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Robustness, a relative insensitivity to perturbations, is a key
characteristic of living cells. However, the specific structural char-
acteristics that are responsible for robust performance are not
clear, even in genetic circuits of moderate complexity. Formal
sensitivity analysis allows the investigation of robustness and
fragility properties of mathematical models representing regula-
tory networks, but it yields only local properties with respect to a
particular choice of parameter values. Here, we show that by
systematically investigating the parameter space, more global
properties linked to network structure can be derived. Our analysis
focuses on the genetic oscillator responsible for generating circa-
dian rhythms in Drosophila as a prototypic dynamical cellular
system. Analysis of two mathematical models of moderate com-
plexity shows that the tradeoff between robustness and fragility
is largely determined by the regulatory structure. Rank-ordered
sensitivities, for instance, allow the correct identification of protein
phosphorylation as an influential process determining the oscilla-
tor’s period. Furthermore, sensitivity analysis confirms the theo-
retical insight that hierarchical control might be important for
achieving robustness. The complex feedback structures encoun-
tered in vivo, however, do not seem to enhance robustness per se
but confer robust precision and adjustability of the clock while
avoiding catastrophic failure.

Cells must establish robust functions to be able to adapt to
external changes, to tolerate an uncertain internal environ-

ment in terms of stochastic phenomena and variability in the
concentrations of cellular components, and to cope with muta-
tions. This requirement likely accounts for the complexity of
cellular control. Redundant components or pathways and feed-
back control, as well as modular and hierarchical organization of
intracellular networks, are means for achieving robustness, but
they also increase the complexity of a system (1, 2). A high level
of complexity implies a large number of components and
interactions as targets for potentially deleterious attacks, requir-
ing additional mechanisms for stabilization, which leads to
‘‘spiraling complexity’’ (1). As a consequence, investigations into
the causes for the robustness of specific biological systems prove
especially demanding.

Currently, it is largely unclear which structural characteristics
of specific cellular networks are responsible for particular types
of robust performance. Structural determinants of robustness
have been elucidated only for steady-state (3, 4) or relatively
simple dynamic (5–7) descriptions of cellular subsystems. In
principle, formal sensitivity analysis of mathematical models
describing more complex networks could allow for linking
robustness properties to network structure. It is, however, rarely
used for robustness analysis in biological systems. Moreover, this
type of analysis sheds light only on local (i.e., in the neighbor-
hood of a particular choice of parameter values) characteristics
of a system. We propose a systematic analysis of sensitivities for
many plausible sets of parameters to ultimately reveal robustness
properties rooted in the structure of a control circuit. The central
challenge addressed here is to what extent can (computationally)
feasible sensitivity analyses yield results that comply with the
biological knowledge and�or lead to novel hypotheses on the
function of cellular networks of realistic complexity.

As a prototypic example system, we chose the core architec-
ture of the genetic oscillator responsible for generating circadian

rhythms in Drosophila. Circadian clocks provide endogenously
controlled oscillations at the cellular level with a period of �24
h, allowing the organism to adapt to the day–night rhythms
imposed by the environment. They generate complex behavior,
are relatively well understood, and have been shown to be robust
(8–11).

In Drosophila, a negative autoregulatory feedback loop estab-
lished by the period (per) and timeless (tim) genes is at the heart
of the circadian oscillator (Fig. 1). A current view is that, after
their expression, these proteins are phosphorylated at multiple
residues. This leads to a time delay between the rise of mRNAs
and of the PER�TIM heterodimer acting as transcriptional
repressor for both genes. Alternating protein production, gene
repression, and protein degradation may, thus, lead to self-
sustained oscillations. The network is further complicated by an
interconnected positive feedback loop via dclock (dclk) (12) and
by the influence of the kinase doubletime (dbt) on degradation
and transport of the PER�TIM complex. Moreover, the rate of
TIM degradation is (indirectly) controlled by light, which en-
ables synchronization (entrainment) with the environment
(9, 10).

