
Embedding Planar Embedding Planar 
Graphs on the GridGraphs on the Grid

Jon HarrisJon Harris



ContentsContents

Review of Planarity.Review of Planarity.
Brief History of Planar Straight Line Brief History of Planar Straight Line 
Embeddings.Embeddings.
Description and Illustration of SchnyderDescription and Illustration of Schnyder’’s s 
Algorithm.Algorithm.
CommentsComments
Brief Example and DemoBrief Example and Demo
ReferencesReferences



Review of PlanarityReview of Planarity

A Graph G=(V,E) is a Planar Graph if it A Graph G=(V,E) is a Planar Graph if it 
can be drawn in the plane with no edges can be drawn in the plane with no edges 
crossingcrossing



Planar Straight Line EmbeddingPlanar Straight Line Embedding

Straight Line Representation of a planar Straight Line Representation of a planar 
graph in which no two edges cross.graph in which no two edges cross.

Also known as a FAlso known as a Fááry Embedding. ry Embedding. 
Used extensively in microchip layout and Used extensively in microchip layout and 
design, software engineering diagrams design, software engineering diagrams 
etcetc……



Planar Straight Line EmbeddingPlanar Straight Line Embedding
Planar straight line embeddings on a grid are Planar straight line embeddings on a grid are 
useful for drawing applications.useful for drawing applications.

Ideally, we want the grid dimensions to be as Ideally, we want the grid dimensions to be as 
small as possible. (lower cost microchips, small as possible. (lower cost microchips, 
manageable diagrams)manageable diagrams)
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HistoryHistory
Every planar graph has a straight line Every planar graph has a straight line 
embedding. Fembedding. Fááry (1948)ry (1948)

Many algorithms exist for computing straight line Many algorithms exist for computing straight line 
embeddings:embeddings:

Tutte (1963) First known algorithm.Tutte (1963) First known algorithm.
Chiba et al. (1982) First O(n) algorithm.Chiba et al. (1982) First O(n) algorithm.

These algorithms tend to rely on real number These algorithms tend to rely on real number 
coordinates and have extremely large grid sizes. coordinates and have extremely large grid sizes. 



History (ContHistory (Cont’’d)d)

Open ProblemOpen Problem::
 Does every planar graph with n vertices have a Does every planar graph with n vertices have a 

straight line embedding in an nstraight line embedding in an nkk

 
x nx nkk

 
grid?grid?

Solved in 1988 by de Fraysseix, Pach and Solved in 1988 by de Fraysseix, Pach and 
Pollack. [ Pollack. [ ΘΘ(n(n22) grid ]) grid ]

Stein had proved this same result for Stein had proved this same result for Convex Convex 
MapsMaps in 1951!in 1951!



History (ContHistory (Cont’’d)d)
Author(s)Author(s) Grid SizeGrid Size TimeTime SpaceSpace

de Fraysseix, Pach, Pollackde Fraysseix, Pach, Pollack
(1988) [S](1988) [S]

(2n (2n --

 

4) x (n 4) x (n --

 

2)2) O(nlogn)O(nlogn) O(n)O(n)

Chrobak, PayneChrobak, Payne
(1989) [S](1989) [S]

(2n (2n --

 

4) x (n 4) x (n --

 

2)2) O(n)O(n) O(n)O(n)

Schnyder Schnyder 
(1990) [R](1990) [R]

(n (n --

 

2) x (n 2) x (n --

 

2)2) O(n)O(n) O(n)O(n)

Chrobak, KantChrobak, Kant
(Convex Drawing), (1993) [S](Convex Drawing), (1993) [S]

(n (n --

 

2) x (n 2) x (n --

 

2)2) O(n)O(n) O(n)O(n)



History (ContHistory (Cont’’d)d)

Two principle methods for computing straight Two principle methods for computing straight 
line embeddings exist:line embeddings exist:

The The ““Shift MethodShift Method””::
Add each vertex, and reposition previous vertices as Add each vertex, and reposition previous vertices as 
necessary.necessary.

The The ““Realizer MethodRealizer Method””::
Compute the position of each vertex relative to its Compute the position of each vertex relative to its 
neighbours, then compute the actual  positions.neighbours, then compute the actual  positions.



SchnyderSchnyder’’s Algorithms Algorithm

Consists of three main stages:Consists of three main stages:
PreprocessPreprocess and triangulate the input graph G so that and triangulate the input graph G so that 
it is it is maximal planarmaximal planar, and , and topologically embeddedtopologically embedded. . 

Computation of a Computation of a normal normal labelinglabeling and realizer Tand realizer T11, T, T22, , 
TT33 of G.of G.

Count of combinatorial objects (vertices or triangles) Count of combinatorial objects (vertices or triangles) 
in regions of the realizer to obtain in regions of the realizer to obtain grid coordinatesgrid coordinates for for 
every vertex of G.every vertex of G.



Triangular supergraphTriangular supergraph
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Barycentric RepresentationsBarycentric Representations

Barycentric representation of a graph G:Barycentric representation of a graph G:
Every vertex v in G has 3 barycentric coordinates Every vertex v in G has 3 barycentric coordinates 
(v(v11,v,v22,v,v3 3 ) and v) and v11 + v+ v22 + v+ v33 = 1= 1

For every edge {x, y} and each vertex z not in {For every edge {x, y} and each vertex z not in {x,yx,y}, }, 
there is some k in {1,2,3} such that there is some k in {1,2,3} such that xxkk < < zzkk and and yykk < < zzkk..
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Barycentric Representations (ContBarycentric Representations (Cont’’d)d)

All (and only) planar graphs have a Barycentric All (and only) planar graphs have a Barycentric 
representation.representation.

