Embedding Planar Graphs on the Grid

Jon Harris

Contents

- Review of Planarity.
- Brief History of Planar Straight Line Embeddings.
- Description and IIlustration of Schnyder's Algorithm.
- Comments
- Brief Example and Demo
- References

Review of Planarity

- A Graph $G=(V, E)$ is a Planar Graph if it can be drawn in the plane with no edges crossing

Planar Straight Line Embeddling

- Straight Line Representation of a planar graph in which no two edges cross.

- Also known as a Fáry Embedding.
- Used extensively in microchip layout and design, software engineering diagrams etc...

Planar Straight Line Embedding

- Planar straight line embeddings on a grid are useful for drawing applications.

- Ideally, we want the grid dimensions to be as small as possible. (lower cost microchips, manageable diagrams)

History

- Every planar graph has a straight line embedding. Fáry (1948)
- Many algorithms exist for computing straight line embeddings:
- Tutte (1963) First known algorithm.
- Chiba et al. (1982) First O(n) algorithm.
- These algorithms tend to rely on real number coordinates and have extremely large grid sizes.

History (Cont'd)

- Open Problem:

Does every planar graph with n vertices have a straight line embedding in an $n^{k} \times n^{k}$ grid?

- Solved in 1988 by de Fraysseix, Pach and Pollack. [$\Theta\left(n^{2}\right)$ grid]
- Stein had proved this same result for Convex Maps in 1951!

History (Cont'd)

Author(s)	Grid Size	Time	Space
de Fraysseix, Pach, Pollack (1988) [S]	$(2 n-4) \times(n-2)$	$O(n \operatorname{logn})$	$O(n)$
Chrobak, Payne (1989) [S]	$(2 n-4) \times(n-2)$	$O(n)$	$O(n)$
Schnyder (1990) [R]	$(n-2) \times(n-2)$	$O(n)$	$O(n)$
Chrobak, Kant (Convex Drawing), (1993) [S]	$(n-2) \times(n-2)$	$O(n)$	$O(n)$

History (Cont'd)

- Two principle methods for computing straight line embeddings exist:
- The "Shift Method":

Add each vertex, and reposition previous vertices as necessary.

- The "Realizer Method";

Compute the position of each vertex relative to its neighbours, then compute the actual positions.

Schnyder's Algorithm

- Consists of three main stages:
- Preprocess and triangulate the input graph G so that it is maximal planar, and topologically embedded.
- Computation of a normal labeling and realizer $\mathrm{T}_{1}, \mathrm{~T}_{2}$, T_{3} of G.
- Count of combinatorial objects (vertices or triangles) in regions of the realizer to obtain grid coordinates for every vertex of G.

Triangular supergraph

Barycentric Representations

- Barycentric representation of a graph G:
- Every vertex v in G has 3 barycentric coordinates $\left(v_{1}, v_{2}, v_{3}\right)$ and $v_{1}+v_{2}+v_{3}=1$

- For every edge $\{x, y\}$ and each vertex z not in $\{x, y\}$, there is some k in $\{1,2,3\}$ such that $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric Representations (Cont'd)

- All (and only) planar graphs have a Barycentric representation.
- Given any 3 non-colinear points a, b, c, the mapping $v \rightarrow v_{1} a+v_{2} b+v_{3} c$ is a straight line embedding in the plane spanned by a, b and c .
- A barycentric representation of a graph G leads to a normal labeling of G.

Normal Labeling

- Normal Labeling of a Triangular Graph G

Normal Labeling (Cont'd)

- Built incrementally using a method called edge contraction.

- Relies on a canonical ordering of the vertices to determine the order of the contractions.

Canonical Ordering

- A canonical ordering of a maximal planar graph G specifies an order for removing the vertices one by one such that the remaining graph is always biconnected.

Computing the Realizer

- Realizer of a Triangular Graph G

Count of combinatorial objects

- The 3 paths along $T_{i}(j=1,2,3)$ from any interior vertex v to the vertices root $\left(T_{i}\right)$ divide G into 3 regions $R_{i}(V)$.
- Counting the triangles in each region for a vertex can give us $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$, which in turn yields ($2 \mathrm{n}-5$) $x(2 n-5)$ grid coordinates.
- Counting the vertices in each region is more complicated (boundary conditions) and yields (n2) $x(n-2)$ grid coordinates.

Count of combinatorial objects

- Coordinates that Count Triangles:

Count of combinatorial objects

- Coordinates that Count Triangles:

Mapping the Coordinates to a Grid

Mapping $v \rightarrow 1 /(2 n-5)\left(v_{1} a+v_{2} b+v_{3} c\right)$

$$
\begin{gathered}
a=(2 n-5,0) \\
b=(0,2 n-5) \\
c=(0,0) \\
n=6,2 n-5=7 \\
\frac{\text { Vertex } 5}{\left(1^{*}(7,0)+\right.} \\
2^{*}(0,7)+ \\
\left.4^{*}(0,0)\right) / 7 \\
=(1,2)
\end{gathered}
$$

Conclusion

- This concludes the summary of three main stages of Schnyder's algorithm.
- Triangulation of the input (planar) graph.
- Computation of a normal labeling and realizer of the triangulated graph.
- Count of the triangles (vertices) in the three regions of each vertex to obtain grid coordinates.

Comments

- To run in linear time, Schnyder's algorithm requires linear time planarity testing, topological embedding, triangulation, and canonical ordering algorithms.
- These algorithms exist, but are not provided by Schnyder and make implementing his algorithm in linear time much more challenging.
- Aesthetic properties of the grid drawing with Schnyder's algorithm leave a lot to be desired (skinny, non-convex faces frequently result)

Interactive Demo

- A visual implementation of Schnyder's algorithm called JGraphEd is available as a Java Applet at:
http://www.jharris.ca/JGraphEd/
- Includes linear time: Planarity Testing, Canonical Ordering, Normal Labeling and $\mathrm{n}-2$ by $\mathrm{n}-2$ Straight Line Grid Embedding.

Example (12 vertices)

Example (10 x 10 grid embedding)

Example (Triangulation)

Example (Canonical Ordering)

Example (Normal Labeling)

References

- Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing Planar Graphs on the Grid, Tech. Rep. UCR-CS-90-2, Dept. of Math. And Comp. Science, Univ. of California at Riverside, 1990
- Fraysseix, H. de, J. Pach and R. Pollack, How to Draw a Planar Graph on a Grid, Combinatorica 10, 1990, pp. 41-51
- Nakano, S., Planar Drawings of Plane Graphs, IEICE Trans. Fundamentals, Vol. E00-A, No. 3, 2000
- Schnyder, W., Embedding Planar Graphs on the Grid, Proc. $1^{\text {st }}$ Annual ACM-SIAM Symp. On Discr. Alg. (SODA), 1990 pp. 138.147
- Stein, S.K., Convex Maps, Proceeding of the American Mathematical Society 2, 1951, pp. 464-466

