
Newton-Like Methods for Sparse Inverse Covariance
Estimation

Peder A. Olsen
IBM, T. J. Watson Research Center

pederao@us.ibm.com

Figen Oztoprak
Sabanci University

figen@sabanciuniv.edu

Jorge Nocedal
Northwestern University

nocedal@eecs.northwestern.edu

Steven J. Rennie
IBM, T. J. Watson Research Center

sjrennie@us.ibm.com

Abstract

We propose two classes of second-order optimization methods for solving the
sparse inverse covariance estimation problem. The first approach, which we call
the Newton-LASSO method, minimizes a piecewise quadratic model of the objec-
tive function at every iteration to generate a step. We employ the fast iterative
shrinkage thresholding algorithm (FISTA) to solve this subproblem. The second
approach, which we call the Orthant-Based Newton method, is a two-phase algo-
rithm that first identifies an orthant face and then minimizes a smooth quadratic ap-
proximation of the objective function using the conjugate gradient method. These
methods exploit the structure of the Hessian to efficiently compute the search di-
rection and to avoid explicitly storing the Hessian. We also propose a limited
memory BFGS variant of the orthant-based Newton method. Numerical results,
including comparisons with the method implemented in the QUIC software [1],
suggest that all the techniques described in this paper constitute useful tools for
the solution of the sparse inverse covariance estimation problem.

1 Introduction

Covariance selection, first described in [2], has come to refer to the problem of estimating a nor-
mal distribution that has a sparse inverse covariance matrix P, whose non-zero entries correspond
to edges in an associated Gaussian Markov Random Field, [3]. A popular approach to covariance
selection is to maximize an `1 penalized log likelihood objective, [4]. This approach has also been
applied to related problems, such as sparse multivariate regression with covariance estimation, [5],
and covariance selection under a Kronecker product structure, [6]. In this paper, we consider the
same objective function as in these papers, and present several Newton-like algorithms for minimiz-
ing it.

Following [4, 7, 8], we state the problem as
P∗ = arg max

P�0
log det(P)− trace(SP)− λ‖vec(P)‖1, (1)

where λ is a (fixed) regularization parameter,

S = 1
N

∑N
i=1(xi − µ)(xi − µ)T (2)

is the empirical sample covariance, µ is known, the xi ∈ Rn are assumed to be independent,
identically distributed samples, and vec(P) defines a vector in Rn2

obtained by stacking the columns
of P. We recast (1) as the minimization problem

min
P�0

F (P)
def
= L(P) + λ‖vec(P)‖1, (3)

1

where L is the negative log likelihood function
L(P) = −log det(P) + trace(SP). (4)

The convex problem (3) has a unique solution P∗ that satisfies the optimality conditions [7]

S− [P∗]−1 + λZ∗ = 0, (5)
where

Z∗ij =

1 if P ∗ij > 0

−1 if P ∗ij < 0

α ∈ [−1, 1] if P ∗ij = 0.

We note that Z∗ solves the dual problem

Z∗ = arg max‖vec(Z)‖∞≤1

S+λZ�0
U(Z), U(Z) = −log det(S + λZ) + n. (6)

The main contribution of this paper is to propose two classes of second-order methods for solving
problem (3). The first class employs a piecewise quadratic model in the step computation, and can be
seen as a generalization of the sequential quadratic programming method for nonlinear programming
[9]; the second class minimizes a smooth quadratic model of F over a chosen orthant face in Rn2

.
We argue that both types of methods constitute useful tools for solving the sparse inverse covariance
matrix estimation problem.

An overview of recent work on the sparse inverse covariance estimation problem is given in [10, 11].
First-order methods proposed include block-coordinate descent approaches, such as COVSEL, [4, 8]
and GLASSO [12], greedy coordinate descent, known as SINCO [13], projected subgradient methods
PSM [14], first order optimal gradient ascent [15], and the alternating linearization method ALM
[16]. Second-order methods include the inexact interior point method IPM proposed in [17], and the
coordinate relaxation method described in [1] and implemented in the QUIC software. It is reported
in [1] that QUIC is significantly faster than the ALM, GLASSO, PSM, SINCO and IPM methods. We
compare the algorithms presented in this paper to the method implemented in QUIC.

