Automatic assessment of pronunciation and its dependent factors by exploring their interdependencies using DNN and LSTM

Aparna Srinivasan, Chiranjeevi Yarra, Prasanta Kumar Ghosh

SPIRE LAB Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India

イロト イヨト イヨト イヨト

Overview

1 Introduction

- 2 Database
- 3 Proposed feature computation
- 4 Joint modelling
- 5 Experimental setup
- 6 Results
- 7 Conclusion

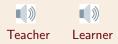
Э

イロン 不同 とくき とくきとう

Introduction

Overall quality of an utterance depends on quality of following factors¹:

- 1 Intelligibility
- 2 Phoneme quality
- 3 Phoneme mispronunciation
- 4 Syllable stress quality
- 5 Intonation quality
- 6 Correctness of pause location
- 7 Mother tongue influence (MTI).
- Exemplary sentence: "Please **begin** rubbing the **blue spot**"



 $^{^{1}}$ Ramanarayanan et al., "Human and automated scoring of fluency, pronunciation and intonation during human-machine spoken dialog interactions", 2017 $< \square \rightarrow < \square \rightarrow < \square \rightarrow < \blacksquare \rightarrow = = > = <$

Introduction

- Based on these factors, features have been proposed for the assessment.
- However, for an utterance, those have been obtained heuristically by applying statistics on the sub-segment level features.
- Typically, utterance level averaging have been considered.
- Classification based approaches have been used to assess the overall quality and quality of the factors independently.

Contributions

- **1** Feature computation to overcome the averaging based demerits.
- Joint modelling to explore interdependencies among overall quality and quality of the factors.

3

イロト 不良 とくほと イヨト

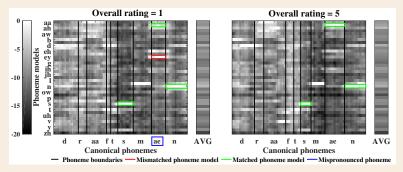
Database

- Read English corpus collected from 16 Indian learners who were in spoken English training.
- Number of utterances: $12375 \approx 800$ per subject
- 800 unique utterances were also recorded from the expert.
- Overall quality ratings: Excellent (5: 20.3%), very good (4: 21.0%), good (3: 23.6%), moderate (2: 17.3%) and poor (1: 17.8%).

Yes (1)/No (0) questions for factors	1 (%)	0 (%)	
ls utterance intelligible	88.5	11.5	
ls phoneme quality good	68.7	31.3	
Is phoneme mispronunciation exists	49.2	50.8	
ls syllable stress proper	37.4	62.6	
ls intonation proper	62.2	37.8	
ls pause locations are proper	81.2	18.8	
ls MTI present	57.6	42.4	

イロト イポト イヨト イヨト

Proposed feature computation



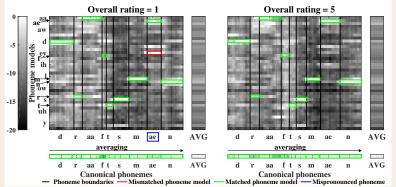
- Computed based on the frame level logarithm of posterior probability values from all phoneme models, referred to as log posteriors.
- Utterance level averaged features could be insufficient for better discrimination between the ratings.

イロト 不同 と 不同 と イヨト

Utterance level features (f_{utt})

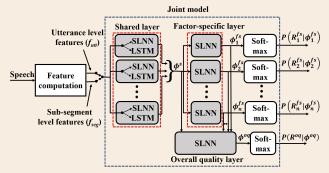
- Log posteriors from the matched phoneme model could be indicative of mispronunciation.
- Construct a one-dimensional vector consisting of the log posteriors from the matched phoneme models.

Sub-segment level features (f_{seg})



- Average performed over fewer frames in the sub-segments could discriminate the ratings better.
- *f_{seg}* are modelled in a data driven manner using LSTMs to overcome errors due to heuristic based averaging.

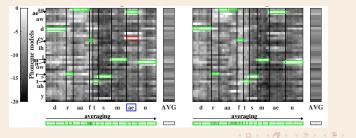
Joint model architecture



- Shared layer is believed to explore the interdependencies by learning common representations in conjunction with factor-specific and over quality layer.
- It uses single layer neural network (SLNN) for f_{utt} and LSTM for f_{seg} .
- The factor-specific and overall quality layer learn representations specific to each factor and overall quality separately.

Experimental setup

- Number of phoneme models: 39
- Baseline features: 78-dimensional paired log posteriors by concatenating the utterance level averaged log posteriors of learner and teacher.
- f_{utt} and f_{seg} dimensions are 80 and $n \times 80$ respectively, where n is number of words.



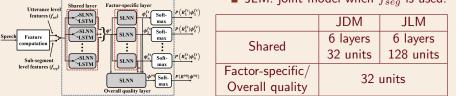
Experimental setup

- Number of phoneme models: 39
- Baseline features²: 78-dimensional paired log posteriors by concatenating the utterance level averaged log posteriors of learner and expert.
- f_{utt} and f_{seg} dimensions are 80 and $n \times 80$ respectively, where n is number of words.
- Five-class classification accuracy is used as the objective measure.
- 10-fold cross validation: 8 folds for train, 1 for validation and 1 for test.

 $^{^2}$ Xiao, Soong, and Hu, "Paired Phone-Posteriors Approach to ESL Pronunciation Quality Assessment", 2018 🕨 🚊 👒

Experimental setup

Joint model



JDM: joint model when f_{utt} is used.