Methods
Mathematical Models. Over the past years, a number of deter-
ministic models for the highly conserved circadian clock in
Neurospora (13–15), in Drosophila (15–19), and in mammals (20,
21) have been proposed. They differ largely in the detail of the
specific oscillator and, consequently, in their complexity. Our
attention in this work is on ordinary differential equation
models; however, there are lower-dimensional models that can
be derived when the feedback delays that arise from, for
example, phosphorylation are replaced by explicit delay terms,
yielding differential-delay models (22, 23). The cited models
track between 2 and 73 components, by using 8–55 kinetic
parameters. Here, we searched for suitable test cases for infer-
ring robustness properties mainly from the knowledge of the
system’s structural characteristics. Our initial approach of sys-
tematically investigating the parameter space, in particular,
placed fundamental limitations on the dimensionality and,
hence, complexity of the models. In this regard, it has been
suggested that the circadian oscillator could be dissected into
simpler units having characteristic functional roles (11, 24). We
therefore focused on the core negative feedback loop established
by per and tim as a starting point for the analysis.

Two deterministic mathematical models of moderate com-
plexity (16, 17) seemed to be most appropriate, particularly
because they are very closely related. Common characteristics
are to be expected and can be used to validate the methods;
systematic differences would point to a discriminative power of
the analysis. The simpler model captures the clock by a single
negative feedback loop via per. It encompasses five state vari-
ables for the concentrations of the components and 18 model
parameters reflecting the kinetic constants of the molecular
interactions (16). The more complex model describes both
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branches of negative feedback, comprising 10 states and 38
parameters (17). Hereafter, they are referred to as the single-
and dual-feedback model, respectively.

Previous studies showed that, in principle, a feedback struc-
ture relying on a single gene (per) should be sufficient for robust
oscillations (16, 25). The function of the additional branch via tim
is not intuitively clear. The PER�TIM complex exerts transcrip-
tional repression, and, hence, the branches are not redundant.
We were therefore additionally interested in whether a second
branch of feedback would enhance system robustness under
conditions of constant darkness and, if so, in what manner.

Parameter Sensitivities. Parameter sensitivity analysis is a method
frequently used in systems theory but rarely applied to dynamical
biological systems (26, 27). Parameter sensitivities yield a quan-
titative measure of the deviations in characteristic system prop-
erties resulting from perturbation of system parameters. A
higher (absolute) sensitivity of a parameter implies a lower
robustness of the corresponding element of a model. It should be
noted that, for the models we considered, single parameters may
characterize more complex layers of regulation. Model param-
eters, for instance, in gene expression do not correspond to
kinetic constants at the level of elementary reactions. In those
cases, sensitivity of the behavior to changes in a coefficient
reflects properties of underlying regulatory control structures.

We employed three types of parameter sensitivities that cover
different aspects of the system: (overall) state sensitivities,
period sensitivities, and amplitude sensitivities. Formally, the
selected circadian clock models are autonomous dynamical
systems described by ordinary differential equations of the form
dx�dt � f(x(t), p, t) with time t � t0, the nS � 1 vector of state
variables x, the nP � 1 vector of model parameters p, and initial
conditions x(t0) � x0. Parameter sensitivities with respect to the
system’s states along a specific trajectory S(t) (the nS � nP matrix
of state sensitivities) are defined by

S� t� �
�x
�p

. [1]

To obtain a global indicator of robustness that captures aspects
of the behavior including shape, phase, period, and amplitude of
oscillations, overall state sensitivities So(t) were determined by
integration over discrete time t0 . . . tnT

and normalization to
relative sensitivity (log-gain sensitivity) as follows

Soj
� t� �

1
nS

p j� �
k�1

nT �
i�1

nS � 1
x i

�x i� tk , t0�

�pj
� 2� 1/2

[2]

to calculate the vector’s element for parameter pj. The overall
state sensitivities are normalized with respect to the number of
states, the parameters, and the states to allow for model com-
parison. Moreover, they apply to all operating regimes such as
steady state, oscillations, birhythmicity, or chaos.

Period and amplitude sensitivities are the quantities of
primary interest in oscillating systems. Period sensitivities S�

capture the change of period length, �, upon changes in
parameters (28):

S� �
��

�p
. [3]

Accordingly, variations in the amplitude Ai of the ith state (the
absolute value of half the difference between minima and
maxima of the oscillations) are described by the amplitude
sensitivities

SAi
�

�A i

�p
. [4]

It is important to note that all parameter sensitivities are only
locally valid with respect to parameter space, that is, in a
neighborhood of a specific parameter set. They provide infor-
mation on the robustness of a particular (parametrization of a)
model.