2 Newton Methods

We can define a Newton iteration for problem (1) by constructing a quadratic, or piecewise
quadratic, model of F using first and second derivative information. It is well known [4] that the
derivatives of the log likelihood function (4) are given by

g
def
= L′(P) = vec(S−P−1) and H

def
= L′′(P) = (P−1 ⊗P−1), (7)

where ⊗ denotes the Kronecker product. There are various ways of using these quantities to define
a model of F , and each gives rise to a different Newton-like iteration.

In the Newton-LASSO Method, we approximate the objective function F at the current iterate Pk

by the piecewise quadratic model

qk(P) = L(Pk) + g>k vec(P−Pk) + 1
2vec>(P−Pk)Hkvec(P−Pk) + λ‖vec(P)‖1, (8)

where gk = L′(Pk), and similarly for Hk. The trial step of the algorithm is computed as a mini-
mizer of this model, and a backtracking line search ensures that the new iterate lies in the positive
definite cone and decreases the objective function F . We note that the minimization of qk is often
called the LASSO problem [18] in the case when the unknown is a vector.

It is advantageous to perform the minimization of (8) in a reduced space; see e.g. [11] and the
references therein. Specifically, at the beginning of the k-th iteration we define the set Fk of (free)
variables that are allowed to move, and the active setAk. To do so, we compute the steepest descent
for the function F , which is given by

−(gk + λZk),

where

(Zk)ij =

1 if (Pk)ij > 0
−1 if (Pk)ij < 0
−1 if (Pk)ij = 0 and [gk]ij > λ

1 if (Pk)ij = 0 and [gk]ij < −λ
− 1
λ [gk]ij if (Pk)ij = 0 and | [gk]ij | ≤ λ.

(9)

2

The setsFk,Ak are obtained by considering a small step along this steepest descent direction, as this
guarantees descent in qk(P). For variables satisfying the last condition in (9), a small perturbation
of Pij will not decrease the model qk. This suggests defining the active and free sets of variables at
iteration k as

Ak = {(i, j)|(Pk)ij = 0 and |[gk]ij | ≤ λ}, Fk = {(i, j)|(Pk)ij 6= 0 or |[gk]ij | > λ}. (10)

The algorithm minimizes the model qk over the set of free variables. Let us define pF = vec(P)F ,
to be the free variables, and let pkF = vecF (Pk) denote their value at the current iterate – and
similarly for other quantities. Let us also define HkF to be the matrix obtained by removing from
Hk the columns and rows corresponding to the active variables (with indices in Ak). The reduced
model is given by

qF (P) = L(Pk) + g>kF (pF − pkF) + 1
2 (pF − pkF)>HkF (pF − pkF) + λ‖pF‖1. (11)

The search direction d is defined by

d =

[
dF
dA

]
=

[
p̂F − pkF

0

]
, (12)

where p̂F is the minimizer of (11). The algorithm performs a line search along the direction D =
mat(d), where the operator mat(d) satisfies mat(vec(D)) = D. The line search starts with the
unit steplength and backtracks, if necessary, to obtain a new iterate Pk+1 that satisfies the sufficient
decrease condition and positive definiteness (checked using a Cholesky factorization):

F (Pk+1)− F (Pk) < σ (qF (Pk+1)− qF (Pk)) and Pk+1 � 0, (13)

where σ ∈ (0, 1).

It is suggested in [1] that coordinate descent is the most effective iteration for solving the LASSO
problem (11). We claim, however, that other techniques merit careful investigation. These include
gradient projection [19] and iterative shrinkage thresholding algorithms, such as ISTA [20] and FISTA
[21]. In section 3 we describe a Newton-LASSO method that employs the FISTA iteration.

Convergence properties of the Newton-LASSO method that rely on the exact solution of the LASSO
problem (8) are given in [22]. In practice, it is more efficient to solve problem (8) inexactly, as
discussed in section 6. The convergence properties of inexact Newton-LASSO methods will be the
subject of a future study.

