Immigration and Welfare Support in Germany

Alexander Schmidt-Catran

GESIS Lecture Series

Mannheim – June 7th, 2016

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

Introduction

- What will the future (European) welfare states look like?
- Public opinion as one determinant of welfare state generosity (Brooks & Manza 2006a, 2006b; Soroka & Wlezien 2010)

The US-American Case

• Ethnic heterogeneity as a cause of the compartively low level of welfare state generosity in the USA (Gilens 1999; Alesina et.al. 2001; Luttmer 2001; Alesina & Glaeser 2004)

... and in Europe?

- "American Exceptionalism"? ... or...
- Will increasing migration in Europe undermine support for welfare states and ultimately "push the continent toward more American levels of spending"? (Alesina & Glaeser 2004: 175)

Migration and Public Support for the Welfare State

- Empirical evidence rather ambigous
 - No substantial relationship (Mau & Burkhardt 2009)
 - Negative relationship (Eger 2010)
 - Positive relationship (Brady & Finnigan 2013)
- Methodological issues?
 - Cross-sectional (unobserved heterogeneity)
 - Countries as higher-level clusters (small-N problem)

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

- Contact hypothesis (-) (Allport 1954)
- Conflict hypothesis (+) (Forbes 1997)

- Contact hypothesis (-)
- Conflict hypothesis (+) (Schneider 2008; Semyonov et al. 2006)

- Cultural threat (-) (Finseraas 2009; Schmidt & Spies 2014)
- Economic threat (+) (Finseraas 2009; Schmidt & Spies 2014)

Migration and Welfare Support

 Economic conditions as moderators: Tensions on job market lead to more critical attitudes towards immigrants (Mau & Burkhardt 2009; Soroka et.al. 2003; Taylor-Gooby 2005)

Hypotheses

- H1: The higher the number of foreign-born, the lower natives' welfare support (conflict hypothesis)
- H2: The higher the number of foreign-born, the higher natives' welfare support (protection hypothesis)
- H3: The higher the unemployment rate, the stronger is the effect of the number of foreign-born on natives' welfare support
- Furthermore, we expect a non-linear effect of the share of migrants

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

Analysis Strategy

- Use many regional instead of few national context units
 - Theoretically: Perception of migrants should depend on daily experience
 - Methodologically: Less measurement error, no unobserved between country heterogeneity, and more statistical power
- Get longitudinal estimators
 - Address omitted variable bias / unobserved heterogeneity
 - Problem: All available surveys are cross-sectional how to get a longitudinal estimator?

Data

- Individual-level data from the German General Social Survey (Allbus, 1994, 2000, 2006, 2010, cross-sectional)
- Share of foreigners (and unemployment rates) at regional level (RORs, n=96)
- Access to data only at secure work space (GESIS SDC)

Regional Distribution of Migrants in Germany

Proportion of the population with migration-background

Source: Federal Statistical Office (2011)

Variables

- Dependent variable: "Some people say that the level of welfare benefits is too high in Germany and that it should be retrenched; other people say that welfare benefits should be increased. What is your opinion on this?"
 - [1] decrease benefit level
 - [2] keep benefit level
 - [3] increase benefit level
- Independent variables:
 - Share of foreign-born (proxy for migrants, Corr=.92 in 2011)
 - Unemployment rate

Control Variables

- Controls
 - Equivalized household income (square-root-scale)
 - Employment status (working, unemployed, not in lab force)
 - Education (lower secondary, upper secondary, tertiary)
 - Gender
 - Age
 - Married
 - Left-right self-placement
 - Community size (<1,999, 2,000-4,999, ..., > 500,000)
 - East/West
 - Regional GDP/C
 - Time trend (dummy variables)

Population and Data

- Population: Natives = having German citizenship and being born in Germany
- Final data set:
 - 4 waves (1994, 2000, 2006, 2010)
 - 7,816 individuals
 - 94 RORs
- How to model this data?

Excursus: How to Model Pooled Crosssectional Survey Data?

- Schmidt-Catran and Fairbrother (2016):
- Three kinds of random effects
 - RE for geographical clusters (e.g., countries, regions)
 - RE for survey waves/time (e.g., years)
 - RE for combinations of geographical clusters and time-points (countryyears)

Level	Model A	Model B	Model C	Model D	Model E	Model F
Country		\checkmark		\checkmark	\checkmark	\checkmark
Year			\checkmark		\checkmark	\checkmark
Country-Year	\checkmark		\checkmark	\checkmark		\checkmark

Excursus: How to Model Pooled Crosssectional Survey Data?