Results
Global Indicators of Robustness. Our initial observations were that
period sensitivities obtained for two different published param-
eter sets of the single-feedback model (16, 25) showed consid-
erable agreement (28). Hence, network structure, rather than
specific parameter values, could determine system behavior. We
therefore determined parameter sensitivities for both models by
analyzing large sections in parameter space centered on the
reference parameter values given in refs. 16 and 17. In these
regions, the models exhibited stable steady state, birhythmicity,
and chaotic behavior in addition to regular oscillations. We thus
used overall state sensitivities that capture changes in the
behavior of all components described by the models (see Sup-
porting Text, Figs. 6–9, and Tables 1–4, which are published as
supporting information on the PNAS web site, for details).

Within the parameter regions for single parameters, as well as
between model parameters, the overall state sensitivities varied
over several orders of magnitude (data not shown). Being local
measures of parameter influence, the variations in absolute
parameter sensitivities come as no surprise. Because we were
interested in the relative importance of model components for
robustness of the system, we ranked the parameters in order
from greatest to least sensitivity (29). Importantly, these param-
eter ranks point to a certain conservation of robustness prop-
erties, because they show a relatively low variation (Fig. 2). To
facilitate model comparison, we grouped parameters in the
symmetric dual-feedback model such that the parameter num-
bers correspond to the single-feedback model (see Supporting
Text). When one compares the error bars, the invariance is more
pronounced for the dual-feedback structure (Fig. 2B) than for
the simpler network (Fig. 2 A). It also is largely independent of
the operating regime, namely oscillations, chaos, or stable steady
states. Moreover, random sampling of a limited number of
sensitivities yielded results that agreed very well with those
obtained by the much more computationally intensive systematic
approach (see Supporting Text). Rank-ordered sensitivities can,
thus, be interpreted as global indicators of relative robustness
and fragility for a given model structure and also be computed
efficiently.

Fig. 1. Molecular interactions governing circadian rhythms in Drosophila.
Genes (names in lowercase) and protein products (shaded ellipses) are con-
nected by regulatory interactions that are either direct (solid lines) or indirect
(dashed lines). Arrows and bar heads indicate positive and negative regula-
tion, respectively. The box delimits the nucleus. Time delays are thought to
result from protein phosphorylation cascades; cyc was omitted because it
seems to be unregulated (10).
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Influence of Regulatory Processes. Parameters in the mathematical
models are used to describe regulatory processes such as tran-
scriptional control or phosphorylation�dephosphorylation of
proteins. Analysis of parameter sensitivities can, hence, provide
clues on the importance of individual regulatory processes on the
function of the clock. For instance, the single-feedback model
shows high sensitivity toward perturbations affecting protein
phosphorylation (Fig. 2 A), whereas the regulation of per and tim
expression constitutes a fragile part of the dual-feedback model
(Fig. 2B). This indicates that different regulatory mechanisms
are of different importance for the robustness of the two network
structures.

To systematically investigate potential biological implications
of these results, we introduced a functional classification scheme
that groups model parameters according to the biochemical
processes with which they are associated. We distinguish be-
tween (i) transcriptional and translational control, (ii) degrada-
tion of mRNA and protein, (iii) transport reactions, (iv) protein
phosphorylation, and (v) protein dephosphorylation (see Sup-
porting Text). Period and amplitude of the oscillations (in
addition to shape and phase) are two characteristics with phys-
iological significance. Here, we employ rank-ordered period and
amplitude sensitivities, respectively, to characterize the influ-
ence of the regulatory processes.

Plotting these measures of relative sensitivity against each

other enables the assessment of the properties of the oscillations
that are most affected by perturbations in individual parameters
(Fig. 3). Parameters situated below the diagonal primarily impact
the amplitude of oscillations; those above the diagonal are biased
toward changing the period length. Functionally related param-
eters exhibited similar sensitivity properties, but, between
groups, larger variations occurred. For both clock architectures,
protein phosphorylation predominantly influences the period
length. This intuitive finding complies with experimental evi-
dence linking human disorders of the sleep–wake cycle to the
phosphorylation status of PER protein (30, 31). Interestingly,
phosphorylation systematically is more important for the oscil-
lator’s period than dephosphorylation, contrary to the situation
in cellular signaling pathways (32, 33). The relative insensitivity
of the period to changes in phosphatase activities may be one
reason for the fact that specific kinases for PER and TIM were
discovered early, but only recently was a phosphatase for PER
identified (9, 10, 34). Processes of gene regulation, transcription,
and translation turned out to influence predominantly the
amplitude of circadian rhythms. This corresponds to experimen-
tal observations, for instance, focusing on the transcription
factor dclk (35).