The Orthant-Based Newton method computes steps by solving a smooth quadratic approximation
of F over an appropriate orthant – or more precisely, over an orthant face in Rn2

. The choice
of this orthant face is done, as before, by computing the steepest descent direction of F , and is
characterized by the matrix Zk in (9). Specifically the first four conditions in (9) identify an orthant
in Rn2

where variables are allowed to move, while the last condition in (9) determines the variables
to be held at zero. Therefore, the sets of free and active variables are defined as in (10). If we define
zF = vecF (Z), then the quadratic model of F over the current orthant face is given by

QF (P) = L(Pk) + g>F (pF − pkF) +
1

2
(pF − pkF)>HF (pF − pkF) + λz>FpF . (14)

The minimizer is p∗F = pkF −H−1F (gF + λzF), and the step of the algorithm is given by

d =

[
dF
dA

]
=

[
p∗F − pkF

0

]
. (15)

If pkF+d lies outside the current orthant, we project it onto this orthant and perform a backtracking
line search to obtain the new iterate Pk+1, as discussed in section 4.

The orthant-based Newton method therefore moves from one orthant face to another, taking advan-
tage of the fact that F is smooth in every orthant in Rn2

. In Figure 1 we compare the two methods
discussed so far.

The optimality conditions (5) show that P∗ is diagonal when λ ≥ |Sij | for all i 6= j, and given by
(diag(S) + λI)−1. This suggests that a good choice for the initial value (for any value of λ > 0) is

P0 = (diag(S) + λI)−1. (16)

3

Method NL (Newton-LASSO)
Repeat:

1. Phase I: Determine the sets of fixed and
free indices Ak and Fk, using (10).

2. Phase II: Compute the Newton step D
given by (12), by minimizing the piece-
wise quadratic model (11) for the free
variables Fk.

3. Globalization: Choose Pk+1 by per-
forming an Armijo backtracking line
search starting from Pk + D.

4. k ← k + 1.

Method OBN (Orthant-Based Newton)
Repeat:

1. Phase I: Determine the active orthant
face through the matrix Zk given in (9).

2. Phase II: Compute the Newton direc-
tion D given by (15), by minimizing
the smooth quadratic model (14) for the
free variables Fk.

3. Globalization: Choose Pk+1 in the cur-
rent orthant by a projected backtracking
line search starting from Pk + D.

4. k ← k + 1.

Figure 1: Two classes of Newton methods for the inverse covariance estimation problem (3).

Numerical experiments indicate that this choice is advantageous for all methods considered.

A popular orthant based method for the case when the unknown is a vector is OWL [23]; see also
[11]. Rather than using the Hessian (7), OWL employs a quasi-Newton approximation to minimize
the reduced quadratic, and applies an alignment procedure to ensure descent. However, for reasons
that are difficult to justify the OWL step employs the reduced inverse Hessian (as apposed to the
inverse of the reduced Hessian), and this can give steps of poor quality. We have dispensed with
the alignment as it is not needed in our experiments. The convergence properties of OBM methods
are the subject of a future study (we note in passing that the convergence proof given in [23] is not
correct).

3 A Newton-LASSO Method with FISTA Iteration

Let us consider a particular instance of the Newton-LASSO method that employs the Fast Iterative
Shrinkage Thresholding Algorithm FISTA [21] to solve the reduced subproblem (11). We recall that
for the problem

min
x∈Rn2

f(x) + λ‖x‖1, (17)

where f is a smooth convex quadratic function, the ISTA iteration [20] is given by

xi = Sλ/c

(
x̂i −

1

c
∇f(x̂i)

)
, (18)

where c is a constant such that cI− f ′′(x) � 0, and the FISTA acceleration is given by

x̂i+1 = xi +
ti − 1

ti+1
(xi − xi−1), (19)

where x̂1 = x0, t1 = 1, ti+1 =
(

1 +
√

1 + 4t2i

)
/2. Here Sλ/c denotes the soft thresholding

operator given by

(Sσ(y))i =

{
0 if |yi| ≤ σ,

yi − σsign(yi) otherwise.

We can apply the ISTA iteration (18) to the reduced quadratic in (11) starting from x0 = vecFk
(X0)

(which is not necessarily equal to pk = vecFk
(Pk)). Substituting in the expressions for the first and

second derivative in (7) gives

xi = Sλ/c

(
vecFk

(X̂i)−
1

c

(
gkFk

+ HkFk
vecFk

(X̂i −Pk)
))

= Sλ/c

(
vecFk

(X̂i)−
1

c
vecFk

(S− 2P−1k + P−1k X̂iP
−1
k)

)
,

4

where the constant c should satisfy c > 1/(eigminPk)2. The FISTA acceleration step is given by
(19). Let x̄ denote the free variables part of the (approximate) solution of (11) obtained by the
FISTA iteration. Phase I of the Newton-LASSO-FISTA method selects the free and active sets,Fk,Ak,
as indicated by (10). Phase II, applies the FISTA iteration to the reduced problem (11), and sets

Pk+1 ← mat

(
x̄
0

)
. The computational cost of K iterations of the FISTA algorithm is O(Kn3).

