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Abstract 
CdO nanoparticles have been prepared by the thermal decomposition of a precursor complex. A simple and cost 
effective room temperature synthetic technique allows the preparation of the precursor complex from 
hexamethylenetetramine and cadmium nitrate in ethanol. The precursor, characterized by elemental analysis, 
mass spectrometry, Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis, had the 
composition [{Cd(HMTA)(NO3)2(H2O)2}n]. It was calcined at 500 ºC for 2 h, and the cadmium oxide 
nanoparticles obtained was characterized by X-ray diffraction (XRD), scanning electron microscopy, high 
resolution transmission electron microscopy (HRTEM), Nitrogen adsorption and physisorption, and Selected 
Area Electron Diffraction (SAED). XRD shows that the CdO obtained is pure and crystalline. The particles 
obtained had a cubic morphology and are mesoporous.  
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1. Introduction 
Over the past few decades, nanomaterials, including metal oxide nanoparticles, have received enormous 
scientific attention because of their interesting novel and improved physico-chemical and biological properties as 
a result of size reduction to the nano-regime (Devan, Patil, Lin, & Ma, 2012). Their unique physical properties 
that are size- and shape-dependent, render them applicable in many fields such as optics, magnetism, catalysis, 
electricity, energy production and storage, environmental remediation, antimicrobial agents and drug delivery 
(Mao, Park, Zhang, Zhou, & Wong, 2007; S. Wang, Z. Wang, & Zha, 2009; Jolivet et al., 2010). Among the 
different metal oxide nanoparticles, CdO is an important n-type semiconductor with a cubic structure, which 
belongs to the II–VI group, with a direct band gap of 2.5 eV and an indirect band gap of 1.98 eV (Tadjarodi & 
Imani, 2011b). The difference in band gap is attributed to intrinsic cadmium and oxygen vacancies. Due to its 
ionic nature coupled with its wide band gap, low electrical resistivity and high transmission in the visible region, 
CdO nanoparticles have been found to be a suitable candidate for application in various fields such as optical, 
photovoltaic cells, gas sensors, solar cells and front panel displays (Ye, Zhong, Zheng, R. Li, & Y. Li, 2007; 
Ghoshal et al., 2009; Tadjarodi & Imani, 2011b; Giribabu, Suresh, Manigandan, Stephen, & Narayanan, 2013; 
Kalpanadevi, Sinduja, & Manimekalai, 2013).  

Given that the physico-chemical properties of CdO do not only depend on its chemical composition but also on 
size, shape and surface structure, the preparation of CdO nanoparticles of well-defined morphology and size is of 
interest. Synthesis techniques and conditions can considerably affect the properties of CdO nanoparticles. 
Several synthetic methods (physical, chemical and mechanical), including; hydrothermal method (Ye et al., 2007; 
Yang et al., 2010; Zhang, Wang, Lin, & Huang, 2010), template assisted method (Prakash, Arunkumar, Sathya 
Raj, & Jayaprakash, 2013), solvothermal methods (Ghoshal, Biswas, Nambissan, Majumdar, & De, 2009; 
Saghatforoush, Sanati, Mehdizadeh, & Hasanzadeh, 2012; Kaviyarasu, Manikandan, Paulraj, Mohamed, & 
Kennedy, 2014), mechano-chemical method (Tadjarodi & Imani, 2011a, 2011b), thermal decomposition (Shi, C. 
Wang, H. Wang, & Zhang, 2006; Gujar et al., 2008; Askarinejad & Morsali, 2009; Kumar et al., 2012), 
photosynthetic method (Andeani & Mohsenzadeh, 2013) and sonochemical method (Ramazani & Morsali, 2011; 
Safarifard & Morsali, 2012) have been employed to prepare CdO nanostructures. These different synthetic 
procedures have resulted in CdO nanoparticles of varying morphology such as nanowires (Ghoshal et al., 2009; 
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Yang et al., 2010), nanoplatelets (Giribabu et al., 2013), nanodisks (Shi et al., 2006), nanofibers (Ye et al., 2007), 
and nanorods (Barakat, Al-Deyab, & Kim, 2012; Kaviyarasu et al., 2014). Most of the synthetic techniques 
require expensive equipment, extra purification steps and long reaction times. For practical applications, the 
synthesis should be based on readily available, non-toxic and cheap precursors, as well as simple synthetic 
procedures without the necessity for additional purification steps.  