The above-mentioned difference in the impact of regulatory
mechanisms in the two models, protein phosphorylation for
single-feedback vs. gene regulation for dual-feedback (Fig. 2),

Fig. 2. Conservation of robustness properties. (A) Mean values and standard errors for rank-ordered sensitivities of the single-feedback model. Parameters were
assigned arbitrary numbers. Sensitivities were determined by �1% variation of parameter values for all two-dimensional sections in parameter space (n � 1.8 �
104 parameter sets). Parameters describing maximal phosphorylation rates are emphasized (filled circles). (B) Rank-ordered parameter sensitivities are as in A
for the dual-feedback model (n � 8.5 � 104). Here, parameters in the symmetric feedback loops were grouped pairwise to facilitate comparison with A; the last
two parameter groups do not occur in the simpler model. Filled circles indicate constants for inhibition of gene expression.

Fig. 3. Influence of biochemical processes on oscillator function. Rank-ordered period and amplitude (based on the concentration of the transcriptional
repressor) sensitivities were determined for the single-feedback model (A) and the dual-feedback model (B) (see Supporting Text for details). Parameters
associated with transcriptional�translational regulation (filled circles), degradation processes (open circles), transport (triangles), phosphorylation (filled
squares), and dephosphorylation (open squares) are distinguished. The diagonal indicates the positions at which both measures of relative sensitivity are
identical.
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reappears when considering period and amplitude sensitivities
(Fig. 3), as well as in overall state sensitivities grouped by the
regulatory processes (see Supporting Text). Although the models
are structurally similar, sensitivity analysis provides a consistent
discriminant for robustness properties. Biologically, these dif-
ferences are difficult to interpret in detail. However, it is
interesting to note that circadian clocks in simpler prokaryotes
seem to be centered on the control of protein phosphorylation
(36). We conclude that the global indicators used lead to
consistent characterizations of robustness properties that can be
interpreted meaningfully in biological terms.

Control Hierarchies. Based on the overall state sensitivities (Fig.
2), the parameters appear to segregate into two broad groups
with high sensitivity (low rank) and with low sensitivity (high
rank). In particular, for both models, a group of highly sensitive
parameters with low ordinal numbers emerges. Closer inspection
of this group revealed that the parameters mirror, for instance,
maximal rates of transcription, translation, and mRNA or pro-
tein degradation (see Supporting Text). These kinetic parameters
can be related to cellular properties that affect many regulatory
processes beyond the clock function.

For example, the properties of the cell’s transcriptional ap-
paratus, and not of a single gene, determine maximal transcrip-
tion rates. Apparently, the general cellular machinery, RNA
polymerase complexes or the proteasome, needs recognition
factors to operate on a specific target. The adapter’s functions,
however, are not confined to only the circadian clock. For
instance, the F box recognition factor Slimb that directs phos-
phorylated PER toward ubiquitin-dependent proteolysis also
controls Wnt signaling in development (37, 38). The more
general components are not explicitly included in the circadian
clock models, but a modified model that incorporates them
shows qualitatively similar sensitivity characteristics (see Sup-
porting Text). This reasoning led us to subdivide the model
parameters into three classes: ‘‘global’’ parameters reflecting
characteristics of well regulated core cellular machineries, ‘‘lo-
cal’’ parameters primarily confined to the circadian oscillator,
and an intermediary category of ‘‘mixed’’ character (see Sup-
porting Text for a detailed discussion of this classification).

Reevaluation of the global indicators of robustness in terms of
the three categories reveals that fragile parts of both clock
architectures tend to be associated with global parameters (Fig.
4). Differences among parameter classes are much clearer for the
dual-feedback model than for the simpler model. Thus, the
additional branch of negative feedback incorporated in the more
complex model contributes to a high degree of separation of
robustness and fragilities. In the extreme case, such a design

combines a strategy of local risk-aversion (39) with a concen-
tration of unavoidable fragilities in few points that when severely
affected lead to breakdown of the entire system.

