LIBNMF – A LIBRARY FOR NONNEGATIVE MATRIX FACTORIZATION

Andreas Janecek, Stefan Schulze Grotthoff, Wilfried N. Gansterer

University of Vienna, Austria
Faculty of Computer Science
Research Lab Computational Technologies & Applications
Lenaugasse 2/8
1080-Vienna, Austria
e-mail: <andreas.janecek,wilfried.gansterer}@univie.ac.at

Abstract. We present libNMF – a computationally efficient high performance library for computing nonnegative matrix factorizations (NMF) written in C. Various algorithms and algorithmic variants for computing NMF are supported. libNMF is based on external routines from BLAS (Basic Linear Algebra Subprograms), LAPACK (Linear Algebra Package) and ARPACK, which provide efficient building blocks for performing central vector and matrix operations. Since modern BLAS implementations support multi-threading, libNMF can exploit the potential of multi-core architectures.

In this paper, the basic NMF algorithms contained in libNMF and existing implementations found in the literature are briefly reviewed. Then, libNMF is evaluated in terms of computational efficiency and numerical accuracy and compared with the best existing codes available. libNMF is publicly available at http://rlcta.univie.ac.at/software.

Keywords: Nonnegative matrix factorization, low-rank approximation, evaluation, NMF library, NMF software

1 INTRODUCTION

Low-rank approximations of data (e.g., based on the singular value decomposition) have proven very useful in various data mining applications. Nonnegative matrix factorization (NMF, cf. [22, 27]) leads to special low-rank approximations which
satisfy non-negativity constraints. Non-negativity may improve interpretability and sparseness of the low-rank approximations. In general, the NMF approximates a given nonnegative matrix \(A \in \mathbb{R}^{m \times n} \) by two nonnegative factor matrices \(W \in \mathbb{R}^{m \times k} \) and \(H \in \mathbb{R}^{k \times n} \), where \(k \ll \min\{m, n\} \) is the rank of the approximation \(WH \approx A \). Although the NMF is not unique and in general converges only to local minima, it has been shown that even a relatively low approximation quality can achieve acceptable classification accuracy in data mining applications [21].

The goal of this paper is to present and introduce a software library called libNMF that provides efficient implementations of several NMF routines. It contains various state-of-the-art NMF algorithms for computing NMF found in the literature and methods for initializing the NMF factors \(W \) and \(H \) in order to speed up convergence. libNMF is purely written in C and allows for manually setting every parameter relevant for the calculation of NMF, but also offers default values for non-expert users. The library calls external routines from the software libraries LAPACK [1] and ARPACK [24], and is based on the BLAS (Basic Linear Algebra Subprograms). The routines use double-precision floating-point arithmetic. For some algorithms, single-precision versions are also provided. The documented source code of libNMF, some sets of test data, and a detailed documentation of the library are publicly available at http://rlcta.univie.ac.at/software.

Related work. In the last decade, many publications focused on improving, adapting, extending and re-designing algorithms for computing NMF. Various codes for computing NMF can be found in the literature. Table 1 provides a summary of important sources of publicly available code for computing NMF. The majority of available NMF code is written in Matlab. The function \texttt{nnmf.m} included in the Matlab Statistics Toolbox [33] since Matlab's R2008a release is probably one of the most widely used NMF codes. This function implements two of the original NMF algorithms – multiplicative update (MU) and alternating least squares (ALS) – introduced in [22] and [27], respectively. Cemgil [5] provides a Matlab implementation of variational Bayes for Kullback-Leibler divergence based NMF. Cichocki et al. [6] provide Matlab toolboxes for computing NMF for signal processing and image processing. Their algorithms comprise MU, exponentiated gradient, projected gradient (PG), conjugate gradient, and quasi-Newton. The same authors provide Matlab code in their book [7] about nonnegative matrix/tensor factorization. Another Matlab NMF toolbox has been written by Hansen et al. [14]. This toolbox contains a collection of existing NMF algorithms such as MU, ALS, and PG [25], as well as a self-developed algorithm called ALSOBS. Like with ALS the negative elements are set to zero but all other elements are adjusted using a method called optimal brain surgeon (OBS, [15]).

Hoyer [16] provides a widely used Matlab package for performing a projected gradient algorithm with sparseness constraints. Basic NMF is extended by including an option for controlling the sparseness of the factors \(W \) and \(H \) explicitly. Kim et al. [19] provide Matlab implementations of fast Newton-type NMF methods in two versions: One based on an exact least squares solver for applications that require high accuracy, and an inexact implementation, which uses heuristics to solve the least squares problem in order to reduce computational effort at each iteration. The latter is better suited if computational efficiency is more important than accuracy.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Ref.</th>
<th>Language</th>
<th>URL for software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battenberg et al.</td>
<td>[2]</td>
<td>Python</td>
<td>http://www.eecs.berkeley.edu/~ericb</td>
</tr>
<tr>
<td>Schmitt et al.</td>
<td>[31]</td>
<td>Python</td>
<td>http://www.procoders.net/?p=409</td>
</tr>
<tr>
<td>Dhillon et al.</td>
<td>[8]</td>
<td>C++</td>
<td>http://www.kyb.mpg.de/bs/people/suvrit/work/progs/nmna.html</td>
</tr>
<tr>
<td>Pathak et al.</td>
<td>[28]</td>
<td>C++</td>
<td>http://www.insight-journal.org/browse/publication/152</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>[34]</td>
<td>C++</td>
<td>http://www.biomedcentral.com/1471-2105/7/175</td>
</tr>
</tbody>
</table>