The synthesis of CdO nanoparticles by thermal decomposition of organo-cadmium compounds or cadmium 
complexes has also been reported (Ramazani & Morsali, 2011; Ranjbar & Morsali, 2011; Safarifard & Morsali, 
2012; Kalpanadevi, Sinduja, & Manimekalai, 2013; Payehghadr & Moasali, 2013). By proper choice of the 
precursor and the calcination conditions, this could be a simple and cost-effective technique for the preparation 
of oxide particles with controlled morphologies. However, the robustness and the reproducibility of the method 
is still a matter of concern. 

Hexamethylenetetramine (HMTA) is a cheap and readily available heterocyclic organic compound with a 
cage-like structure. It is highly soluble in water and polar organic solvents. HMTA is a versatile ligand that can 
serve as a terminal monodentate or as bi-, tri-, and tetradentate bridging ligand (Kirillov, 2011). Apart from 
coordinative bonds, HMTA can also (depending on the synthesis conditions and the solvent used) be involved in 
the formation of hydrogen bonds (Ndifon et al., 2009). The kinetics of the thermal decomposition of some 
HMTA-transition metal complexes, leading to the formation of metal oxides (Mn, Ni, Zn, Cd) or metal 
nanoparticles in a carbon matrix (Ni, Co; Ni-Mo and Co-Mo carbides), have already been reported (Chouzier, 
Afanasiev, Vrinat, Cseri, & Roy-Auberger, 2006; Singh et al., 2007; Afanasiev et al., 2008; Chouzier et al., 2011; 
Kumar et al., 2012).  

In this paper we report the synthesis and characterization (morphology and surface area) of CdO nanoparticles 
obtained by thermal decomposition of a Cd-HMTA precursor. The precursor was synthesized from simple, cheap, 
and relatively safer reagents. The synthetic process for both the precursor and the oxide nanoparticles is 
ecofriendly. 

2. Method 
2.1 Chemicals 

Cd(NO3)2·6H2O, hexamethylenetetramine and ethanol were obtained from Sigma Aldrich. The chemicals were 
of analytical grade and were used without further purification. 

2.2 Synthesis of the Cd-HMTA Precursor 

The precursor was synthesized by modifying a procedure previously reported for a cadmium-HMTA polymeric 
complex (Kumar et al., 2012).  

HMTA (4 mmol, 0.5608 g) was dissolved in 15 mL of ethanol (sonication for 20 min at room temperature). 
Cadmium nitrate (2 mmol) in 10 mL of ethanol was added drop wise under magnetic stirring. The mixture was 
stirred for a further 2 h. The white precipitate formed was filtered, washed several times with ethanol and dried 
in a desiccator over silica gel. 

2.3 Synthesis of CdO Nanoparticle 

A sample of the dry precursor (0.5 g) was ground, placed in a ceramic crucible and calcined at 500 °C 
(CdO-500). The crucible was placed in the furnace, heated to the desired calcination temperature, and calcination 
in air continued for 2 h. The sample was allowed to cool down to room temperature in the furnace. The 
reddish-brown powder obtained could easily be re-dispersed in water and ethanol.   

2.4 Characterization Techniques 

Elemental analysis (C, H, N) of the precursor was carried out on a Flash 2000 Thermo Scientific analyzer. Mass 
spectrometry of the precursor complex was performed on a Micro-Mass LCT Premier mass spectrometer (Waters 
Corporation, USA). FT-IR spectra were recorded from 4000 to 400 cm-1 on a PerkinElmer Spectrum Two 
universal attenuated total reflectance Fourier transform infrared (UATR-FT-IR) spectrometer. Thermogravimetric 
analysis (TGA) was obtained using a Pyris 6 PerkinElmer TGA 4000 thermal analyzer. The TGA analysis was 
conducted between 30 and 900 °C under nitrogen atmosphere at a flow rate of 20 mL/min and a temperature 
ramp of 10 °C/min. The XRD diffractogram of CdO was recorded on a Bruker D8 Advance X-ray diffractometer 
using a Cu Kα radiation source (λ = 0.15406 nm, 40 kV and 40 mA). Scans were taken over the 2θ range from 
10o to 100o in steps of 0.01o at room temperature in open quartz sample holders. The phase was identified with 
the help of the BrukerDIFFRACplus evaluation software in combination with the ICDD powder diffraction data 
base (International Centre for Diffraction Data). SEM images and EDX spectra were obtained on a JEOL 
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JSM-7600F field-emission scanning electron microscope. Transmission electron microscopy (TEM) was 
performed on a JEOL JEM-2100F microscope using a maximum acceleration voltage of 200 kV from the field 
emission gun. The particle size distribution was determined from the TEM image using the ImageJ software. 
N2-physisorption experiment for the determination of the total surface area and the average pore diameter was 
conducted on a Micromeritics ASAP 2020 instrument. Prior to the measurement, the sample was degassed at 200 
˚C for 6 h. 

