatives with respect to x instead ofxin. Since we are computing Hessians, this reduces computational complexity for the derivatives forintegr by a factor of approximately (17�17)(2�2) � 75 for the 17-parameter problem and (33�33)(2�2) � 273for the 33-parameter problem.5 Experimental ResultsFigures 2 and 3 summarize performance results for the 17- and 33-parameter problems, respec-tively, on a SPARCstation 20 at the Channing Laboratory, Harvard Medical School, and Brighamand Women's Hospital, Boston, Massachusetts. This workstation is equipped with a 50 MHz Super-6

Task Method Time #feval Factor Max ErrorFunc Analytic 10.94 1.0 - -Grad Analytic 36.65 3.35 1.00 0Black-Box AD 186.70 17.07 5.09 6.5e-14ADIFOR & Interface Contr. 54.32 4.97 1.48 6.1e-14Analytic & Interface Contr. 49.31 4.51 1.34 6.1e-14Hess Analytic 185.80 16.98 1.00 0Black-Box AD 5636.00 515.17 30.30 9.9e-11ADIFOR & Interface Contr. 609.70 55.73 3.28 9.9e-11Analytic & Interface Contr. 608.90 55.66 3.28 9.9e-11Figure 2: Experimental results for the 17-parameter problemTask Method Time #feval Factor Max ErrorFunc Analytic 11.67 1.0 - -Grad Black-Box AD 394.25 33.78 4.15 0Interface Contraction 104.56 8.96 1.10 8.3e-14Analytic Interface 95.00 8.14 1.00 6.1e-14Hess Black-Box AD 21130.00 1810.62 7.09 0ADIFOR & Interface Contr. 3049.10 261.28 1.02 7.4e-14Analytic & Interface Contr. 2979.30 255.30 1.00 2.7e-13Figure 3: Experimental results for the 33-parameter problemSPARC processor and 48MB of memory. All code was compiled by using Sun's f77 compiler withthe \-O" option. The times provided are the total cpu time in seconds, averaged over several runs.The column labelled \#feval" shows the number of function evaluations that could be completed inthat time. The cpu time required for a given method divided by the execution time of the fastestmethod is reported in the \Factor" column. The maximum (over all components of the gradient orHessian) relative error is reported in the \Max Error" column, compared with values obtained bythe method for which the error is listed as 0 in the �gures. The column labeled \Task" indicateswhether the function (func), its gradient (grad), or its Hessian (Hess) is being computed. We usedfour methods to compute derivatives:Analytic: For the 17-parameter problem, code was developed over the course of two years of person-time to compute the derivatives analytically. No such code exists for the 33-parameter problem.Black-Box Automatic Di�erentiation: This method corresponds to the code generated byADIFOR. Thus, even for the smaller (17-parameter) problem, the code generated via automaticdi�erentiation is much slower than the code generated by hand. However, it also took almost noperson-time to develop.To implement the interface contraction (IC) approach, we used two di�erent versions of thederivative code for integr:Analytic and Interface Contraction: Code already existed for analytically computing the deriva-tives of the output variables of integr with respect to its input variables, and we employed thiscode to compute the derivatives of integr. 7

ADIFOR and Interface Contraction: We employed the derivative code generated by ADIFORfor integr.As a rough estimate, it can be expected that, for n independent variables, computing derivativesby using the forward mode of automatic di�erentiation requires n and n2 the cost of computingthe function for gradient and Hessian, respectively. For our problems, this would amount to theequivalent of 17 (33) and 289 (1089) function evaluations to compute the gradient and Hessian ofthe 17- (33-) parameter function. As can be seen from the #feval column, the gradient computedby ADIFOR conforms well to this rough estimate, while the Hessian computation performs worseby a factor of less than two. This is due to the fact that the Hessian code (which was derived byapplying ADIFOR to the ADIFOR-generated �rst-order derivative code) cannot internally exploitthe symmetry inherent in Hessian computations.The exploitation of interface contraction signi�cantly improved performance. There is littledi�erence in the performance of the two implementations of interface contraction with analytic andADIFOR-generated derivative code for integr, respectively. The fact that the ADIFOR-generatedHessian code for integr does not exploit symmetry is of little importance here since we computeonly a 2 � 2 Hessian. For the 17-parameter problem, interface contraction allows us to obtain thegradient by a factor less than 1.5 slower than the hand-derived version, corresponding to the timetaken by about �ve function evaluations. The gradient for the 33-parameter problem is obtained atthe cost of about eight function evaluations. The 17� 17 (33 � 33) Hessian is obtained at the costof about 55 (260) function evaluations.The fact that interface contraction does worse, in comparison with the analytic approach, forHessians is due to an e�ect akin to that described by Amdahl's law [12]. For the 17-parameterproblem, the cost of the black-box version of the �rst- (second-) derivative code of integr can beexpected to be approximately 172 = 8:5 ((17�17)(2�2) � 75) times that of the interface contraction version.The speedup of about 2.8 (10) that we measured is due to the fact that some small amount oftime is spent in parts of the code outside of integr. In the interface contraction version of thederivative code, the ratio of time outside of the derivative code for integr to time within increases,resulting in a smaller speedup. For example, if the black-box version spends 85% of execution timefor computing the second derivatives of subroutine integr and 15% of execution in the rest of theprogram, the interface contraction version will require :15 + :85 � 175 = :161 the execution time ofthe black-box version, for a speedup factor of about 6:2. By the same token, interface contractionleads to a smaller decrease in computation time for the 33-parameter problem, as the portion of theexecution time outside of integr increases.6 ConclusionsAlthough automatic di�erentiation is an excellent tool for developing accurate derivative codesquickly, the resultant code can sometimes be signi�cantly more expensive than analytic code writtenby a programmer. We introduced an approach for reducing derivative complexity that capitalizeson chain rule associativity and what we call \interface contraction." By combining the techniqueof automatic di�erentiation with techniques capitalizing on high-level program-speci�c information,such as interface contraction, a user can create codes in the span of a few days that rival theperformance of codes that require months to develop by hand. Application of this approach to abiostatistics problem validated the promise of this approach.Computational di�erentiation (CD) is an emerging discipline that, in addition to \black-box"automatic di�erentiation, exploits insight into program structure and underlying algorithms. Itsgoal is the generation of e�cient derivative codes with minimal human e�ort, Future research inCD will further explore how a computational scientist can exploit knowledge about a program (suchas interface contraction) or an underlying algorithm (such as the solution of a nonlinear system ofequations [10]) to reduce the cost of computing derivatives. Research in CD will also lead to the8