Table 1: Overview of publicly available NMF codes
Another often cited Matlab package was written by Lin [25]. Two projected gradient methods for NMF are proposed: the ALSPG method uses projected gradient methods for solving the update steps of the ALS algorithm, and the second method aims at directly applying projected gradients to NMF. Schmidt et al. [30] provide Matlab codes for sparse NMF using adaptive MU rules and least squares with block principal pivoting, as well as Bayesian NMF.

Aside from Matlab, other NMF codes found in the literature are mainly written in R, Python or C/C++. Gaujoux [10] provides a framework for several NMF algorithms written in R, comprising several already published algorithms as well as an initialization method for \(W \) and \(H \), called NNDSVD [4]. Liu [26] provides a similar framework in R, which is partly based on the codes available in [14]. Python codes for computing NMF are available in [25] and [31]. Moreover, an interesting study investigating the performance of parallel NMF (written in Python) using OpenMP for shared-memory multi-core systems and CUDA for many-core graphics processors has been given in [2].

Dhillon et al. [8] provide a C++ library which contains several NMF algorithms and exploits the performance gains provided by optimized BLAS routines. The implemented algorithms comprise the basic MU algorithm (plus variants), variants of the ALS algorithm, a hybrid form of ALS and MU, as well as two NMF algorithms based on Bregman divergence as described in [8]. Green et al. [13] provide a C++ implementation of several NMF algorithms used for hierarchical clustering, and Pathak et al. [28] provide a generic NMF framework for the ITK toolkit (http://www.itk.org) – an open-source development framework for image segmentation and image registration programs. Wang et al. [34] provide C++ code for computing least squares nonnegative matrix factorization (LS-NMF).

Despite the fact that there is a large number of available NMF codes, so far there is no comprehensive, computationally efficient, well documented, and modularly structured library for computing NMF, with options to load/save all data involved in computing NMF, and with integrated initialization methods. The \libNMF\ library presented in this paper is meant to be a first step in this direction. \libNMF\ is freely available, computationally highly competitive with Matlab and other codes in high level languages, and considerably faster than Matlab clones, or codes written in R or Python. Compared to the C++ library [8], \libNMF\ tends to be faster for comparable algorithms (similar performance for MU, significantly faster for ALS), and important additional algorithms (such as ALSPG and PG) are included. A detailed comparison of \libNMF\ with other codes found in the literature is given in Section 4.2.

Notation: In this article a matrix is represented by an uppercase italic letter (example: \(A, B, \Sigma, \ldots \)). A vector is represented by a lowercase bold letter (example: \(u, x, q_1, \ldots \)). A scalar is represented by a lowercase Greek letter (example: \(\lambda, \mu, \ldots \)). Matrix-matrix multiplications are denoted by “\(\ast \)” and element-wise multiplications by “\(\cdot \)”.
Synopsis: In Section 2 we review some basics of NMF and discuss important NMF algorithms and variants. In Section 3 we introduce our libNMF library and discuss the implemented routines for calculating the NMF algorithms mentioned in Section 2. Experimental evaluation of libNMF is summarized in Section 4, and in Section 5 we conclude our work and summarize ongoing and future research activities in this area.

2 REVIEW OF NMF

The nonnegative matrix factorization (NMF, cf. [27, 22]) consists of reduced rank nonnegative factors $W \in \mathbb{R}^{m \times k}$ and $H \in \mathbb{R}^{k \times n}$ with (problem dependent) $k \ll \min\{m, n\}$ that approximate a given nonnegative data matrix $A \in \mathbb{R}^{m \times n}$: $A \approx WH$. The nonnegativity constraints require that all entries in A, W and H are zero or positive. Although the product WH is only an approximate factorization of A of rank at most k, WH is called a nonnegative matrix factorization of A. The non-linear optimization problem underlying NMF can generally be stated as

$$\min_{W,H} f(W, H) = \frac{1}{2} \|A - WH\|_F^2,$$

where $\|\cdot\|_F$ is the Frobenius norm ($\|A\|_F = (\sum |a_{ij}|^2)^{1/2}$). Although the Frobenius norm is commonly used to measure the error between the original data A and WH, other measures are also possible, for example, an extension of the Kullback-Leibler divergence to positive matrices [8], a convergence criterion based on the Karush-Kuhn-Tucker (KKT) conditions [20], or an angular measure based on the angle θ_i between successive basis vectors $W_{(t+1)}^i$ and $W_{(t)}^i$ [21]. A survey of distance measures for NMF can be found in [38]. Unlike the SVD, the NMF is not unique, and convergence is not guaranteed for all NMF algorithms. If they converge, then usually only to local minima (potentially different ones for different algorithms). Fortunately, the data compression achieved with only local minima has been shown to be of significant quality for many data mining applications [21, 17].