Given any 3 nonGiven any 3 non--colinearcolinear
 

points a, b, c, the points a, b, c, the 
mapping v mapping v --> v> v11

 

a + va + v22

 

b + vb + v33

 

c is a straight line c is a straight line 
embedding in the plane spanned by a,b and c.embedding in the plane spanned by a,b and c.

A barycentric representation of a graph G leads A barycentric representation of a graph G leads 
to a normal to a normal labelinglabeling

 
of G. of G. 



Normal Normal LabelingLabeling

Normal Normal LabelingLabeling
 

of a Triangular Graph Gof a Triangular Graph G
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Normal Normal LabelingLabeling
 

(Cont(Cont’’d)d)

Built incrementally using a method called Built incrementally using a method called edge edge 
contractioncontraction..

Relies on a Relies on a canonical orderingcanonical ordering of the vertices to of the vertices to 
determine the order of the contractions.determine the order of the contractions.

.
1

1
1

1
1

1 1
12

2

2

2

22

2

2 3 3

3
3

333

3



Canonical OrderingCanonical Ordering
A canonical ordering of a maximal planar graph A canonical ordering of a maximal planar graph 
G specifies an order for removing the vertices G specifies an order for removing the vertices 
one by one such that the remaining graph is one by one such that the remaining graph is 
always biconnected.always biconnected.
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Computing the RealizerComputing the Realizer
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Count of combinatorial objectsCount of combinatorial objects
The 3 paths along TThe 3 paths along Tii

 

(i = 1,2,3) from any interior (i = 1,2,3) from any interior 
vertex v to the vertices vertex v to the vertices root(Troot(Tii

 

) divide G into 3 ) divide G into 3 
regions regions RRii

 

(v(v).).

Counting the triangles in each region for a vertex Counting the triangles in each region for a vertex 
can give us vcan give us v11

 

, v, v22

 

,v,v33

 

, which in turn yields (2n, which in turn yields (2n--5) 5) 
x (2nx (2n--5) grid coordinates.5) grid coordinates.

Counting the vertices in each region is more Counting the vertices in each region is more 
complicated (boundary conditions) and yields (ncomplicated (boundary conditions) and yields (n--

 2) x (n2) x (n--2) grid coordinates.2) grid coordinates.



R1

 

(v)
v (4, 1, 2)

Count of combinatorial objectsCount of combinatorial objects

Coordinates that Count Triangles:Coordinates that Count Triangles:



Count of combinatorial objectsCount of combinatorial objects

Coordinates that Count Triangles:Coordinates that Count Triangles:

6 (4, 1, 2)

3 (0, 0, 7)

5 (1, 2, 4)

4 (2, 4, 1) 2 (0, 7, 0)
1 (7, 0, 0)



Mapping the Coordinates to a GridMapping the Coordinates to a Grid

Mapping v Mapping v --> 1/(2n> 1/(2n--5) (v5) (v11

 

a + va + v22

 

b + vb + v33

 

c)c)
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ConclusionConclusion

This concludes the summary of three main This concludes the summary of three main 
stages of Schnyderstages of Schnyder’’s algorithm.s algorithm.

Triangulation of the input (planar) graph.Triangulation of the input (planar) graph.

Computation of a normal Computation of a normal labelinglabeling and realizer and realizer 
of the triangulated graph.of the triangulated graph.

Count of the triangles (vertices) in the three Count of the triangles (vertices) in the three 
regions of each vertex to obtain grid regions of each vertex to obtain grid 
coordinates.coordinates.



CommentsComments
To run in linear time, SchnyderTo run in linear time, Schnyder’’s algorithm s algorithm 
requires linear time planarity testing, topological requires linear time planarity testing, topological 
embedding, triangulation, and canonical embedding, triangulation, and canonical 
ordering algorithms.ordering algorithms.

These algorithms exist, but are not provided by These algorithms exist, but are not provided by 
Schnyder and make implementing his algorithm Schnyder and make implementing his algorithm 
in linear time much more challenging.in linear time much more challenging.

Aesthetic properties of the grid drawing with Aesthetic properties of the grid drawing with 
SchnyderSchnyder’’s algorithm leave a lot to be desired s algorithm leave a lot to be desired 
(skinny, non(skinny, non--convex faces frequently result)convex faces frequently result)



Interactive DemoInteractive Demo

A visual implementation of SchnyderA visual implementation of Schnyder’’s s 
algorithm called algorithm called JGraphEdJGraphEd

 
is available as is available as 

a Java Applet at:a Java Applet at:
 

http://http://www.jharris.ca/JGraphEdwww.jharris.ca/JGraphEd//

Includes linear time: Planarity Testing, Includes linear time: Planarity Testing, 
Canonical Ordering, Normal Canonical Ordering, Normal LabelingLabeling

 
and and 

nn--2 by n2 by n--2 Straight Line Grid Embedding. 2 Straight Line Grid Embedding. 



Example (12 vertices)Example (12 vertices)



Example (10 x 10 grid embedding)Example (10 x 10 grid embedding)



Example (Triangulation)Example (Triangulation)



Example (Canonical Ordering)Example (Canonical Ordering)



Example (Normal Example (Normal LabelingLabeling))
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