- Schmidt-Catran and Fairbrother (2016):
- Three kinds of random effects
 - RE for geographical clusters (e.g., countries, regions)
 - RE for survey waves/time (e.g., years)
 - RE for combinations of geographical clusters and time-points (countryyears)

Level	Model A	Model B	Model C	Model D	Model E	Model F
Country		\checkmark		1	\checkmark	1
Year			\checkmark		\checkmark	1
Country-Year	\checkmark		\checkmark	1		1

Fix	Fixed Effects		Ran	dom Ef	fects	RE	Damar
С	C-Y	Y	С	C-Y	Y	Structure	Paper
\checkmark	✓			1		А	Gerlitz <i>et al.</i> 2012
\checkmark	\checkmark			1		А	van der Lippe <i>et al.</i> 2011
\checkmark	\checkmark			1		А	Huijts <i>et al.</i> 2010
\checkmark			\checkmark	-		В	Immerzeel and van Tubergen 2013
\checkmark			\checkmark			В	Dinesen 2013
\checkmark			\checkmark		_	В	Stegmueller <i>et al.</i> 2012
\checkmark	\checkmark		\checkmark			В	Meulemann 2012
\checkmark			\checkmark	-	-	В	Engelhardt 2012
\checkmark			\checkmark		_	В	Kalmijn 2010
	\checkmark		\checkmark			В	Eger 2010
\checkmark			\checkmark			В	Biedinger <i>et al.</i> 2008
	\checkmark		\checkmark			В	Fekjær and Birkelund 2007
	\checkmark		\checkmark			В	Kogan and Kalter 2006
\checkmark	\checkmark	\checkmark	✓			В	Meulemann 2004
	\checkmark	\checkmark		1	\checkmark	С	Schlueter and Davidov 2013
	\checkmark			1	\checkmark	С	Andersen <i>et al.</i> 2006
\checkmark	\checkmark		\checkmark	✓	_	D	Fairbrother 2013
	1	\checkmark	\checkmark		✓	Е	Lubbers and Scheepers 2001

Summary of Excursus

- More than half of the papers we reviewed use RE-structures that do not adequately reflect the clustering in the data
- This leads to downward biased standard errors and thereby increases the risk to make Type I errors (simulation results)
- Recommendation: Use

first is appropriate if variables are measured only at country and country-year level. Using year dummies within the first approach then controls for variation at this level.

• Hierarchical mixed effects model with three levels (Schmidt-Catran & Fairbrother, 2016)

ROR-Year

ROR

Individuals

• Hierarchical mixed effects model with three levels

• Hierarchical mixed effects model with three levels

• Hierarchical mixed effects model with three levels

- Here: three-level ordinal probit mixed effects regression because hybrid approach can be econometrically proven to provide consistent estimates in the probit but not in the logit case (Wooldridge 2010: 615-17, 620)
- Decomposing context-level effects into within- and betweencomponent (Fairbrother 2014):

 $\Pr(\mathbf{Y} \le \mathbf{k} \mid \mathbf{X}, \mathbf{Z}) = \Phi(\beta \mathbf{X}_{jti} + \gamma^{WE}(\mathbf{Z}_{jt} - \overline{\mathbf{Z}}_j) + \gamma^{BE}\overline{\mathbf{Z}}_j + u_{jt} + u_j)$

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

Results

	M0	M1	M2	M3	M4	M5
Year						
1994		Ref.	Ref.	Ref.	Ref.	Ref.
2000		-0.3384 ***	-0.3300 ***	-0.3113 ***	-0.3710 ***	-0.3667 ***
2004		-0.4278 ***	-0.4670 ***	-0.4371 ***	-0.4481 ***	-0.4421 ***
2010		-0.0190	0.1015	0.1091	0.0737	0.0450
Male		-0.1714 ***	-0.1685 ***	-0.1669 ***	-0.1677 ***	-0.1665 ***
Age		-0.0073 ***	-0.0072 ***	-0.0073 ***	-0.0073 ***	-0.0073 ***
Married		0.0023	0.0029	0.0000	0.0015	-0.0018
Education						
Primary		0.0981 **	0.0977 **	0.0981 **	0.0975 **	0.0978 **
Lower Secondary		Ref.	Ref.	Ref.	Ref.	Ref.
Higher Secondary		-0.2039 ***	-0.2001 ***	-0.2015 ***	-0.2004 ***	-0.2016 ***
Employment Status						
Employed		-0.1206 ***	-0.1203 ***	-0.1227 ***	-0.1223 ***	-0.1236 ***
Unemployed		0.2612 ***	0.2571 ***	0.2549 ***	0.2539 ***	0.2529 ***
Not in labor force		Ref.	Ref.	Ref.	Ref.	Ref.
Left-Right		-0.0948 ***	-0.0949 ***	-0.0948 ***	-0.0948 ***	-0.0946 ***
Equiv. HH-Income (in 1,000€)		-0.1102 ***	-0.1106 ***	-0.1089 ***	-0.1103 ***	-0.1087 ***
Community Size	Not shown					
West Germany		-0.5701 ***	-0.4745 ***	-0.5255 ***	-0.4677 ***	-0.5235 ***