Due to its non-negativity constraints, NMF produces so-called “additive parts-based” (or “sum-of-parts”) representations of the data (in contrast to many other representations such as SVD, PCA or ICA). This is an important benefit of NMF, since it makes the interpretation of the NMF factors much easier than for factors containing positive and negative entries, and enables NMF a non-subtractive combination of parts to form a whole [22]. For example, the features in W (called “basis vectors”) may be topics of clusters in textual data, or parts of faces in image data. Another favorable consequence of the nonnegativity constraints is that both factors W and H are often naturally sparse.
Initialization. Algorithms for computing NMF are generally iterative and require initialization of W and/or H. In the literature, random initialization of W and H is mostly used. In this case it may be necessary to run several instances of the algorithm. Moreover, algorithms based on random initialization are likely to suffer from slow convergence. It has been shown that better initialization strategies can lead to improvements in terms of faster convergence and faster error reduction. Besides classical initialization strategies based on k-means clustering techniques [36, 37], there are initialization techniques based on two successive SVD processes called NNDSVD (Nonnegative Double Singular Value Decomposition, [4]), and techniques based on efficient feature subset selection techniques [17, 18].

2.1 Algorithms for Computing NMF

Most existing NMF algorithms in the literature can be assigned to one of three general classes: multiplicative update (MU), alternating least squares (ALS) and projected gradient (PG) algorithms. A review of these three classes can be found, for example, in [3, 7, 25]. Pseudocode for the general structure of all NMF algorithms is given in Algorithm 1.

\begin{algorithm}
\caption{General structure of NMF algorithms.} \label{alg:general}
\begin{algorithmic}
\State \textbf{given matrix $A \in \mathbb{R}^{m \times n}$ and $k \ll \min\{m, n\}$:}
\State \textbf{for $\text{rep} = 1 \text{ to } \text{maxrepetition}$ do}
\State \hspace{1em} $W = \text{rand}(m, k)$;
\State \hspace{1em} $[H = \text{rand}(k, n);]$
\State \hspace{1em} \textbf{for $t = 1 \text{ to } \text{maxiter}$ do}
\State \hspace{2em} update W and H
\State \hspace{2em} check termination criterion
\State \hspace{1em} end for
\State \hspace{1em} end for
\end{algorithmic}
\end{algorithm}

The variable maxrepetition specifies the number of repetitions of the complete algorithm for the case of randomly initialized W and H. Most algorithms need factors W and H both pre-initialized, but some algorithms (e.g., the ALS algorithm) only need one pre-initialized factor. In each repetition, NMF update steps are processed iteratively until a maximum number of iterations is reached (maxiter). The different update steps for the three basic NMF algorithms are briefly summarized in the following. If the approximation error of the algorithm drops below a pre-defined threshold, or if the change between two successive iterations is very small, the algorithm may terminate before maxiter iterations are processed (for details, see Section 2.2).
2.1.1 Multiplicative Update (MU) Algorithm

The update steps for the original MU algorithm given in [23] are based on the mean squared error objective function. The update in each iteration consists of multiplying the current factors by a measure of the quality of the current approximation. The parameter \(\varepsilon \) in each iteration is often used to avoid division by zero. Following [29], a typical value used in practice is \(\varepsilon = 10^{-9} \).

The divisions in Eqns. (2) and (3) are to be performed element-wise. Comments about the convergence of the MU algorithm can be found, for example, in [3, 11, 25].

2.1.2 Alternating Least Squares (ALS) Algorithms

Alternating least squares algorithms have been used and improved in several studies such as [20, 21, 27]. All ALS algorithms have in common that alternatively one factor (either \(W \) or \(H \)) is fixed, and the other one is minimized under corresponding constraints. In most algorithms, negative elements resulting in the process are set to 0 to ensure non-negativity.