4 An Orthant-Based Newton-CG Method

We now consider an orthant-based Newton method in which a quadratic model of F is minimized
approximately using the conjugate gradient (CG) method. This approach is attractive since, in addi-
tion to the usual advantages of CG (optimal Krylov iteration, flexibility), each CG iteration can be
efficiently computed by exploiting the structure of the Hessian matrix in (7).

Phase I of the orthant-based Newton-CG method computes the matrix Zk given in (9), which is used
to identify an orthant face in Rn2

. Variables satisfying the last condition in (9) are held at zero and
their indices are assigned to the set Ak, while the rest of the variables are assigned to Fk and are
allowed to move according to the signs of Zk: variables with (Zk)ij = 1 must remain non-negative,
and variables with (Zk)ij = −1 must remain non-positive.

Having identified the current orthant face, phase II of the method constructs the quadratic model
QF in the free variables, and computes an approximate solution by means of the conjugate gradient
method, as described in Algorithm 1.

Conjugate Gradient Method for Problem (14)
input : Gradient g, orthant indicator z, current iterate P0, maximum steps K, residual tolerance

εr, and the regularization parameter λ.
output: Approximate Newton direction d = cg(P0,g, z, λ,K)

n = size(P0, 1) , G = mat(g) , Z = mat(z);
A = {(i, j) : [P0]ij = 0 & |Gij | ≤ λ};
B = P−10 , X0 = 0n×n, x0 = vec(X0);

R0 = −(G + λZ), [R0]A ← 0;
k = 0, q0 = r0 = vec(R0); (∴ [r0]F = vF)

while k ≤ min(n2,K) and ‖rk‖ > εr do
Qk = reshape(qk, n, n);
Yk = BQkB, [Yk]A ← 0, yk = vec(Yk);

αk =
r>k rk
q>k yk

;

xk+1 = xk + αkqk;
rk+1 = rk − αkyk;

βk =
r>k+1rk+1

r>k rk
;

qk+1 = rk+1 + βkqk;
k ← k + 1;

end
return d = xk+1

Algorithm 1: CG Method for Minimizing the Reduced Model QF .

The search direction of the method is given by D = mat(d), where d denotes the output of Al-
gorithm 1. If the trial step Pk + D lies in the current orthant, it is the optimal solution of (14).
Otherwise, there is at least one index such that

(i, j) ∈ Ak and [L′(Pk + D)]ij /∈ [−λ, λ], or (i, j) ∈ Fk and (Pk + D)ijZij < 0.

In this case, we perform a projected line search to find a point in the current orthant that yields a
decrease in F . Let Π(·) denote the orthogonal projection onto the orthant face defined by Zk, i.e.,

Π(Pij) =

{
Pij if sign(Pij) = sign(Zk)ij
0 otherwise.

(20)

5

The line search computes a steplength αk to be the largest member of the sequence
{1, 1/2, . . . , 1/2i, . . .} such that

F (Π(Pk + αkD)) ≤ F (Pk) + σ∇̃F (Pk)T (Π(Pk + αkD)−Pk) , (21)

where σ ∈ (0, 1) is a given constant and ∇̃F denotes the minimum norm subgradient of F . The
new iterate is defined as Pk+1 = Π(Pk + αkD).

The conjugate gradient method requires computing matrix-vector products involving the reduced
Hessian, HkF . For our problem, we have

HkF (pF − pkF) =
[
Hk

(
pF−pkF

0

)]
F

=
[
P−1k mat

(
pF−pkF

0

)
P−1k

]
F . (22)

The second line follows from the identity (A⊗B)vec(C) = vec(BCA>). The cost of performing
K steps of the CG algorithm is O(Kn3) operations, and K = n2 steps is needed to guarantee an
exact solution. Our practical implementation computes a small number of CG steps relative to n,
K = O(1), and as a result the search direction is not an accurate approximation of the true Newton
step. However, such inexact Newton steps achieve a good balance between the computational cost
and the quality of the direction.