Share foreigners (between)			-0.0160	0.0116	-0.0108	0.0475
Share foreigners (within)			-0.1638 ***	-0.5213 ***	-0.0315	-0.0044
Unemployment rate (between)			0.0040	0.0055	0.0070	0.0176
Unemployment rate (within)			0.0466 ***	0.0499 ***	0.0700 ***	0.1104 ***
Share foreigners ² (between)				-0.0016		-0.0026
Share foreigners ² (within)				0.0186 ***		-0.0048
Foreigners*Unemployment rate (betw	veen)				-0.0005	-0.0014
Foreigners*Unemploy.rate (within)					-0.0089 **	-0.0302 **
Foreigners ² *Unempl. rate(between)						0.0000
Foreigners ² *Unempl. rate(within)						0.0016 *
GDP/C (in 1,000€) (between)			0.0037	0.0057	0.0034	0.0063
GDP/C (in 1,000€) (within)			-0.0018	0.0124	-0.0064	0.0053
Cut1	-1.2054 ***	-2.9142 ***	-2.7944 ***	-2.6677 ***	-2.7719 ***	-2.4691 ***
Cut2	0.6711 ***	-0.9592 ***	-0.8402 ***	-0.7145 **	-0.8179 ***	-0.5160
Variance Components						
Var(ROR)	0.0625 ***	0.0055	0.0070	0.0088	0.0082	0.0097
Var(Year)	0.0892 ***	0.0351 ***	0.0222 **	0.0156 *	0.0188 *	0.0115
Statistics						
N (RORs)	94	94	94	94	94	94
N (ROR-years)	267	267	267	267	267	267
N (Individuals)	7816	7816	7816	7816	7816	7816
AIC	13863.118	13246.724	13229.215	13219.422	13224.482	13214.159
BIC	13890.974	13406.894	13431.169	13435.303	13440.364	13457.897
Log Likelihood	-6927.559	-6600.362	-6585.608	-6578.7109	-6581.2412	-6572.0796

Share foreigners (between)			-0.0160	0.0116	-0.0108	0.0475
Share foreigners (within)			-0.1638 ***	-0.5213 ***	-0.0315	-0.0044
Unemployment rate (between)			0.0040	0.0055	0.0070	0.0176
Unemployment rate (within)			0.0466 ***	0.0499 ***	0.0700 ***	0.1104 ***
Share foreigners ² (between)				-0.0016		-0.0026
Share foreigners ² (within)				0.0186 ***		-0.0048
Foreigners*Unemployment rate (betw	veen)				-0.0005	-0.0014
Foreigners*Unemploy.rate (within)					-0.0089 **	-0.0302 **
Foreigners ² *Unempl. rate(between)						0.0000
Foreigners ² *Unempl. rate(within)						0.0016 *
GDP/C (in 1,000€) (between)			0.0037	0.0057	0.0034	0.0063
GDP/C (in 1,000€) (within)			-0.0018	0.0124	-0.0064	0.0053
Cut1	-1.2054 ***	-2.9142 ***	-2.7944 ***	-2.6677 ***	-2.7719 ***	-2.4691 ***
Cut2	0.6711 ***	-0.9592 ***	-0.8402 ***	-0.7145 **	-0.8179 ***	-0.5160
Variance Components						
Var(ROR)	0.0625 ***	0.0055	0.0070	0.0088	0.0082	0.0097
Var(Year)	0.0892 ***	0.0351 ***	0.0222 **	0.0156 *	0.0188 *	0.0115
Statistics						
N (RORs)	94	94	94	94	94	94
N (ROR-years)	267	267	267	267	267	267
N (Individuals)	7816	7816	7816	7816	7816	7816
AIC	13863.118	13246.724	13229.215	13219.422	13224.482	13214.159
BIC	13890.974	13406.894	13431.169	13435.303	13440.364	13457.897
Log Likelihood	-6927.559	-6600.362	-6585.608	-6578.7109	-6581.2412	-6572.0796