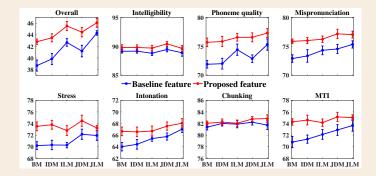
• JLM: joint model when f_{seg} is used.

Baseline model (BM)³: DNN with two hidden layers and 16 units each.

- IDM: DNN with two hidden layers and 32 units each.
- ILM: LSTM with 128 units and a SLNN with 32 units each.

³Xiao, Soong, and Hu, "Paired Phone-Posteriors Approach to ESL Pronunciation Quality Assessment", 2018 🛌 🗐 🦉

Classification accuracy on test sets

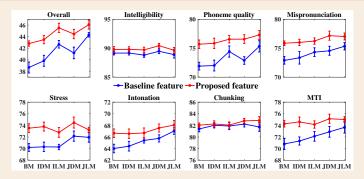


- Accuracies with the proposed features are higher than those with the baseline.
- Relative improvements with JLM and JDM in overall quality with respect to BM are found to be 19.13% and 14.93% respectively.

3

イロン 不良 とくほど 不良 とう

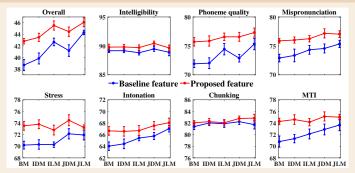
JDM vs IDM and JLM vs ILM



- Accuracies with JDM and JLM are found to be 2.25% and 1.23% (relative) higher in overall quality.
- Similar observations are consistent across all the factors.
- Joint models perform better than the independent models.

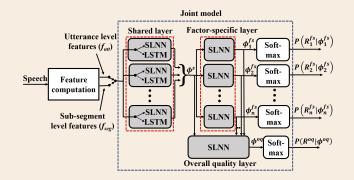
ヘロン 不良 とくほう 不良 とうせい

ILM vs IDM and JLM vs JDM



- Accuracies with ILM and JLM are found to be 4.69% and 3.64% (relative) higher in overall quality.
- f_{seg} is better than f_{utt}
- Lower performance in the factors intelligibility, stress and MTI could be avoided by considering phonemes or syllables as sub-segments.

Analysis on interdependencies



• Analysed the effect of both representations $\{\phi^s, \phi^{fs}\}$ on the overall quality.

• Compute the difference between the average accuracies with $\{\phi^s, \phi^{fs}\}$ and that with either ϕ^s or ϕ^{fs} separately for JDM and JLM.

イロン 不良 とくほう イヨン 一日

Analysis on interdependencies

Table: Difference between the average accuracies obtained with $\{\phi^s, \phi^{fs}\}$ and those obtained with either ϕ^s or ϕ^{fs} . The negative entries are indicated in red.

	JD	М	JLM		
	Only ϕ^{fs}	Only ϕ^s	Only ϕ^{fs}	Only ϕ^s	
Intelligibility	0.3	0.3	0.09	0.21	
Phoneme quality	0.27	0.33	0.03	-0.11	
Mispronunciation	0.52	0.44	0.29	0.22	
Stress	-0.01	0.32	-0.04	-0.11	
Intonation	0.79	1.18	0.13	0.31	
Pause locations	0.08	0.17	0.17	-0.01	
MTI	-0.1	-0.04	0.19	-0.39	
Overall quality	0.81	0.95	0.5	0.78	

- The differences are positive in all cases of overall quality.
- The differences are positive in most of the cases for the factors.
- This benefit of joint training could be due to the interdependencies between the factors and overall quality.

Analysis on confusions among the ratings

Table: Confusions among the ratings in overall quality computed from a) BM with baseline feature (BM with baseline), b) JDM with f_{utt} and c) JLM with f_{seg} .

	(a)	BM	with	basel	ine	(b) JDM with f_{utt}				(c) JLM with f_{seg}					
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
1	38.0	30.6	16.3	4.3	10.8	54.0	28.7	11.7	2.3	3.3	57.9	25.4	9.2	3.2	4.3
2	24.0	39.8	26.2	3.5	6.5	22.7	46.4	23.6	3.7	3.6	20.4	48.3	21.4	5.2	4.7
3	12.6	22.5	38.2	9.4	17.3	9.8	24.8	39.9	11.4	14.1	9.5	22.5	35.9	16.3	15.8
4	8.3	8.5	29.2	14.7	39.3	4.2	8.1	31.6	20.5	35.6	5.2	8.2	23.2	25.7	37.7
5	4.7	2.4	19.0	11.8	62.1	2.1	2.1	17.7	17.4	60.7	2.9	2.9	11.1	19.7	63.4

- Shows the confusions in percentage averaged across 10 folds.
- \blacksquare Row \longrightarrow true ratings; column \longrightarrow predicted ratings.
- Red colored entries indicate where JDM and JLM have values lower in the diagonal and higher in the off-diagonal than the respective values from BM with baseline feature.
- No bias in predicting the ratings with the proposed approach.

Conclusion and Future work

- We predict the ratings for overall quality and its influencing factors by exploring interdependencies among those with joint models.
- In contrast to heuristically computed utterance level averaged features, we consider f_{seq} and model it using LSTMs.
- Experiments on the data collected from Indian learners reveal that the proposed joint approach performs better than the baseline scheme.
- Further investigations are required to identify better sub-segment level features for improving quality of all factors and overall quality.
- Better modeling strategies when the length of sub-segment level features from expert and learner are not identical.

イロト イヨト イヨト

THANK YOU

SPIRE LAB, IISc, Bangalore