5 Quasi-Newton Methods

The methods considered so far employ the exact Hessian of the likelihood function L, but one can
also approximate it using (limited memory) quasi-Newton updating. At first glance it may not seem
promising to approximate a complicated Hessian like (7) in this manner, but we will see that quasi-
Newton updating is indeed effective, provided that we store matrices using the compact limited
memory representations [9].

Let us consider an orthant-based method that minimizes the quadratic model (14), where HF is
replaced by a limited memory BFGS matrix, which we denote by BF . This matrix is not formed
explicitly, but is defined in terms of the difference pairs

yk = gk+1 − gk, sk = vec(Pk+1 −Pk). (23)

It is shown in [24, eq(5.11)] that the minimizer of the model QF is given by

p∗F = pF + B−1F (λzF − gF)

= 1
θ (λzF − gF) + 1

θ2 RT
FW(I− 1

θMWTRFRT
FW)

−1
MWTRF (λzF − gF). (24)

Here RF is a matrix consisting of the set of unit vectors that span the subspace of free variables, θ
is a scalar, W is an n2 × 2t matrix containing the t most recent correction pairs (23), and M is a
2t × 2t matrix formed by inner products between the correction pairs. The total cost of computing
the minimizer p∗F is 2t2|F|+4t|F| operations, where |F| is the cardinality of F . Since the memory
parameter t in the quasi-Newton updating scheme is chosen to be a small number, say between 5
and 20, the cost of computing the subspace minimizer (24) is quite affordable. A similar approach
was taken in [25] for the related constrained inverse covariance sparsity problem.

We have noted above that OWL, which is an orthant based quasi-Newton method does not correctly
approximate the minimizer (24). We note also that quasi-Newton updating can be employed in
Newton-LASSO methods, but we do not discuss this approach here for the sake of brevity.

6 Numerical Experiments

We generated test problems by first creating a random sparse inverse covariance matrix1, Σ−1, and
then sampling data to compute a corresponding non-sparse empirical covariance matrix S. The di-
mensions, sparsity, and conditioning of the test problems are given along with the results in Table 2.
For each data set, we solved problem (3) with λ values in the range [0.01, 0.5]. The number of
samples used to compute the sample covariance matrix was 10n.

1http://www.cmap.polytechnique.fr/˜aspremon/CovSelCode.html, [7]

6

The algorithms we tested are listed in Table 1. With the exception of C:QUIC, all of these algorithms
were implemented in MATLAB. Here NL and OBN are abbreviations for the methods in Figure 1.
NL-Coord is a MATLAB implementation of the QUIC algorithm that follows the C-version [1]

Algorithm Description
NL-FISTA Newton-LASSO-FISTA method
NL-Coord Newton-LASSO method using coordinate descent
OBN-CG-K Orthant-based Newton-CG method with a limit of K CG iterations
OBN-CG-D OBN-CG-K with K=5 initially and increased by 1 every 3 iterations.
OBN-LBFGS Orthant-based quasi-Newton method (see section 5)
ALM∗ Alternating linearization method [26].
C:QUIC The C implementation of QUIC given in [1].

Table 1: Algorithms tested. ∗For ALM, the termination criteria was changed to the `∞ norm and the value
of ABSTOL was set to 10−6 to match the stopping criteria of the other algorithms.

faithfully. We have also used the original C-implementation of QUIC and refer to it as C:QUIC. For
the Alternating Linearization Method (ALM) we utilized the MATLAB software available at [26],
which implements the first-order method described in [16]. The NL-FISTA algorithm terminated
the FISTA iteration when the minimum norm subgradient of the LASSO subproblem qF became
less than 1/10 of the minimum norm subgradient of F at the previous step.

Let us compare the computational cost of the inner iteration techniques used in the Newton-like
methods discussed in this paper. (i) Applying K steps of the FISTA iteration requires O(Kn3)
operations. (ii) Coordinate descent, as implemented in [1], requires O(Kn|F|) operations for K
coordinate descent sweeps through the set of free variables; (iii) ApplyingKCG iterations of the CG
methods costs O(KCGn

3) operations.

The algorithms were terminated when either 10n iterations were executed or the minimum norm
subgradient of F was sufficiently small, i.e. when ‖∇̃F (P)‖∞ ≤ 10−6. The time limit of each run
was set to 5000 seconds.