Basic ALS algorithm. The basic ALS algorithm only needs to initialize one factor (\(W \) or \(H \)), the other factor is computed in the first iteration. In an alternating manner, a least squares step is followed by another least squares step. Typical implementations of ALS algorithms (see, for example, the implementation included in the Matlab Statistics Toolbox [33]) proceed as follows: First, solve for \(H^{(t+1)} \):

\[
H^{(t+1)} = H^{(t)} \cdot \frac{(W^T(t) \ast A)}{(W^T(t) \ast W(t)) \ast H^{(t)} + \varepsilon}
\]

(2)

such that \(f(W(t), H^{(t+1)}) \leq f(W(t), H^{(t)}) \), and set all negative elements in \(H^{(t+1)} \) to 0. Then solve for \(W^{(t+1)} \):

\[
W^{(t+1)} = W^{(t)} \cdot \frac{(A \ast H^T(t+1))}{W^T(t) \ast (H^{(t+1)} \ast H^T(t+1)) + \varepsilon}
\]

(3)

The solution of Eqns. (4) and (5) can, for example, be computed using a QR-factorization or an LU-factorization, or based on computing the pseudo inverse of \(H \) and \(W \), respectively.

Normal equations ALS algorithm. This variant of the ALS algorithm has computational advantages over the implementation included in the Matlab
Statistics Toolbox [33] in some cases – especially if \(k \ll \min\{m, n\} \). This variant which we call NEALS (normal equations alternating least squares) changes Eqns. (4) and (5) to:

\[
(W^T(t) * W(t)) * H^{(t+1)} = W^T(t) * A, \tag{6}
\]

\[
(H^T(t+1) * H^{(t+1)}) * W^{(t+1)} = H^T(t+1) * A. \tag{7}
\]

In exact arithmetic, there is no difference between ALS and NEALS. NEALS has some numerical disadvantages compared to ALS because of the squaring of the condition numbers. However, in the given context NEALS can be very attractive for various reasons: (i) Since in many cases we need to compute a low rank NMF with relatively small \(k \), the resulting normal equations are much smaller than the least squares formulations of basic ALS. (ii) The additional expense is the matrix multiplication required for forming the normal equations. However, it is well known that this operation has a favorable computation per communication ratio and thus can be mapped well onto modern multi-core architectures. (iii) The potential loss in numerical accuracy is usually not too severe, because the computation of an NMF is only an approximation anyway.

2.1.3 Projected Gradient Algorithms

This third group of algorithms is based on the idea to take a step in the direction of the negative gradient, the direction of the steepest descent (which can be computed using the partial derivatives for \(H \) and \(W \), respectively). An interesting study investigating gradient descent algorithms was published by Lin [25]. In this paper, the author proposed the use of a projected gradient bound-constrained optimization method for computing the NMF in two situations: by solving the alternating nonnegative least squares problems with projected gradient methods, and by directly minimizing the objective function in Equation (1) using projected gradients.

ALS using Projected Gradient (ALSPG) Algorithm. Here, the projected gradient is used to solve the nonnegative least squares problem discussed in Section 2.1.2. Analogously to ALS, one factor (\(W \) or \(H \)) is updated while \(A \) and the other factor are kept constant. The general update steps look as follows:

\[
H^{(t+1)} = H^{(t)} - \alpha_H \nabla_H f(W^{(t)}, H^{(t)}) \tag{8}
\]

\[
W^{(t+1)} = W^{(t)} - \alpha_W \nabla_W f(W^{(t)}, H^{(t+1)}). \tag{9}
\]

\(\alpha_H \) and \(\alpha_W \) are step-size parameters which have to be chosen carefully in order to get a good approximation (cf. the discussion in [25]). The partial derivatives in Eqns. (8) and (9) are \(\nabla_H f(W^{(t)}, H^{(t)}) = W^T(t)(W^{(t)}H^{(t)} - A) \) and \(\nabla_W f(W^{(t)}, H^{(t+1)}) = (W^{(t)}H^{(t+1)} - A)H^T(t+1), \) respectively. Experiments
in [25] show that this method is computationally very competitive and has better convergence properties than the standard MU approach in many cases.

Direct Projected Gradient (PG) Algorithm. In this algorithm projected gradient methods are used to directly minimize the objective function in Eqn. (1). From the current solution \((W^{(t)}, H^{(t)})\), both matrices are simultaneously updated to \((W^{(t+1)}, H^{(t+1)})\) in the general form:

\[
(W^{(t+1)}, H^{(t+1)}) = (W^{(t)}, H^{(t)}) - \alpha (\nabla_W f(W^{(t)}, H^{(t)}), \nabla_H f(W^{(t)}, H^{(t)})) \tag{10}
\]

2.2 Termination Criteria

Generally, three termination criteria can be applied. The simplest convergence criterion which is used in almost all NMF algorithms is to run for a fixed number of iterations (cf. the parameter \(\maxiter\) in Algorithm 1). Since the most appropriate value for \(\maxiter\) is problem-dependent, this is not a mathematically appealing way to control the number of iterations, but applies when the required approximation accuracy does not drop below a pre-defined threshold. Another problem-dependent convergence criterion is the approximation accuracy of the NMF objective function, which obviously depends on the size and structure of the data but may be useful to compare the approximation accuracy of different algorithms. As already mentioned, different convergence measures can be applied, such as the Frobenius norm (see Eqn. (1)), Kullback-Leibler divergence, KKT, or angular measures. The relative change of factors \(W\) and \(H\) from one iteration to the next iteration is the basis for another convergence criterion. If this change is below a pre-defined threshold \(\delta\), the algorithm is terminated. Depending on the NMF algorithm used, additional termination criteria may apply (e.g., time limit, change of the projection norm for projected gradient methods, etc.).