3. Results and Discussion 
The white and crystalline Cd-HMTA precursor was obtained from Cd(NO3)2·6H2O and HMTA in ethanol at 
ambient conditions in one step. Light-brown CdO nanoparticles were obtained by calcination of the precursor at 
500 ºC.  

The elemental composition of the precursor (Table 1) corresponds closely to the empirical formula CdC6H16N6O8, 
which matches the structural formula Cd(HMTA)(NO3)2(H2O)2.  

 

Table 1. Elemental analysis of the Cd-HMTA precursor compared to the values calculated for the empirical 
formula CdC6H16N6O8 

Complex Colour % Yield  Elemental Analyses: % Found 
(% Calculated) 

% Cd % C % H % N 

Cd(HMTA)(NO3)2(H2O)2 white 94  
(27.24) 

18.04 
(17.46) 

4.07 
(3.91) 

20.02 
(20.37)

 

The high resolution mass spectrum (MS) of the complex shows a molecular ion (M+-H) peak at m/z = 411.9 
which corresponds to the structural formula derived from elemental analysis. Small peaks above m/z = 411.9 
(473, 485, and 489) which correspond to the addition of water or nitrate fragments to the precursor, were also 
observed on the spectrum. 

 

Table 2. Relevant FTIR bands of HMTA and the Cd-HMTA precursor 

HMTA [{Cd(HMTA)(NO3)2(H2O)2}n] Band Assignments 

- 

2955 

3480 

2950 

ν(OH) (coordinated water) 

ν(CH2) stretch 

- 1785 Cd-NO3 

1457 1432 ν(CH2) scissor (HMTA) 

1370 1380 

1298 

1241 

ν(CH2) wag (HMTA) 

ν(CH2) twist (HMTA) 

ν(CH2) rock (HMTA) 

1235 1228 ν(CH2) twist (HMTA) 

1000 998 ν(CN) stretch (HMTA) 

811 

670 

- 

819 

682 

505 

ν(CN) stretch (HMTA) 

N-C-N bend (HMTA) 

Cd-O stretch 

 

Relevant infrared bands of HMTA and the precursor complex are listed in Table 2. The broad band at 3480 cm-1 
in the FTIR spectrum of Cd-HMTA (Figure 1) is attributed to ν(OH) of coordinated water (Hee Ng, Guan Teoh, 
Moris, & Yang Yap, 2004; Ndifon et al., 2009). The band at 1235 cm-1, assigned to the C-N stretching vibration 
of the free HMTA ligand is split into 1241 and 1228 cm-1 in the Cd-HMTA precursor suggesting that HMTA is 
coordinated to the cadmium ion (Ndifon et al., 2009). Strong prominent peaks at 811 and 1000 cm-1 due to the 
C-N stretching vibration of HMTA (Jensen, 2002) are shifted to 819 and 998 cm-1, respectively in the Cd-HMTA 
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precursor complex. The weak band observed at 1785 cm-1 shows the coordination of a monodentate nitrate ion, 
Cd-NO3 (Ndifon et al., 2009). The coordination of water molecules is also indicated by the IR bands in the 
region 400–600 cm-1, assigned to Cd-H2O (Ndifon et al., 2009). The elemental, mass spectrum and FTIR 
analytical results indicate that the complex is probably polymeric with formula [{Cd(HMTA)(NO3)2(H2O)2}n].  