The results presented in Table 2 show that the ALM method was never the fastest algorithm, but
nonetheless outperformed some second-order methods when the solution was less sparse. The num-
bers in bold indicate the fastest MATLAB implementation for each problem. As for the other meth-
ods, no algorithm appears to be consistently superior to the others, and the best choice may depend
on problem characteristics. The Newton-LASSO method with coordinate descent (NL-Coord) is
the most efficient when the sparsity level is below 1%, but the methods introduced in this paper,
NL-FISTA, OBN-CG and OBN-LBFGS, seem more robust and efficient for problems that are less
sparse. Based on these results, OBN-LBFGS appears to be the best choice as a universal solver for
the covariance selection problem. The C implementation of the QUIC algorithm is roughly five times
faster than its Matlab counterpart (OBN-Coord). C:QUIC was best in the two sparsest conditions,
but not in the two densest conditions. We expect that optimized C implementations of the presented
algorithms will also be significantly faster. Note also that the crude strategy for dynamically in-
creasing the number of CG-steps in OBN-CG-D was effective, and we expect it could be further
improved. Our focus in this paper has been on exploring optimization methods and ideas rather
than implementation efficiency. However, we believe the observed trends will hold even for highly
optimized versions of all tested algorithms.

7

λ 0.5 0.1 0.05 0.01
problem algorithm iter time iter time iter time iter time

card(P∗) 0.74% 7.27% 11.83% 32.48%
cond(P∗) 8.24 27.38 51.01 118.56
NL-FISTA 8 5.71 10 22.01 11 37.04 12 106.27

n = 500 NL-Coord 21 3.86 49 100.63 66 279.69 103 1885.89
Card(Σ−1) OBN-CG-5 15 4.07 97 26.24 257 70.91 1221 373.63
= 2.4% OBN-CG-D 12 3.88 34 15.41 65 43.29 189 275.29

OBN-LBFGS 47 5.37 178 21.92 293 38.23 519 84.13
ALM 445 162.96 387 152.76 284 115.11 574 219.80
C:QUIC 16 0.74 41 15.62 58 35.64 100 206.42
card(P∗) 0.21% 14.86% 25.66% 47.33%
cond(P∗) 3.39 16.11 32.27 99.49
NL-FISTA 4 1.25 19 13.12 15 34.53 13 100.90

n = 500 NL-Coord 4 0.42 14 19.69 21 71.51 55 791.84
Card(Σ−1) OBN-CG-5 3 0.83 27 7.36 101 28.40 795 240.90
= 20.1% OBN-CG-D 3 0.84 15 5.22 31 14.14 176 243.55

OBN-LBFGS 9 1.00 82 11.42 155 23.04 455 78.33
ALM 93 35.75 78 32.98 149 61.35 720 292.43
C:QUIC 6 0.19 13 3.79 21 11.91 56 103.58
card(P∗) 0.18% 6.65% 13.19% 25.03%
cond(P∗) 6.22 18.23 39.59 132.13
NL-FISTA 7 28.20 9 106.79 12 203.07 12 801.79

n = 1000 NL-Coord 9 5.23 24 225.59 36 951.23 - >5000
Card(Σ−1) OBN-CG-5 9 15.34 51 87.73 108 198.17 1103 2026.26
= 3.5% OBN-CG-D 8 15.47 21 51.99 39 132.38 171 1584.14

OBN-LBFGS 34 18.27 111 80.02 178 111.49 548 384.30
ALM 247 617.63 252 639.49 186 462.34 734 1826.29
C:QUIC 10 2.38 22 46.14 34 186.87 72 1445.17
card(P∗) 0.10% 8.18% 18.38% 36.34%
cond(P∗) 4.20 11.75 26.75 106.34
NL-FISTA 4 9.03 7 72.21 10 156.46 22 554.08

n = 1000 NL-Coord 4 2.23 12 79.71 19 408.62 49 4837.46
Card(Σ−1) OBN-CG-5 3 4.70 20 35.85 47 83.42 681 1778.88

= 11% OBN-CG-D 3 4.61 12 26.87 27 78.98 148 2055.44
OBN-LBFGS 8 4.29 67 40.31 124 82.51 397 297.90
ALM 113 283.99 99 255.79 106 267.02 577 1448.83
C:QUIC 6 1.18 11 17.42 19 90.62 52 1100.72
card(P∗) 0.13% 1.75% 4.33% 14.68%
cond(P∗) 7.41 23.71 46.54 134.54
NL-FISTA 8 264.94 10 1039.08 10 1490.37 - >5000

n = 2000 NL-Coord 14 54.33 34 1178.07 - >5000 - >5000
Card(Σ−1) OBN-CG-5 13 187.41 78 896.24 203 2394.95 - >5000