3 LIBNMF

In this section we present the first public version (version 1.02) of our libNMF library, summarize general characteristics, and discuss its usage. Then we focus on the computational routines implemented in libNMF.

3.1 General Notes

We assume that matrices are stored in two-dimensional arrays. To simplify the usage of Fortran high performance routines (e.g., from LAPACK), arrays are logically accessed in column-major order, which is how Fortran accesses two-dimensional arrays. Unless stated otherwise, all routines use IEEE double-precision floating-point arithmetic.
3.1.1 External Libraries

libNMF utilizes routines from BLAS and LAPACK. The NNDSVD initialization (LIBNMF/nndsvd, cf. Section 3.2.6) requires computation of SVDs, which is done using ARPACK routines [24].

3.1.2 Subroutines

The BLAS, LAPACK, and ARPACK routines utilized by libNMF are listed together with their functionality in Table 2.

<table>
<thead>
<tr>
<th>Double precision BLAS routines</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLAS/daxpy</td>
<td>calculating $y = a \times x + y$</td>
</tr>
<tr>
<td>BLAS/dcopy</td>
<td>copying a vector to another vector</td>
</tr>
<tr>
<td>BLAS/dgemm</td>
<td>matrix-matrix multiplication</td>
</tr>
<tr>
<td>BLAS/dgemv</td>
<td>matrix-vector multiplication</td>
</tr>
<tr>
<td>BLAS/dlamch</td>
<td>determining machine precision epsilon</td>
</tr>
<tr>
<td>BLAS/dscal</td>
<td>scaling a vector by a constant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double precision LAPACK routines</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAPACK/dgeqp3</td>
<td>QR-factorization with column pivoting</td>
</tr>
<tr>
<td>LAPACK/dgesv</td>
<td>solving system of linear equations (LU)</td>
</tr>
<tr>
<td>LAPACK/dlacy</td>
<td>copying a matrix to another matrix</td>
</tr>
<tr>
<td>LAPACK/dlange</td>
<td>calculating the Frobenius norm</td>
</tr>
<tr>
<td>LAPACK/dorgqr</td>
<td>generating economy sized explicit Q in QR factorization</td>
</tr>
<tr>
<td>LAPACK/dtrtrs</td>
<td>solving a triangular system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARPACK routines for LIBNMF/nndsvd</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARPACK/dsaupd</td>
<td>implicitly restarted Arnoldi iteration</td>
</tr>
<tr>
<td>ARPACK/dseupd</td>
<td>post-processing routine for large-scale symmetric eigenvalue calculation</td>
</tr>
</tbody>
</table>

Table 2. BLAS, LAPACK and ARPACK routines used in libNMF.

3.2 Computational Routines

The main routines included in version 1.02 of libNMF are discussed briefly in the following. In the next versions additional routines will be added to libNMF in order to cover a wider spectrum of different NMF algorithms.

3.2.1 LIBNMF/nmf

This routine implements the multiplicative update algorithm as described in Section 2.1.1. Each matrix-matrix multiplication is calculated by calling BLAS/dgemm, and all element-wise operations (\cdot, $+$, and the division) are calculated in a for-loop.
With increasing number of iterations the number of very small positive and zero entries increases in both factor matrices W and H. Performance tests showed that this leads to an increase of runtime per iteration. Therefore small positive entries (in the order of machine precision) are set to zero explicitly in every iteration. Moreover, experiments showed that also an increasing number of zero entries slowed down `LIBNMF/nmf_mu`. This effect could be almost completely compensated by checking if the result will be zero and in that case directly setting it instead of computing it.

The routine `LIBNMF/nmf_mu_singleprec` implements a single precision version of `LIBNMF/nmf_mu`, using the single precision versions of BLAS and LAPACK routines (i.e., BLAS/dgemm instead of BLAS/dgemm.)

3.2.2 LIBNMF/nmf_als

This routine implements an ALS algorithm as described in Section 2.1.2. For calculating $H^{(t+1)}$, first a QR-factorization (LAPACK/dgeqp3) with column pivoting of $W^{(t)}$ is computed, resulting in an explicit representation of R and an implicit representation of Q. Then, the upper triangular sub-block of $R \in \mathbb{R}^{k \times k}$ is copied (LAPACK/dlacpy) and an economy sized explicit $Q \in \mathbb{R}^{m \times k}$ is computed (LAPACK/dorgqr). After calculating $U = Q^T \ast A \in \mathbb{R}^{k \times n}$ (BLAS/dgemm), the equation $R \ast H^{(t+1)} = U$ is solved (LAPACK/dtrtrs). Finally, the rows of $H^{(t+1)}$ are permuted according to the pivoting of the factorization (BLAS/dcopy), and negative entries are set to zero. Based on $H^{(t+1)}$, $W^{(t+1)}$ is calculated in the next step using a QR-factorization with column pivoting of $H^{(t+1)}$.