Impact of Perturbations. The parameter sensitivity analyses thus
far have the disadvantage of yielding only linear approximations
of a system’s reactions to perturbations. Moreover, they do not
allow for a direct comparison of the quantitative impact that
realistic perturbations have on the two circadian clock models.
To circumvent these limitations and to validate the sensitivity
results by using an independent method, we performed direct
perturbation studies. In brief, for both models, we first generated
random parameter sets that led to physiological rhythms of 24 �
1 h period length to diminish the potential influences of partic-
ular choices of parameter values. These reference parameter sets
were then subjected to random perturbations (up to 2-fold
variation of parameter values; see Supporting Text). As an
indicator for the physiological function, we used a normalized
period deviation

�� � ���p*� � ��p�

��p�
� [5]

with �(p*) and �(p) being the period of the perturbed and
unperturbed system, respectively, to characterize the relative
precision of the circadian clock. An oscillator deviation of 10�2

corresponds to a 1% change in period length relative to the 24 �
1 h period for the reference parameter sets.

Systems analysis requires characterization of robustness in
terms of both the affected system properties and the types of
disturbances (40). Here, we consider both scalar perturbations,
involving large changes in individual parameters, and vector
perturbations, involving smaller, simultaneous changes in all
parameters. Whereas the former regime simulates, for instance,
single mutations, the latter one reflects changes on evolutionary
timescales or in ubiquitously influential factors such as temper-
ature. For identical magnitudes of perturbations, vector pertur-
bations may have a larger impact on oscillator function than
disturbances in single parameters (28). Hence, it is crucial to
cover both types of perturbations for systematic model analysis.

We first emulated local disturbances by random variation of
single parameters, which involved identical perturbation
strength for both models. We used the frequency of obtaining a
given or lower clock deviation after perturbation as a measure of
robustness. As shown in Fig. 5A, an additional branch of
feedback proves advantageous for the system’s robustness in
terms of the clock’s precision under these conditions. When we
assumed that all parameters might be mutated simultaneously,
increased model complexity led to higher absolute parameter
variation for the dual-feedback model. As would be expected, the
dual-feedback structure turned out to be more fragile than the
simpler structure (Fig. 5B). The more complex network struc-
ture, thus, does not confer higher robustness per se, but it may
support the physiologically important fine-tuning of the circa-
dian clock (11) in the case of single perturbations.

Sensitivity analysis highlighted global parameters as important
points of fragility for the dual-feedback system. Hence, one
would expect the more complex architecture of the investigated
circadian clocks to lead to improvements in robustness (com-
pared with the single-feedback architecture) from the elaborate
control for hierarchically superimposed regulatory mechanisms.
To test this hypothesis, we repeated the previous perturbation
studies with reduced variability of global parameters. Hierarchi-
cal control increased the robustness of both models similarly for
scalar perturbations (Fig. 5C). The dual-feedback model, how-
ever, approaches the precision of the simpler model for vector
perturbations, toward which it was initially more sensitive (Fig.
5D). Stabilization of local parameters leads to a less pronounced

Fig. 4. ‘‘Global’’ and ‘‘local’’ parameter groups. Average ranks for param-
eters groups in the single-feedback model (open bars) and the dual-feedback
model (filled bars) according to the degree of local character of the parame-
ters. Analysis used the raw data on rank-ordered state sensitivities underlying
Fig. 2.
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effect, despite a higher number of local vs. global model param-
eters. Hierarchical control modes can, thus, specifically enhance
the robust precision of a dual-feedback loop architecture by
avoiding catastrophic failure.

Alternative Circuit Design. One objection that could be raised
against our comparison of robustness properties of the circadian
clock models is that these models differ significantly in structural
complexity, which influences the properties analyzed. Hence, we
studied an alternative circuit design with two truly redundant
branches of negative feedback. In brief, minor modifications of
the dual-feedback model were introduced that allow PER and
TIM individually to act as transcriptional repressors. The core
model structure and the numbers of system states and model
parameters, as well as most of the reference parameter values,
remained unaffected (see Supporting Text).