Share foreigners (between)			-0.0160	0.0116	-0.0108	0.0475
Share foreigners (within)			-0.1638 ***	-0.5213 ***	-0.0315	-0.0044
Unemployment rate (between)			0.0040	0.0055	0.0070	0.0176
Unemployment rate (within)			0.0466 ***	0.0499 ***	0.0700 ***	0.1104 ***
Share foreigners ² (between)				-0.0016		-0.0026
Share foreigners ² (within)				0.0186 ***		-0.0048
Foreigners*Unemployment rate (betv	veen)				-0.0005	-0.0014
Foreigners*Unemploy.rate (within)					-0.0089 **	-0.0302 **
Foreigners ² *Unempl. rate(between)						0.0000
Foreigners ² *Unempl. rate(within)						0.0016 *
GDP/C (in 1,000€) (between)			0.0037	0.0057	0.0034	0.0063
GDP/C (in 1,000€) (within)			-0.0018	0.0124	-0.0064	0.0053
Cut1	-1.2054 ***	-2.9142 ***	-2.7944 ***	-2.6677 ***	-2.7719 ***	-2.4691 ***
Cut2	0.6711 ***	-0.9592 ***	-0.8402 ***	-0.7145 **	-0.8179 ***	-0.5160
Variance Components						
Var(ROR)	0.0625 ***	0.0055	0.0070	0.0088	0.0082	0.0097
Var(Year)	0.0892 ***	0.0351 ***	0.0222 **	0.0156 *	0.0188 *	0.0115
Statistics						
N (RORs)	94	94	94	94	94	94
N (ROR-years)	267	267	267	267	267	267
N (Individuals)	7816	7816	7816	7816	7816	7816
AIC	13863.118	13246.724	13229.215	13219.422	13224.482	13214.159
BIC	13890.974	13406.894	13431.169	13435.303	13440.364	13457.897
Log Likelihood	-6927.559	-6600.362	-6585.608	-6578.7109	-6581.2412	-6572.0796