3.2.3 LIBNMF/nmf_neals

This routine implements the NEALS algorithm from Section 2.1.2. For calculating $H^{(t+1)}$, first two auxiliary matrices are calculated (BLAS/dgemm):

$$T_1 = W^{(t)} \ast W^{(t)} \in \mathbb{R}^{k \times k} \quad \text{and} \quad T_2 = W^{(t)} \ast A \in \mathbb{R}^{k \times n}.$$

Then, an LU-factorization (LAPACK/dgesv) is used to solve the equation $T_1 \ast H^{(t+1)} = T_2$ for $H^{(t+1)}$, and negative elements are set to zero.

For calculating $W^{(t+1)}$, $T_3 = H^{(t+1)} \ast H^{(t+1)} \ast H^{(t+1)} \ast A^\top \in \mathbb{R}^{k \times m}$ are calculated. Then the equation $T_3 \ast W^{(t+1)} = T_4$ is solved for $W^{(t+1)}$ using an LU-factorization, and negative elements are set to zero.

3.2.4 LIBNMF/nmf_alspg

This routine implements the ALSPG algorithm as proposed in [25]. Prior to the iterative update steps initial gradients are calculated (using three BLAS/dgemm calls):

$$\nabla_H = W^{(0)} \ast (H^{0} \ast H^{(0)} - A \ast H^{(0)} \ast H^{(0)})$$

(11)
\[\nabla W = (W^T(0) \ast W^{(0)}) \ast H^{(0)} - W^T \ast A \] \hfill (12)

Moreover, the norm of the initial gradients is calculated (LAPACK/dlange), which is used as an additional stopping condition for projected gradient algorithms (cf. Section 2.2).

Update steps: In every iteration, first the new projection norm is calculated, then \(W^{(t+1)} \) and \(H^{(t+1)} \) are updated alternately. Update steps are computed in a separate routine called \texttt{LIBNMF/pg_subprob} which is also used by the PG algorithm (cf. Section 3.2.5), and briefly discussed in the following.

\texttt{LIBNMF/pg_subprob}. First, two auxiliary matrices \(T_5 = W^T \ast A \) and \(T_6 = W^T \ast W \) are calculated (BLAS/dgemm). Then, two nested loops are run. In the outer loop the new gradient \(\nabla = T_5 \ast H - T_6 \) is calculated (LAPACK/dlacpy, BLAS/dgemm). In the inner loop the step-size parameters \(\alpha \) and \(\beta \) are determined based on the change from the current solution to the newly computed solution (LAPACK/dlacpy, BLAS/daxpy, BLAS/dgemm).

3.2.5 LIBNMF/nmf_pg

This routine implements the projected gradient algorithm as proposed in [25]. In every iteration, gradients \(\nabla H \) and \(\nabla W \) are calculated similar to Eqns. (11) and (12). In the first iteration the initial gradient (using LAPACK/dlange), and \(H \) (using \texttt{LIBNMF/pg_subprob}) are calculated. In all iterations (including the first iteration) the new projection norm is calculated and \(W^{(t+1)} \) and \(H^{(t+1)} \) are updated, again using a step-size parameter which is calculated in an inner loop (LAPACK/dlacpy, BLAS/daxpy).

3.2.6 LIBNMF/nndsvd

As a first initialization strategy (cf. Section 2) for \(W \) and \(H \) we implemented the Nonnegative Double Singular Value Decomposition (NNDSDV) technique as described in [4]. It is based on two SVD processes – one approximating the data matrix \(A \) (rank-\(k \) approximation), the other approximating positive sections of the resulting partial SVD factors (BLAS/dgemm, ARPACK/dsaupd, ARPACK/dseupd).

4 EXPERIMENTAL EVALUATION

We performed detailed experiments to evaluate the performance of the routines in \texttt{libNMF}. First, we briefly discuss the setup (data sets and hardware) used to measure the runtimes. Then, we discuss some performance issues of existing NMF codes found in the literature. Finally, we provide a runtime comparison of \texttt{libNMF} with Matlab implementations of identical algorithms as well as with representative NMF codes found in the literature written in different programming languages.
4.1 Experimental Setup

We used the p53 Mutants dataset from the UCI machine learning repository (publicly available at http://archive.ics.uci.edu/ml). It consists of 16,772 instances described by 5,409 attributes (including a binary class attribute which separates the instances into two groups “actives/inactives”). 180 instances with missing values were deleted and the remaining instances were separated into a training set consisting of the first 75% active instances and the first 75% inactive instances, and a test set consisting of the remaining 25% of each group.