Perturbation studies of the redundant-feedback model eluci-
dated interesting robustness properties. In terms of preserving
the oscillator’s precision, the new model performs better than
either of the other two models for scalar as well as for vector
perturbations (Fig. 5 A and B). This result further confirms that
system structure is the major determining factor for robustness
properties. It also raises the question as to why a nonredundant
feedback structure might be incorporated into the Drosophila
circadian clock rather than a redundant architecture. Most
obviously, maintenance of the period length under conditions of
constant darkness may not be the function toward which the
clock has been optimized during evolution. Entrainment by light
is another capability of primary physiological importance. It
corresponds to adaptability in cellular signaling, for which
sensitive points processing the inputs have to be provided (41).
We speculate that, in this regard, nonredundant feedback is

advantageous because it will tend to prevent annihilation of
input signals. Future studies should, thus, analyze robustness and
sensitivity in more complex representations of the circadian
clock, for instance, in mammalian systems with redundant
components (9, 10), and include considerations of entrainment
by light.

Discussion
We investigated the applicability of sensitivity methods for the
analysis of mathematical models that describe the behavior of
genetic circuits in terms of relating robustness properties to
structural features of the networks. As test cases, we focused on
the comparative analysis of moderately complex circadian clock
models for Drosophila. Systematic sensitivity analyses showed
that network structure largely determines robustness and fragil-
ity properties of the very similar models. In particular, rank-
ordered sensitivities proved to be consistent global measures for
elucidating common network properties as well as differences
that seem biologically plausible. Compared with previous studies
relying on sensitivities at only one particular location in param-
eter space (15, 21), this approach provides a comprehensive
picture of more general robustness properties. Computation of
the ranges of parameter values in which oscillations occur (17, 20,
21), in contrast, does not elucidate how parameter changes
influence the oscillator’s characteristics in this domain. Addi-
tionally, efficient determination of sensitivity properties via
random sampling allows the extension of this approach to more
complex systems.

More generally, our findings relate to the influential concept
of ‘‘highly optimized tolerance,’’ which states that complexity, in
biological and engineered systems alike, is primarily a conse-
quence of design aimed at achieving robustness of desired

Fig. 5. Impact of perturbations on oscillator function. (A) Effects of scalar perturbations (up to 2-fold variation; see Supporting Text) for the single-feedback
model (white circles), the dual-feedback model (black circles), and the redundant-feedback architecture (gray circles). Frequencies of obtaining a given or higher
precision of the clock (lower deviation of period length) were averaged over all reference parameter sets. (B) Reaction to vector perturbations, where all
parameters were varied simultaneously but independently in the given range. (C and D) Effects of selective perturbations. Frequency distributions for reduced
(1%) variations in global parameters for the single-feedback model (open circles) and the dual-feedback model (filled circles), respectively. Variability of local
parameters in the dual-feedback model was diminished accordingly (triangles).
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functionalities in case of anticipated perturbations. The inherent
drawback of complexity is catastrophic failure when unexpected
errors occur (1, 42). The comparison of single- and dual-
feedback architectures under conditions of continuous darkness
supports this view. We propose that the dual-feedback structure
contributes to robust fine-tuning of the clock in the case of single
perturbations. Additionally, parallels to an engineering design of
deliberate concentration of fragilities (and, conversely, of ‘‘ex-
port’’ of a specialized control circuit’s points of fragility to more
general, well controlled systems) point to connections between
control hierarchies and robustness in biology that warrant fur-
ther research. As the analysis of the redundant-feedback archi-
tecture showed, however, appropriate specifications of ‘‘com-
plexity’’ and ‘‘desired functionalities’’ of cellular networks are
critical.

For the field of circadian rhythms, we consider this study to
provide a starting point for a more formal treatment of the
important issue of how the clock’s individual parts contribute to
the overall functionality (11, 24). The models analyzed capture

the real oscillator’s complexity in a partial way. It will be
intriguing to apply the general approach developed herein, for
instance, to conditions of light entrainment. Control theoretic
approaches are relevant in this context, because the circadian
oscillator displays integral action (i.e., offset free tracking of a
24-h cycle) for appropriate parameter values and properties of
the entraining signal. Based on studies in other biological
systems (6), it is plausible that the circadian oscillator also
contains an internal model leading to a robust regulatory
structure (43). The method proposed herein will be applicable to
complex models describing interlocked feedback loops. As for
artificial genetic circuits (44), however, starting to ask simple
questions on simple systems might be an appropriate strategy for
ultimately uncovering the ‘‘logic’’ of living systems.
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