Non-linear Effect of Share of Foreigners

		-0.0160	0.0116	-0.0108	0.0475
		-0.1638 ***	-0.5213 ***	-0.0315	-0.0044
		0.0040	0.0055	0.0070	0.0176
		0.0466 ***	0.0499 ***	0.0700 ***	0.1104 ***
			-0.0016		-0.0026
			0.0186 ***		-0.0048
veen)				-0.0005	-0.0014
				-0.0089 **	-0.0302 **
					0.0000
					0.0016 *
		0.0037	0.0057	0.0034	0.0063
		-0.0018	0.0124	-0.0064	0.0053
-1.2054 ***	-2.9142 ***	-2.7944 ***	-2.6677 ***	-2.7719 ***	-2.4691 ***
0.6711 ***	-0.9592 ***	-0.8402 ***	-0.7145 **	-0.8179 ***	-0.5160
0.0625 ***	0.0055	0.0070	0.0088	0.0082	0.0097
0.0892 ***	0.0351 ***	0.0222 **	0.0156 *	0.0188 *	0.0115
94	94	94	94	94	94
267	267	267	267	267	267
7816	7816	7816	7816	7816	7816
13863.118	13246.724	13229.215	13219.422	13224.482	13214.159
13890.974	13406.894	13431.169	13435.303	13440.364	13457.897
-6927.559	-6600.362	-6585.608	-6578.7109	-6581.2412	-6572.0796
	veen) -1.2054 *** 0.6711 *** 0.0625 *** 0.0892 *** 94 267 7816 13863.118 13890.974 -6927.559	veen) -1.2054 *** -2.9142 *** 0.6711 *** -0.9592 *** 0.0625 *** -0.9592 *** 0.0351 *** 0.0351 *** -0.0351 *** 13863.118 13246.724 13890.974 13406.894 -6927.559 -6600.362	-0.0160 -0.1638 *** 0.0040 0.0466 *** 0.0466 *** 0.0037 -0.0018 -2.7944 *** 0.6711 *** -2.9142 *** -0.8402 *** 0.6711 *** -0.9592 *** 0.0351 *** 0.0222 ** 0.0625 *** 0.0351 *** 0.0222 ** 94 94 94 267 267 267 7816 7816 7816 13863.118 13246.724 13229.215 13890.974 13406.894 13431.169 -6927.559 -6600.362 -6585.608	-0.0160 0.0116 -0.1638 *** -0.5213 *** 0.0040 0.0055 0.0466 *** 0.0499 *** -0.0016 0.0186 *** veen) -1.2054 *** -2.9142 *** -0.0018 0.0124 -1.2054 *** -2.9142 *** -2.7944 *** -2.6677 *** 0.6711 *** -2.9592 *** -0.8402 *** -2.6677 *** -0.8402 *** -2.6677 *** -0.8402 *** -0.7145 ** -0.7145 ** -0.0018 0.0124 -2.7944 *** -2.6677 *** -0.8402 *** -2.6677 *** -0.7145 ** -0.9592 *** -0.8402 *** -2.6677 *** -0.7145 ** -0.9592 *** -0.8402 *** -2.6677 *** -0.8402 *** -2.6677 *** -0.7145 ** -0.7145 ** -0.9592 *** -2.6677 267 -0.0018 0.0055 -0.0070 0.0088 0.0222 ** 0.0156 * -0.0156 *	-0.0160 0.0116 -0.0108 -0.1638 *** -0.5213 *** -0.0315 0.0040 0.0055 0.0070 0.0466 *** 0.0499 *** 0.0700 *** -0.0016 0.0186 *** -0.0005 0.0186 *** -0.0005 -0.0005 -0.0016 0.0186 *** -0.0005 0.0186 *** -0.0016 0.0186 *** -0.0018 0.0124 -0.0064 -1.2054 *** -2.9142 *** -2.7944 *** -2.6677 *** -2.7719 *** 0.6711 *** -0.9592 *** -0.8402 *** -0.7145 ** -0.8179 *** 0.0625 *** 0.0055 0.0070 0.0088 0.0082 0.0892 *** 0.0351 *** 0.0222 ** 0.0156 * 0.0188 * 94 94 94 94 94 267 267 267 267 267 7816 7816 7816 7816 7816 13863.118 13246.724 13229.215 13219.422 13224.482 13890.974 13406.894 13431.169 13435.303 13440.364

Interaction Between Share of Foreigners and Unemployment Rate

Share foreigners (between)			-0.0160	0.0116	-0.0108	0.0475
Share foreigners (within)			-0.1638 ***	-0.5213 ***	-0.0315	-0.0044
Unemployment rate (between)			0.0040	0.0055	0.0070	0.0176
Unemployment rate (within)			0.0466 ***	0.0499 ***	0.0700 ***	0.1104 ***
Share foreigners ² (between)				-0.0016		-0.0026
Share foreigners ² (within)				0.0186 ***		-0.0048
Foreigners*Unemployment rate (betw	veen)				-0.0005	-0.0014
Foreigners*Unemploy.rate (within)					-0.0089 **	-0.0302 **
Foreigners ² *Unempl. rate(between)						0.0000
Foreigners ² *Unempl. rate(within)						0.0016 *
GDP/C (in 1,000€) (between)			0.0037	0.0057	0.0034	0.0063
GDP/C (in 1,000€) (within)			-0.0018	0.0124	-0.0064	0.0053
Cut1	-1.2054 ***	-2.9142 ***	-2.7944 ***	-2.6677 ***	-2.7719 ***	-2.4691 ***
Cut2	0.6711 ***	-0.9592 ***	-0.8402 ***	-0.7145 **	-0.8179 ***	-0.5160
Variance Components						
Var(ROR)	0.0625 ***	0.0055	0.0070	0.0088	0.0082	0.0097
Var(Year)	0.0892 ***	0.0351 ***	0.0222 **	0.0156 *	0.0188 *	0.0115
Statistics						
N (RORs)	94	94	94	94	94	94
N (ROR-years)	267	267	267	267	267	267
N (Individuals)	7816	7816	7816	7816	7816	7816
AIC	13863.118	13246.724	13229.215	13219.422	13224.482	13214.159
BIC	13890.974	13406.894	13431.169	13435.303	13440.364	13457.897
Log Likelihood	-6927.559	-6600.362	-6585.608	-6578.7109	-6581.2412	-6572.0796

Interaction Share of Foreigners (nonlinear) and Unemployment Rate

Agenda

- 1. Introduction
- 2. Theory
- 3. Data and Methods
- 4. Results
- 5. Conclusion

Conclusion and Discussion

- Robust evidence for a negative relationship between migration and natives' support for welfare in Germany
 - Effect particularly strong in initial phase of migration
 - Effect more negative if unemployment rate high
- Does this relationship hold in other countries?
 - Germany as a least likely case scenario so maybe yes (?)
 - Currently working on an encompassing data set for Europe
- Net effect dependent on strength of economic and cultural threats?!
- Does this translate to real policies? Welfare chauvinism vs. general welfare preferences and party preferences!?