Hardware. All runtimes were measured on a SUN FIRE X4600 M2 with 8 AMD Opteron 8 356 quad-core processors with 3.2 GHz, 2MB L3 cache, and 32GB of main memory (DDR-II 666). CPUs are connected to each other by a HyperTransport link running at 8 GB/second.

Software. As already mentioned in Section 1, most of the available NMF codes are written in Matlab. In the last years, the support of multithreaded computations for several linear algebra operations included in Matlab has been improved, and the newest Matlab version (2010a) shows noteworthy speedup in several cases (e.g., matrix multiply, linear equations, etc. [32]) compared to older Matlab versions. Matlab efficiently utilizes BLAS and thus also achieves a good performance for most NMF algorithms.

However, in many circumstances it may not be efficient or not feasible to use a commercial software product like Matlab. Matlab clones, such as Octave, O-Matrix or Scilab, are significantly cheaper or even free, but usually cannot compete with Matlab in terms of computational efficiency, number of available routines, support, usability, etc. Implementations in O-Matrix (http://www.omatrix.com) showed competitive runtimes compared to current Matlab routines in our experiments (e.g., the matrix multiply routine which is essential for NMF is even slightly faster than with Matlab 2010a), but O-Matrix is only available for Windows. Scilab (http://www.scilab.org) and Octave (http://www.gnu.org/software/octave) are also available for Unix-like systems and can also be built with optimized BLAS routines. However, we experimented with Scilab and Octave on several machines with the outcome that overall both programs could not compete with Matlab in terms of runtime performance. Scilab also showed severe memory allocation problems when large matrices were used. Moreover, for Scilab the Matlab files need to be converted to Scilab files, which works smoothly for simple code-fragments but is often more difficult for complex code.

Other available NMF codes are written in R [10, 26] or Python [31]. Several benchmarks (e.g., http://mlg.eng.cam.ac.uk/dave/rmbenchmark.php) as well as our own evaluation showed that R is generally slower than Matlab.
for matrix operations, which are an essential part of all NMF algorithms. Comparisons of runtimes with Python codes from [31] are given in Section 4.2. The Python modules announced in [2] were not available at the time when this paper was written.

NMF codes written in C/C++ are among the fastest if they are based on BLAS and LAPACK routines. However, not all available C/C++ codes are directly comparable to libNMF. For example, [13] use NMF to compute an ensemble clustering algorithm based on the symmetric NMF algorithm as proposed in [9]. Since this algorithm works only for a symmetric matrix A and creates ensembles on NMF instead of single factorizations the achieved runtimes are not directly comparable to libNMF. The code from [28] was written to be used within an image processing toolkit, which makes it difficult to compare it to libNMF. Moreover, it is not possible to compile the code separately without linking the complete toolkit. The parallel code from [34] is based on LAM/MPI and was intended for use on Beowulf clusters. We compiled the desktop version of the code (which is also available), however, this version does not support the linking of BLAS routines.

Overall, we performed detailed runtime comparisons of libNMF routines with

- Matlab implementations, in particular of the algorithms implemented [33] (MU, ALS), [25] (ALSPG, PG), of the NEALS algorithm as discussed in Section 2.1.2, and of the NNDSVD initialization from Section 3.2.6.
- Python implementations, in particular with the Python modules from [31] compiled with Atlas BLAS version 3.9.23.

4.2 Runtime Comparison

The runtime comparisons are split up into two parts. In the first part, we compare the runtime of libNMF routines to implementations of identical algorithms in Matlab (v2010a). In the second part, we compare libNMF routines to the best algorithms/implementations found in the literature from a user’s point-of-view. In this setting, the “best” routines are those which are able to achieve a given accuracy in the shortest amount of time. In our experiments we experimented with Atlas-Blas version 3.8.3 and development version 3.9.11 [35], and with Goto-Blas version 1.13 [12]. Overall, Goto-Blas seemed to be faster, setting an emphasis on parallel performance. Atlas-Blas 3.8.3 seemed to utilize multiple CPU cores considerably less than Goto-Blas, which improved in the newer version (which features a new multithreading
implementation). However, all libNMF runtimes in this paper are based on Goto-Blas v1.13. Goto-Blas utilizes all 32 cores available on our system.

![Fig. 1. Speedup over Matlab2010a – k = 50](image)

Speedup over Matlab 2010a: Figures 1 and 2 show the speedup of libNMF routines over Matlab routines implementing identical NMF algorithms (i.e., the results after each iteration are numerically identical, there is only a difference in runtime) for varying rank \(k\), using randomly initialized factors \(W\) and \(H\). In order to investigate the runtimes for varying shapes of rectangular data sets, we truncated the larger dimension of our dataset in steps of 2000. As Fig. 1 shows, libNMF routines are always faster than corresponding Matlab routines – overall, a speedup of about 1.4 over Matlab 2010 could be achieved. It is interesting to note the higher speedup of LIBNMF/nmf_alspg with lower rank \(k\) in Fig. 2, which differs from the behavior of the other algorithms. For rank \(k = 10\), LIBNMF/nmf_alspg is on average more than twice as fast as the Matlab implementation.