 

  
Figure 1. a) FTIR spectra of HMTA and Cd-HMTA precursor complex; b) Expansion of FTIR spectrum in region 

1200–1300 cm-1 to show split of band 

 

The thermal decomposition curve of the Cd-HMTA precursor is shown in Figure 2 while the relevant 
decomposition data are summarized in Table 3. 

 

Table 3. Thermal decomposition data for Cd-HMTA precursor 

Step Temperature Range (ºC) % Mass Loss 

1 150–190 6.8 

2 200–400 41.4 

3 400–630 18.7 
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Figure 2. Thermogravimetric analysis of Cd-HMTA precursor complex 

 

The precursor Cd(HMTA)(NO3)2(H2O)2 is composed of 27.25% Cd, 8.72% H2O, 33.95% HMTA and 30.07% 
NO3

-. The TG curve (Figure 2) shows that the precursor decomposes in three major steps within the temperature 
range 30–830 °C. However, the derivative TG indicates that the pattern is complex; in the range 200–400 °C 
there are two overlapping decomposition steps and not one (indicated by a strong narrow peak and a weak 
shallow peak). 

The first decomposition step between 150–190 °C which is distinctive (mass loss of 6.8%), can be attributed 
predominantly to the loss of water (calc. 8.7%). This discrepancy suggests that water may not be lost as 
molecular water. The major mass loss of 41.4% takes place in the range 200–400 °C. This could be assigned to 
the decomposition of HMTA and part of the nitrate in the form of various gases (Afanasiev et al., 2008). This 
assignment is supported by the observation that in this range, the derivative TG indicates that there are two 
overlapping decomposition steps and not one. The coordination of HMTA to Cd tends to weaken the Cd-NO3

- 
bond, suggesting that the bonding environment of the nitrates is not identical and thus will decompose at 
different temperatures. We propose that the extensively H-bonded nitrates decompose at slightly lower 
temperatures than the covalently bonded ones. Over the range 400–630 ºC we have another distinctive 
decomposition step with a mass loss of 18.7% which can be assigned to the decomposition of the remaining 
nitrate. A stable mass is obtained at 630 °C with 32.1% residue (calc. 31.3%), which is predominantly CdO due 
to the oxidative nature of the environment (presence of water vapour). 

The calcination temperature was chosen as 500 °C from the derivative TG plot which indicates that 550 °C is the 
optimum temperature. This temperature is lower than that indicated by the TG (630 °C). This is probably due to 
the use of a fast heating rate (10 °C per minute) which permits a base-line drift further away from equilibrium 
conditions because a short time is required for each determination.  

The XRD pattern of CdO obtained is shown in Figure 3. The sharp and well defined peaks indicate the 
crystalline nature of CdO. The strong diffraction peaks in the XRD spectrum of CdO occurring at 2  values of 
33.00, 38.29, 55.27, 65.87, 69.24, and 81.95 are indexed as the (111), (200), (220), (311), (222), and (400) 
crystal planes and correspond to the cubic structure of CdO (JCPDS card No. 65-2908). No other impurity peaks 
were detected indicating that the obtained CdO was phase pure. The average particle size of CdO was calculated 
using Debye-Scherrer equation (Equation 1) (Klug & Alexander, 1974):  

D = kλ/βSinθ                                     (1) 
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Where D is the average particle size, λ is the X-ray wavelength, β is the corrected width of the XRD peak at half 
height,  is the shape factor which is approximated as 0.89, and  is the Bragg diffraction angle. The calculated 
average particle size of cadmium oxide nanoparticles was found to be 30.9 nm.  

 

 
Figure 3. XRD pattern of CdO nanoparticles 

 

The morphology and structural features of CdO nanoparticles were determined by SEM, TEM and SAED. The 
SEM image (Figure 4a) indicates that the Cd-HMTA precursor has a spike-shaped morphology, while the CdO 
nanoparticles have rod-like morphology. The EDX spectrum of the precursor (Figure 4c) indicates that it 
contains only Cd, C, H, N, and O, while that of CdO (Figure 4d) indicates pure CdO is obtained. The Cu 
impurity found in the EDX of CdO is due to the sample holder. 