References

- Alesina, A., E. Glaeser, and B. Sacerdote. 2001. "Why doesn't the United States have a Europeanstyle welfare state?" *Brookings Papers on Economic Activity:187-277.*
- Alesina, Alberto and Edward L. Glaeser. 2004. Fighting poverty in the US and Europe : A world of difference. Oxford: Oxford University Press.
- Allport, Gordon W. 1954. The Nature of Prejudice. Cambridge, MA: Addison-Wesley.
- Brady, David and Ryan Finnigan. 2013. "Does Immigration Undermine Public Support for Social Policy?" *American Sociological Review*.
- Brooks, C. and J. Manza. 2006b. "Social policy responsiveness in developed democracies." *American Sociological Review 71:474-494.*
- Brooks, Clem and Jeff Manza. 2006a. "Why Do Welfare States Persist?" *The Journal of Politics* 68:816-827.
- Eger, M. A. 2010. "Even in Sweden: The Effect of Immigration on Support for Welfare State Spending." *European Sociological Review 26:203-217.*
- Fairbrother, Malcolm. 2014. "Two Multilevel Modeling Techniques for Analyzing Comparative Longitudinal Survey Datasets." *Political Science Research and Methods 2:119-140.*
- Finseraas, H. 2008. "Immigration and Preferences for Redistribution: An Empirical Analysis of European Survey Data." *Comparative European Politics 6:407-431.*

- Forbes, Hugh D. 1997. Ethnic Conflict: Commerce, Culture, and the Contact Hypothesis. New Haven: Yale University Press.
- Gilens, Martin. 1999. Why Americans hate welfare: race, media, and the politics of antipoverty policy. Chicago: University of Chicago Press.
- Mau, S. and C. Burkhardt. 2009. "Migration and welfare state solidarity in Western Europe." *Journal of European Social Policy* 19:213-229.
- Semyonov, M., R. Raijman, and A. Gorodzeisky. 2006. "The rise of anti-foreigner sentiment in European societies, 1988-2000." *American Sociological Review 71:426-449.*
- Schmidt, Alexander W. and Dennis C. Spies. 2014. "Do Parties "Playing the Race Card" Undermine Natives' Support for Redistribution? Evidence From Europe." *Comparative Political Studies* 47:519-549.
- Schmidt-Catran, A.W. and M. Fairbrother. 2016. "The Random Effects in Multilevel Modeling: Getting them Wrong and Getting them Right. *European Sociological Review, 32:23-38.*
- Schmidt-Catran, A.W. and D. Spies. 2016. "Immigration and Welfare Support in Germany." American Sociological Review, 81:242-261.
- Schneider, S.L. 2008. "Anti-immigrant Attitudes in Europe: Outgroup Size and Perceived Ethnic Threat." *European Sociological Review 24:53-67.*
- Spies. D and A.W. Schmidt-Catran. 2016. "Migration, Migrant Integration and Support for Social Spending. The case of Switzerland." *European Journal of Social Policy, 26:32-47.*
- Van Oorschot, Wim. 2006. "Making the Difference in Social Europe: Deservingness Perceptions Among Citizens of European Welfare States." *Journal of European Social Policy 16:23-42.*

Thank you!

Dr. Alexander Schmidt-Catran <u>alexander.schmidt@wiso.uni-koeln.de</u> www.schmidt-catran.de

Appendix

Some More Results

The Informative Case of Switzerland

Published in European Journal of Social Policy (2016, with Dennis Spies)

The Informative Case of Switzerland

Micro Level Model

Political Discourse

Published in Comparative Political Studies (2014, with Dennis Spies)

Playing the Race Card

- Positive effect of economic threat on demand for redistribution (not shown).
- Negative effect of cultural threat and perceived welfare abuse, both effects moderated by the salience of anti-immigrant issues in the political discourse.