development of a tool infrastructure to make it easier to employ this knowledge in building derivativecodes.AcknowledgmentsWe thank Alan Carle for his instrumental role in the ADIFOR project, Andreas Griewank forstimulating discussions, and Eugene Demidenko for his valuable assistance in program development.We thank Dr. Frank Speizer for making available the facilities of the Channing Laboratory forperforming the analyses described in this paper.References[1] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank. Computinglarge sparse Jacobian matrices using automatic di�erentiation. SIAM Journal on Scienti�cComputing, 15(2):285{294, 1994.[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:Generating derivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[3] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, and PerryNewman. Automatic di�erentiation of advanced CFD codes for multidisciplinary design. Jour-nal on Computing Systems in Engineering, 3(6):625{638, 1992.[4] Christian Bischof and Andrew Mauer. Private communication. Argonne National Laboratory,1995.[5] Christian Bischof, Greg Whi�en, Christine Shoemaker, Alan Carle, and Aaron Ross. Applica-tion of automatic di�erentiation to groundwater transport models. In Alexander Peters et al.,editor, Computational Methods in Water Resources X, pages 173{182, Dordrecht, 1994. KluwerAcademic Publishers.[6] Alan Carle, Lawrence Green, Christian Bischof, and Perry Newman. Applications of automaticdi�erentiation in CFD. In Proceedings of the 25th AIAA Fluid Dynamics Conference, AIAAPaper 94-2197. American Institute of Aeronautics and Astronautics, 1994.[7] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Michael B. Monagan, and Stephen M.Watt. MAPLE Reference Manual. Watcom Publications, Waterloo, Ontario Canada, 1988.[8] E. A. C. Crouch and D. Spiegelman. The evaluation of integrals of the form R f(t)e�t2dt.Application to logistic-normal models. Journal of the American Statistical Association, 85:464{469, 1990.[9] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent De-velopments and Applications, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.[10] Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson.Derivative convergence of iterative equation solvers. Optimization Methods and Software, 2:321{355, 1993.[11] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automaticdi�erentiation of algorithms written in C/C++. Preprint MCS-P180-1190, Mathematics andComputer Science Division, Argonne National Laboratory, 1990.[12] J. J. Hack. Peak vs. sustained performance in highly concurrent vector machines. Computing,19(9):9{19, 1986. 9

[13] Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs. InAndreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, pages 243{250. SIAM, Philadelphia, 1991.[14] Paul Hovland, Christian Bischof, and Alan Carle. Using ADIFOR to compute Hessians. Tech-nical Report ANL/MCS{TM{192, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, 1995 (in press).[15] Masao Iri. History of Automatic Di�erentiation and Rounding Estimation. In Andreas Griewankand George F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementa-tion, and Application, pages 1{16. SIAM, Philadelphia, 1991.[16] David Juedes. A taxonomy of automatic di�erentiation tools. In Andreas Griewank and GeorgeCorliss, editors, Proceedings of the Workshop on Automatic Di�erentiation of Algorithms: The-ory, Implementation, and Application, pages 315{330, Philadelphia, 1991. SIAM.[17] Koichi Kubota. PADRE2, a FORTRAN precompiler yielding error estimates and second deriva-tives. In Andreas Griewank and George F. Corliss, editors, Automatic Di�erentiation of Algo-rithms: Theory, Implementation, and Application, pages 251{262. SIAM, Philadelphia, 1991.[18] Seon Ki Park, Kelvin Droegemeier, Christian Bischof, and Tim Knau�. Sensitivity analysisof numerically-simulated convective storms using direct and adjoint methods. In Preprints,10th Conference on Numerical Weather Prediction, Portland, Oregon, pages 457{459. AmericanMeteorological Society, 1994.[19] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of LectureNotes in Computer Science. Springer Verlag, Berlin, 1981.[20] Nicole Rostaing, Stephane Dalmas, and Andre Galligo. Automatic di�erentiation in Odyssee.Tellus, 45a(5):558{568, October 1993.[21] W. C. Willett, et al. Dietary fat and �ber in relation to risk of breast cancer. Journal of theAmerican Medical Association, 268:2037{2044, 1992.
10