= 1% OBN-CG-D 9 127.11 27 532.15 43 1038.26 - >5000
OBN-LBFGS 41 115.13 155 497.31 254 785.36 610 2163.12
ALM - >5000 - >5000 - >5000 - >5000
C:QUIC 11 18.07 17 183.53 40 818.54 - >5000
card(P∗) 0.05% 1.49% 10.51% 31.68%
cond(P∗) 2.32 4.72 17.02 79.61
NL-FISTA P∗ = P0 7 153.18 9 694.93 12 2852.86

n = 2000 NL-Coord P∗ = P0 7 71.55 13 1152.86 - >5000
Card(Σ−1) OBN-CG-5 P∗ = P0 6 71.54 21 250.11 397 4766.69
= 18.7% OBN-CG-D P∗ = P0 6 75.82 13 188.93 110 5007.83

OBN-LBFGS P∗ = P0 26 78.34 71 232.23 318 1125.67
ALM 52 874.22 76 1262.83 106 1800.67 - >5000
C:QUIC 8 10.35 8 24.65 13 256.90 33 3899.68

Table 2: Results for 5 Newton-like methods and the QUIC, ALM method.

8

References
[1] C. J. Hsieh, M. A. Sustik, P. Ravikumar, and I. S. Dhillon. Sparse inverse covariance matrix estimation

using quadratic approximation. Advances in Neural Information Processing Systems (NIPS), 24, 2011.

[2] A. P. Dempster. Covariance selection. Biometrics, 28:157–75, 1972.

[3] J. D. Picka. Gaussian Markov random fields: theory and applications. Technometrics, 48(1):146–147,
2006.

[4] O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization techniques for fitting
sparse Gaussian graphical models. In ICML, pages 89–96. ACM, 2006.

[5] A.J. Rothman, E. Levina, and J. Zhu. Sparse multivariate regression with covariance estimation. Journal
of Computational and Graphical Statistics, 19(4):947–962, 2010.

[6] T. Tsiligkaridis and A. O. Hero III. Sparse covariance estimation under Kronecker product structure. In
ICASSP 2006 Proceedings, pages 3633–3636, Kyoto, Japan, 2012.

[7] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood
estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9:485–
516, 2008.

[8] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.

[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. 1999.

[10] I. Rish and G. Grabarnik. ELEN E6898 Sparse Signal Modeling (Spring 2011): Lecture 7, Beyond
LASSO: Other Losses (Likelihoods). https://sites.google.com/site/eecs6898sparse2011/, 2011.

[11] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2011.

[12] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical LASSO.
Biostatistics, 9(3):432, 2008.

[13] K. Scheinberg and I. Rish. SINCO-a greedy coordinate ascent method for sparse inverse covariance
selection problem. Technical report, IBM RC24837, 2009.

[14] J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaussians. In Proc.
of the Conf. on Uncertainty in AI. Citeseer, 2008.

[15] Z. Lu. Smooth optimization approach for sparse covariance selection. Arxiv preprint arXiv:0904.0687,
2009.

[16] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating linearization
methods. Arxiv preprint arXiv:1011.0097, 2010.

[17] L. Li and K. C. Toh. An inexact interior point method for L1-regularized sparse covariance selection.
Mathematical Programming Computation, 2(3):291–315, 2010.

[18] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society
B, 58(1):267–288, 1996.

[19] B. T. Polyak. The conjugate gradient method in extremal problems. U.S.S.R. Computational Mathematics
and Mathematical Physics, 9:94–112, 1969.

[20] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413–1457, 2004.

[21] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[22] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization.
Mathematical Programming, 117(1):387–423, 2009.

[23] G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In ICML, pages 33–40.
ACM, 2007.

[24] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[25] J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation of gaussian graphical
models: numerical implementation and topology selection. UCLA Preprint, 2005.

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Matlab scripts for alternating direction method
of multipliers. Technical report, http://www.stanford.edu/ boyd/papers/admm/, 2012.

9