The HRTEM image (Figure 5a) of CdO shows particles with a cubic shape. The larger particles present are due 
to aggregation or the overlapping of small particles. The average particle diameter of 22.7 nm for CdO was 
determined after a log normal fitting of the data obtained from the TEM image. The resulting histogram and 
average particle size are shown in Figure 6a. The average particle size from HRTEM is consistent with values 
obtained by XRD. The SAED image of CdO (Figure 5b) shows bright spots which indicate that the CdO 
nanoparticles are polycrystalline in nature. 
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Figure 4. SEM images of (a) Cd-HMTA precursor and (b) CdO; EDX images of (c) Cd-HMTA precursor and (d) 

CdO 

 

 
Figure 5. (a) TEM image and (b) SAED image of CdO nanoparticle 
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Figure 6. (a) Particle size distribution and (b) N2 adsorption/desorption isotherm for CdO nanoparticles 

 
For comparison, some CdO particle morphologies and sizes found in the literature that are obtained by the 
thermal decomposition of different precursors are listed in Table 4. The results indicate that cubic nanoparticles 
with sizes in the range 10–70 nm obtained from the Cd-HMTA precursor of this study compares favorably with 
those obtained from other starting materials. It can also be observed from Table 4 that our starting materials are 
the simplest, most readily available, and very cost-effective. 

 

Table 4. Particle sizes (HRTEM) of CdO prepared by the thermal decomposition of various precursors at 
different calcination temperatures  

Precursor Calcination Particle Size 
(HRTEM) (nm)

Morphology Ref. 

Time 
(h) 

Temperature 
(ºC) 

Cd(CH3COO)2·2H2O + 
CO(NH2)2 

2 500 46 Spherical (Tadjarodi et al., 
2013) 

Cd(Cin)2·(N2H4)2 0.45 500 31 Cubic (Kalpanadevi et 
al., 2013) 

Cd(CH3COO)2·2H2O + 
PEG-400 + NaOH 

1 400 15–36 / (Liu et al., 2011) 

[Cd(L)2(H2O)2] 4 650 / Agglomerated 
particles 

(Safarifard & 
Morsali, 2012) 

Cis-[dmphen-CdI2] 2 400 50 Spherical (Aldwayyan et al., 
2013) 

[{Cd(HMTA)(NO3)2(H2O)2}n] 2 500 10–70 Cubic This work 

Cin = Cinnamic acid; PEG = polyethylene glycol; L = 1H-1,2,4-triazole-3-carboxylate; dmphen = 
2,9-dimethyl-1,10-phenanthroline 

 
The surface area and average pore size distribution (PSD) of CdO nanoparticles were determined by N2 

physisorption. The nitrogen adsorption–desorption isotherms (Figure 6b) of CdO can be classified as type IV 
with H3 hysteresis loop (according to the IUPAC classification) (Greg & Sing, 1982). The isotherm type and 
hysteresis loop observed here indicates that CdO nanoparticles possess slit mesoporous structure (Greg & Sing, 
1982). The BET surface area (according to Brunauer, Emmett and Teller) of CdO was found to be 58.4 m2/g and 
the pore volume 0.059 cm3/g. The Barrett-Joyner-Halenda (BJH) desorption pore size distribution of 4.7 nm 
indicates a mesoporous structure for the CdO nanoparticles with high surface contact sites. 
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4. Conclusion 
Pure, crystalline and cubic CdO nanoparticles have been synthesized by the thermal decomposition of a 
Cd-HTMA precursor. The TG curve indicates the precursor decomposes in three steps but the derivative TG 
suggests the second decomposition step is composed of two overlapping steps instead of one. This renders the 
decomposition pattern more complex. The metal oxide nanoparticles were confirmed by XRD and calculated to 
have average size 30.9 nm. The morphology of the oxide nanoparticles (cubic) is different from that of the 
precursor (spikelike) and they have sizes in the range 10–70 nm. The average size of 22.7 nm for the 
nanoparticles is lower or compares favorably with those obtained by the decomposition of more expensive or 
less readily available starting materials. The CdO nanoparticles obtained is mesoporous, has a surface area of 
58.4 m2/g and an average pore diameter of 4.7 nm. The low-temperature synthetic technique is simple and cost 
effective and it can be extended to the synthesis of other metal oxide nanoparticles. 
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