For computing the NNDSVD initialization (cf. Section 3.2.6, not shown in Figures 1 and 2) libNMF achieved an impressive speedup of 24 (!) over Matlab 2010a. However, this speedup needs to be considered carefully since Matlab’s svds routine only utilized one core in our experiments.

Runtime for fixed accuracy: Figure 3 shows a runtime comparison of several implementations of NMF algorithms from a user’s point-of-view for a 12 000 × 5 408 subset of the training set mentioned in Section 4.1. The
Fig. 2. Speedup over Matlab2010a – $k = 10$

Fig. 3. Runtime per Accuracy (NNDSVD) – $k = 25$
runtime needed to achieve a given approximation accuracy (measured in the Frobenius norm) is plotted along the y-axis (log₁₀ scale). Curves which do not continue indicate that the corresponding algorithm is not able to achieve a specific accuracy. The runtimes of the five \textit{libNMF} algorithms are plotted together with the seven “best” NMF implementations found in the literature. All algorithms from [8, 14, 16, 20, 30, 31] that are not present in Figure 3 needed considerably longer to reach a specific approximation accuracy. The runtimes are shown for pre-initialized factors W and H (using NNDSVD) and $k = 25$.

Figure 3 can be interpreted as follows: a fast and rough approximation (approximation error < 0.0450) can be achieved in about two seconds with the \textit{libNMF} algorithms \texttt{LIBNMF/nmf_mu}, \texttt{LIBNMF/nmf_als}, or \texttt{LIBNMF/nmf_neals}, but only \texttt{LIBNMF/nmf_mu} is able to achieve even an approximation error < 0.0400 in the same time. If a better approximation is desired, other algorithms are faster than \texttt{LIBNMF/nmf_mu}. It turns out that the \texttt{fastNMF} and \texttt{bayesNMF} algorithms from [30], and the \texttt{alsOBJ} algorithm from [14] are the fastest ones for computing a close approximation of A – even faster than the best \textit{libNMF} algorithm \texttt{LIBNMF/nmf_alspg}. Since algorithms implemented in \textit{libNMF} are almost always faster than identical algorithms implemented in Matlab, we are currently working on integrating the algorithms from [14, 30] into \textit{libNMF}.

5 CONCLUSION AND FUTURE WORK

We introduced a new library for computing nonnegative matrix factorization (NMF) called \textit{libNMF}, which implements several computationally efficient NMF routines. \textit{libNMF} is a modularly structured, open source library written in C which calls computationally efficient external libraries, such as BLAS, LAPACK and ARPACK. Runtime comparisons with Matlab version 2010a and other NMF codes found in the literature showed that \textit{libNMF} achieves significant speedups over other implementations of identical algorithms.

Our experiments also revealed that some algorithms which are not yet integrated into \textit{libNMF} achieve high approximation accuracy in shorter time. We are currently working on improvements and extensions of \textit{libNMF}. Besides additional algorithms, such as \texttt{fastNMF} and \texttt{bayesNMF} from [30] or quasi-Newton algorithms, we plan to implement sparseness constraints [16], different error measures (such as the ones mentioned in Section 2), and support for other initialization strategies (e.g., [18]). Moreover, we plan to extend our library with NMF variants optimized for graphic processing units (GPUs).

\textit{libNMF} is available at \url{http://rlcta.univie.ac.at/software}.

\textbf{Acknowledgments.} This work was supported by the CPAMMS-Project (grant# FS397001) in the research focus area “Computational Science” of the University of Vienna, and by the project S10608 in the NFN SISE of the Austrian science fund FWF.
REFERENCES

Andreas Janecek received his PhD degree in Computer Science in 2010, and his MS degree in Business Informatics in 2005, both from the University of Vienna, Austria. His research activities include several machine learning and data mining applications, such as classification problems, feature selection, dimensionality reduction, low-rank approximations, as well as high performance and distributed computing aspects of these techniques. Andreas is currently a post-doctoral researcher at the School of Electronic Engineering and Computer Science, Peking University, China.

Stefan Schulze Grotthoff is currently studying Computer Science in the Bachelor programme at the University of Vienna, Austria. His research activities revolve around nonnegative matrix factorizations and their application for data classification.

Wilfried N. Gansterer is an assistant professor of Computer Science at the University of Vienna, Austria. He received a PhD degree in Scientific Computing from Vienna University of Technology, Austria, in 2000, a Master’s degree in Scientific Computing/Computational Mathematics from Stanford University, USA, in 1996, and a Master’s degree in Mathematics from Vienna University of Technology in 1994. His research interests are in scientific and high performance computing, parallel and distributed computing, data mining and machine learning algorithms, and in related application problems in computational life sciences and internet security.